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Abstract

The in vivo erythropoiesis, which is the generation of mature red blood cells in the bone
marrow of whole organisms, has been described by a variety of mathematical models in the
past decades. However, the in vitro erythropoiesis, which produces red blood cells in cultures,
has received much less attention from the modelling community. In this paper, we propose the
first mathematical model of in vitro erythropoiesis. We start by formulating different models
and select the best one at fitting experimental data of in vitro erythropoietic differentiation. It
is based on a set of linear ODE, describing 3 hypothetical populations of cells at different stages
of differentiation. We then compute confidence intervals for all of its parameters estimates,
and conclude that our model is fully identifiable. Finally, we use this model to compute the
effect of a chemical drug called Rapamycin, which affects all states of differentiation in the
culture, and relate these effects to specific parameter variations. We provide the first model
for the kinetics of in vitro cellular differentiation which is proven to be identifiable. It will
serve as a basis for a model which will better account for the variability which is inherent to
experimental protocol used for the model calibration.

1 Introduction

Erythropoiesis is the process by which red blood cells are produced. It occurs within the broader frame of
haematopoiesis, the process which generates all blood cells. The dynamics of haematopoiesis has been
extensively modelled mathematically in the past decades, with the first historical models published as
early as fifty years ago (1,2) (for a review of the history of haematopoiesis modelling in general, see (3)).
Models of haematopoiesis have improved the understanding of both the processes they describe (4), and
the mathematical tools they use. These models comprise non-exhaustively Differential Equations (DE,
either ordinary (1,2,5), partial, which can be structured by age, maturity, or a combination of these (6), or
even delay differential equations (7)) and agent-based models (8). They can be fully deterministic (5) or
can include a more or less prominent stochastic component (9,10,11).

Recent works specifically focusing on erythropoiesis comprise DE-based models (12,13) and multi-scale
descriptions of these phenomena (14,15,16).

All these works aim at modeling the in vivo physiological processes, i.e. the processes occurring in a
whole organism. Those processes are related to numerous pathologies, for which clinical data are very
sparse and must be acquired on experimentally prohibitive time-scales, which complicates their study.
Modeling has therefore provided significant insights into these pathologies (4). On the contrary, the in
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vitro context, i.e. the process that takes place in cells grown in culture, is much simpler to characterize
experimentally. Yet, to our knowledge, no modeling study has focused on it so far. Since the in vitro
differentiation is an experimental tool of choice for the study of cellular decision-making (17,18,19), we
propose to develop a model for the dynamics of the in vitro erythropoiesis.

Moreover, the current models of erythropoiesis suffer from one major drawback: the weakness of
their parameterization, which can fall within three categories.

A vast majority of the existing models of erythropoiesis are based on experimental parameter values
from the litterature. In some cases these values are used in other contexts that those in which they were
obtained (typically, in other species (12)).

In other cases, the parameter values of a model are chosen arbitrarily to reproduce a qualitative
behaviour. Apart from this qualitative fit, such approaches do not provide any information regarding the
validity of the values (16).

Finally, when the parameters of a model are estimated to reproduce a dataset, the precision of this
estimation is seldom investigated (20). By this, we mean that depending on the algorithmic details of the
estimation, it is possible that several values of the parameters might render the same fit to the data. In
this case the model is said to be unidentifiable.

A model is said to be identifiable if and only if it is possible to infer a unique value for each of its
parameter by comparing its output to experimental data. Otherwise it is unidentifiable. A model can be
non-identifiable for several reasons (21,22).

Structural identifiability is related to the structure of the model, and the observed variables. A
model is structurally unidentifiable when several of its parameters are redundant, meaning that they can
vary in such a manner that the measured output of the model is not affected (21,22,23). A variety of
methods, based on different approaches, can be used to assess the structural identifiability of a dynamic
model. These include, non-exhaustively, the Taylor series method (24), the similarity transformation (25),
the generating series method (26), and the profile likelihood approach (22,27,28). A review of these methods
is provided in (21) and their performance is assessed in (23).

Practical Identifiability is related to the quantity and quality of the data used for model calibration.
If the data is too sparse or too noisy to estimate all parameters together, then the model is said to
be practically unidentifiable (21,22). Essentially three kinds of frequentist methods can be used to assess
the practical identifiability of a model: methods based on the Fisher Information Matrix (FIM) (29),
which use a parabolic approximation of the likelihood function, profile-likelihood-based methods (22,28),
and bootstrapping, which is based on the resampling of the data (30). FIM-based methods are less
computationally demanding, because they require the fewest parameter estimation steps (31), but due to
their parabolic approximation they are proven to render biased results (22). On the other hand, the profile
likelihood-based method is computationally cheaper than bootstrapping (31), and is proven to detect both
structural and practical unidentifiabilities (22,27).

Despite the growth of the interest in identifiability and related concepts among the biological systems
modelling community (21,32,33,34) the identifiability of models remains seldom investigated (20). With this
in mind, the most rigorous way to design and calibrate a model of erythropoiesis seems to use dedicated
experiments to determine its parameter values. Once these values have been determined, one should
then test the identifiability of the model before using it for any prediction.

In this paper, we aim at developing an identifiable model for the dynamics of the in vitro erythroid
differentiation. The data that we use to calibrate it consists in counts of different cell sub-populations
at regularly spaced time-points during the course of proliferation and differentiation of chicken erythroid
progenitors. We start by formulating different possible structures for the dynamics of the system, and
for the distribution of residuals. We select the best structure and distribution using classical information
criteria. We then assess the identifiability of our model using an approach based on the profile likelihood
concept. Finally, we test the adaptation of our model in a perturbed context, when cells are exposed to
rapamycin, a drug which is known to affect the dynamics of differentiation, although its precise effect on
proliferation and differentiation remains unclear. Since our model is identifiable, it is possible to quantify
the effect of the drug on each of its parameters.

2

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2018. ; https://doi.org/10.1101/314955doi: bioRxiv preprint 

https://doi.org/10.1101/314955
http://creativecommons.org/licenses/by/4.0/


2 Methods

2.1 Data

The experimental setting from which were obtained all the data used in this study consists in a population
of chicken erythroid progenitors which may either be maintained in a proliferative state or induced to
differentiate into mature erythrocytes. Their behavior is controlled by the medium in which they are
grown (35). In the self-renewal medium (referred to as the LM1 medium) the progenitors keep undiffer-
entiated, and undergo division after division. The LM1 medium contains growth factors (TGF-α and
TGF-β), which stimulate the proliferative ability of the progenitors. On the contrary, the differentiation
medium (referred to as the DM17 medium), contains anaemic chicken serum and insulin. After switch-
ing medium from LM1 to DM17, a fraction of the progenitors undergoes differentiation and becomes
erythrocytes. The culture thus becomes a mixture of differentiated and undifferentiated cells, with some
keeping proliferating. These two media can be used in different cellular kinetics experiments.

The first one, referred to as the LM1 experiment, consists in culturing cells in their self-renewing
medium. Trypan blue is a non-toxic chemical that specifically dyes dead cells (fig 1-A). Dying a sample of
the culture and counting the stained cells under a microscope thus gives access to the absolute numbers
of living cells, at different times during their proliferation (namely, one point per day from day 0 to day 4
after the beginning of the experiment).

The second one will be referred to as the DM17 experiment, and is based on the culture of progenitors
in their differentiation medium. In this experiment, the culture is a mixture of dead and living, self-
renewing and differentiating cell. A chemical called benzidine, which specifically dyes the differentiated
cells, gives access to the number of differentiated cells in the medium (fig 1B). A parallel staining
with trypan blue still gives access to the overall numbers of living cells (fig 1B). Consequently, the data
available from this experiment are the absolute numbers of differentiated cells, as well as the total number
of living cells (which comprises both self-renewing and differentiated cells) at the same time points as in
the LM1 experiment.

These experiments have been performed in two settings. In the first one cells are grown in their regular
media (Figure 1C, black dots). In the other one, they grow in the presence of rapamycin, a chemical drug
known to affect both the number of living cells in culture, and the proportion of differentiated cells (36,37),
as displayed on Figure 1C.

Another piece of experimental data that will be of use for calibrating our models is the result of
the commitment experiment (Figure 1D). In this experiment, once a cell culture has been switched to
the DM17 medium, it can be switched back to the LM1 medium (17). Switching back after 24 hours of
differentiation does not cancel the proliferative ability of the progenitors (the culture gets proliferating
again), but switching back after 48 hours does (instead of proliferating again, the culture stagnates), as
summarized on Figure 1D. This means that there must remain some self-renewing cells in the culture
after one day, but that they all have started differentiating after two days.

2.2 Models

2.2.1 Structural Model

We propose three alternative dynamic models of the erythroid differentiation, which are summarized on
Figure 2.

The SB model comprises only two compartments (Figure 2A), a self-renewing one (S) and a differ-
entiated one (B, which stands for Benzidine-positive), whose dynamics are given by the equations:

dS

dt
= ρSS(t)− δSBS(t), (1a)

dB

dt
= ρBB(t) + δSBS(t). (1b)

This model is characterized by a set θ = (ρS , δSB , ρB) of three parameters, where ρi is the net
proliferation rate of compartment i . For estimation-related reasons, it incorporates the balance between
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Figure 1: Experimental context. A: In LM1 medium the culture is only composed of living and dead cells in the
self-renewal state. The amount of living cells can be measured by trypan blue staining. B: In DM17 medium, the culture
is a mixture of living and dead, self-renewing and differentiating cells. The amount of living cells can be measured by
trypan blue staining. The amount of differentiated cells can be measured by benzidine staining. C: Data used to calibrate
the models. Black dots are the results of the cell counting experiments in the control situation (no treatment). Red dots
are the results of the same experiments under rapamycin treatment. Both conditions were obtained with the same initial
populations, so the black and red dots are the same at t = 0. For readability, living cell counts are displayed in log-scale,
and differentiated cell counts are displayed as a fraction of the total living cell count. D: Commitment experiment. If
the differentiating cells are switched back to LM1 after 24h of differentiation the culture starts proliferating again (upper
trajectory). If the cells are switched back to LM1 after 48h, the culture stagnates (lower trajectory).

4

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2018. ; https://doi.org/10.1101/314955doi: bioRxiv preprint 

https://doi.org/10.1101/314955
http://creativecommons.org/licenses/by/4.0/


S BC
δSC δCB

ρS ρC ρB

S
δSB

ρS

B

ρB

A

S

ρLM1

δSB
B

ρBρDM17

S

B C

Figure 2: Diagrams of three possible structural models for our data. A: The SB model has no intermediary
compartment. B: The S2B model has no intermediary compartment, but the self-renewing cells change proliferation rate
in DM17. C: The SCB model has an intermediary compartment.

cell proliferation and cell death. This means that ρi can be either positive (more proliferation than death)
or negative (more death than proliferation). On the other hand δij is the differentiation rate of cell type
i into cell type j , which is positive.

The S2B model comprises also the S and B compartments (Figure 2B), but allows the self-renewing
cells to change their net proliferation rate upon culture medium switching. This formulation arose from
the consideration that proliferation is faster in the DM17 than in the LM1 medium (Figure 1C). The
dynamics of this model are given by the equations:

dSLM1

dt
= ρLM1SLM1(t), (2a)

dSDM17

dt
= ρDM17SDM17(t)− δSBSDM17(t), (2b)

dB

dt
= ρBB(t) + δSBSDM17(t). (2c)

It is characterized by the set (ρLM1, ρDM17, δSB , ρB) of four parameters, following the same notation
convention as in the SB model.

Finally, the SCB model (Figure 2C) also comprises the same self-renewing and differentiated compart-
ments as the SB model, as well as a hypothetical commited cells compartment C . This compartment
comprises intermediary cells that are committed to differentiation, yet not fully differentiated. The
dynamics of these three compartments are given by the equations:

dS

dt
= ρSS(t)− δSCS(t), (3a)

dC

dt
= ρCC (t) + δSCS(t)− δCBC (t), (3b)

dB

dt
= ρBB(t) + δCBC (t). (3c)

It is characterized by the set (ρS , δSC , ρC , δCB , ρB) of five parameters, following the same naming
convention as the two other models.

Moreover, it should be noted that differential systems (1) to (3) are fully linear, and that their
matrices are lower-triangular, which makes them easily solvable analytically. Their simulation is thus very
fast. The detail of the analytical solutions to these systems is given as supplementary material.

Finally, not all variables in the models can be measured through the experiments that we presented
in section 2.1, and we only have access to two observables of the system: the total amount of living
cells T (t) through trypan blue staining, and the amount of differentiated cells B through benzidine
staining. The number of living cells T can be measured in LM1 and in DM17, yet in LM1 there is no
differentiation, so in the LM1 experiment T = S (or T = SLM1 in the S2B model). The number of
differentiated cells B can be measured in DM17 (it is null in LM1).
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2.2.2 Error Model

As will be explained below, we used the maximum likelihood approach to estimate the parameters of our
model, and the profile likelihood approach to assess its identifiability. Both these methods require the
proper definition of the likelihood of our model, i.e. the definition of a statistical model for the prediction
error of our dynamical model, y− f (t, y0, θ), where y is the data and f the prediction from the dynamical
model (which depends on time t, the initial condition y0 and the parameters θ of the model).

This prediction error is usually modelled by a gaussian distribution with a null mean (22,38,39). Then,
the standard deviation of the error remains to be characterized. To this aim, there are two main
options (38). On the one hand, one can estimate the standard deviation σ of the error from the data. For
this estimate to be precise, one needs to have an extensive set of data, which is not our case (Figure 1C).

On the other hand, one can build a model for the standard deviation of the error. This means finding
a suitable function g , of the time t, the initial condition y0, the dynamical parameters θ and possibly
other parameters ξ (which we will call the error parameters), to describe this variance. The error model
is then completely described as: yi ,j ↪→ N (fi (tj , y0, θ), gi (tj , y0, θ, ξ)). Several simple forms have been
proposed for the function g (39) (table 1), but it is not obvious whether one should be used in general,
or if the choice of g should be context-specific.

Error model Definition of g Error parameters
Constant error ∀ j gi (tj) = a ξ = (a)
Proportional error ∀ j gi (tj , y0, θ) = b.fi (tj , y0, θ) ξ = (b)
Combined error ∀ j gi (tj , y0, θ) = a + b.fi (tj , y0, θ) ξ = (a, b)

Table 1: Definition of three different error models (39).

With this representation, the log-likelihood of the model follows as:

− 2 log(L) = nm log(2π) +
n∑

i=1

m∑
j=1

(
(yi ,j − fi (tj , θ))

gi (tj , θ, ξ)

)2

+ 2log(gi (tj , θ, ξ)), (4)

where n is the number of variables of the dynamic model, and m the number of measurement points for
each variable, and from which the log(2π) term is dropped. In the end, the best-fit parameters of the
model are the values of θ and ξ which minimize the quantity defined in equation (4).

2.3 Parameter Estimation

Considering the data at our disposal, we adopted the following procedure for parameter estimation:

1. Estimate ρS (or ρLM1 in the S2B model), and the corresponding error parameters ξ1 from the LM1
experiment. In LM1 there is no differentiation, so the S compartment just follows an exponential
growth with rate ρS .

2. (a) In the SB model, set δSB so that there are no more self-renewing cells after 2 days of differ-
entiation (which we interpret as S(48h) ≤ 1, or δSB ≥ ρS + 1/2ln(S(0)) from Equation (1a)).

(b) In the SCB model, set δSC so that there are no more self-renewing cells after 2 days of differ-
entiation (which we interpret as S(48h) ≤ 1, or δSC ≥ ρS + 1/2ln(S(0)) from Equation (3a)).

This step is not an estimation step, as the value of δSC is fixed according to the data at our disposal
(Figure 1D).

3. Estimate the remaining parameters, and the corresponding error parameters ξ2, using the data
from the DM17 experiment. In the SB model, the only remaining parameter is ρB . In the S2B
model, the remaining parameters are ρDM17, δSB and ρB . In the SCB model, these are ρC , δCB ,
ρB .
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The second step of this estimation sets δSC (δSB in the SB model) to a value such that there are
no more self-renewing cells after 2 days of differentiation. This observation does not come from the
cellular kinetics experiment that we presented on Figure 1C. It rather uses the results of the commitment
experiment (Figure 1D), which shows that some self-renewing cells remain in the culture after one day,
but that they all are differentiated after two days (17).

In the SCB model, considering that the sef-renewing compartment S is characterized by an exponential
dynamic, and that there are no more self-renewing cells if and only if S ≤ 1, this provides an upper and
a lower bound for δSC :

ρS +
1

2
ln(S0) ≤ δSC ≤ ρS + ln(S0). (5)

For the sake of simplicity, we will set δSC = ρS + 1/2ln(S0) in order to verify the equality: S(48h) = 1
in the following.

These considerations do not affect the S2B model, in which the switching of the culture medium
only affects the proliferation rate of the S compartment.

In both estimation steps, the -log likelihood was minimized using the Truncated Newton’s algo-
rithm (40,41) implemented in the python package for scientific computing scipy (42). Convergence to the
global minimum was assured by a random sampling of the initial guesses for parameter values

2.4 Model Selection

In order to choose a proper error model, one needs to adopt a selection criterion, which allows to rank
models and keep only the best ones. The most straightforward one is the log-likelihood that we presented
in equation (4): the lower −2 log(L), the better the model.

Yet it only accounts for the quality of the fit of the model, without incorporating the complexity of the
model. This means that −2 log(L) favours overly complex models, whereas a good selection criterion
should balance the quality of the fit of the model with its complexity. This is the case for Akaike’s
Information Criterion (AIC (43)):

AIC = −2 log(L) + 2k , (6)

where k is the number of parameters of the model. Unfortunately this criterion is valid only when the
sample is very large (n > 40k , where n is the number of points in the sample (43)). Corrections to AIC
have been developed to account for the sample size, and are incorporated in the corrected AIC , namely
AICc (43):

AICc = AIC +
2k(k + 1)

n − k − 1
. (7)

From this definition it is straightforward that AICc converges towards AIC when the sample is sufficiently
large. The corrective term in AICc has been developed only for linear models. However, since there is no
selection criterion derived from AIC for non-linear models, the literature recommends using AICc when
in doubt (43). As a consequence, we will use the AICc for our model selection, despite its statistical
non-linearity (its outputs are not a linear combination of the inputs).

It is important to notice that the AICc value contains little information in itself, and that what
matters for the purpose of model selection is the difference between the AICc of two competing models.
Indeed, the best model in a set of models is the one with the lowest AICc , but if the second best model
has an AICc very close to the minimal AICc , this means that this second model is close to being the
best one. This is what motivates the introduction of the AICc difference for each model:

∆i = AICci −min(AICc), (8)

where AICci is the AICc for the i-th model. It is admitted that a model is significantly worse than the
best one if its AICc is more than 10 units higher than the minimal AICc (43).

Another way of selecting the best models in a family of models is through the Akaike’s weights (43):

wi =
exp(−1/2∆i )∑R
j=1 exp(−1/2∆j)

, (9)
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where R is the number of competing models. The Akaike’s weight of a given model in a given set of
models can be seen as the probability that it is the best one among the set. In this setting, selecting the
best models of a set of models means computing their Akaike’s weights, sorting them, and keeping only
the models whose weights add up to a significance probability (for example, 95%).

We will use Akaike’s weights to select between models in the rest of this study.

2.5 Identifiability Analysis

The identifiability of a model describes the unicity of the correspondence between the parameters of the
model and the data. In other words, a model is identifiable if and only if there is only one parameter set
that reproduces a dataset, for a given criterion of the fit quality.

Though very simple, this definition is very hard to use in practice, so several methods of identifiability
analysis have been developed to assess confidence intervals for their parameter estimates (21) . We chose
to use one of these to assess the identifiability of our model, which uses the statistical notion of profile
likelihood (22,44).

For a model with k parameters, a parameter space Θ = {(θi , i ∈ {1, 2, ... ,N}), θi ∈ R}, and a
likelihood L, the profile likelihood PLθi with respect to parameter θi is defined as:

∀x ∈ R PLθi (x) = max
θj 6=i

(L(θi = x , θj)) . (10)

Namely, the profile likelihood with respect to a parameter at a certain value is the likelihood of the
model, maximized with respect to all the other parameters. Computing the profile likelihood at a certain
value x of a parameter θi means to set θi = x and to estimate the values of the other parameters θj
that minimize the error −2 log(L) in this setting. Consequently, −2 log(PL) is minimal at the optimal
parameter values set, and increases in both directions.

In a highly dimensional parameter space where the exact shape of the likelihood landscape is not
straightforward, the profile likelihood summarizes this shape along the axis of θi , by keeping the likelihood
as high as possible in all directions. It is possible to define a confidence interval CIθi at a level of confidence
α ∈ [0, 1] for a parameter θi , derived from the evaluation of the profile likelihood (22):

CIθi (α) =
{
x ∈ R | − 2 log(PLθi (x)) + 2 log(PLθi (x̂)) ≤ χ2(α,N)

}
, (11)

where x̂ is the optimal estimate of θi , N is the number of parameters being estimated and χ2(α,N) is
the α-quantile of the χ2 distribution with N degrees of freedom.

Namely, all the parameter sets that render a profile likelihood closer to its minimal value than a
threshold χ2(α,N) belong to the confidence interval. The threshold depends both on the number of
parameters estimated (the more parameters, the higher the threshold and the wider the confidence
interval) and on the requested confidence level (the higher the confidence level, the higher the threshold,
and the wider the confidence intervals).

Once a confidence interval has been extracted for a parameter θi , we say that θi is practically
identifiable at the level of confidence α if and only if its confidence interval at the level α is
bounded (22).

Then we say that a model is practically identifiable at the level of confidence α if and only if
all its parameters are (22).

The profile likelihood approach is a good way of addressing the identifiability of a model, because
it allows to detect both structural and practical non-identifiabilities. This feature makes the approach
more efficient in practice than most of the other methods in the field (21,23,45,27).

3 Results

3.1 Measurement error

The data that we used for the calibration of our models are displayed on figure 1C. For readability, it
displays the total cell counts in log scale, and the differentiated cell counts as a fraction of the total count.
This representation emphasises the discrepancy between the cell counts in LM1 medium at the first two
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timepoints: the measured cell population in LM1 decreases between 0h and 24h, in both conditions
(control, and rapamycin-treated).

First, every timepoint displayed on figure 1C was obtained by a single measurement. This means that
they are subject to a measurement error which might blur the exponential growth that one would expect
in such experiments (35). Second, all the cell cultures used in this study were initiated with 25,000 cells.
A sampling error in this initiation step would affect all the cell counts of the experiment.

In the course of an experiment where cells are grown in a specifically designed medium (35), one
would expect the cell populations to increase. We thus conclude that the observed decrease in the total
living cell number in the LM1 medium (in the control and the rapamycin-treated cases) is due to the
experimental error that the protocol suffers rather than to a hypothetical biological feature of the cells
under study.

3.2 Fitting the Model with no Treatment: Model Design and Validation

3.2.1 Choosing a structural model: selection approach

In order to choose the best model at reproducing the in vitro dynamics of erythropoiesis, we computed the
maximum-likelihood estimates of the parameters of the three models we designed in section 2.2. To this
end, we coupled each dynamic model (SB, S2B and SCB) with the same error model (the proportional
one) and estimated their parameters (which are displayed in table S1).

For each of these three models, we computed the likelihood-based selection criteria that are displayed
on Table 2. The S2B and SCB models appear as the best ones and offer very similar fits, with the SB
model being far worse. It is thus possible to discard the SB model based on the Akaike’s weights, but
it remains impossible, based on this criterion, to decipher which of the two remaining models should be
used to best describe the in vitro erythropoiesis.

Error model −2 log(L1) −2 log(L2) k AIC AICc ∆AICc wAICc

SB 106 199 5 315 322.1 20.1 0
S2B 106 174 6 292 302 0 0.5
SCB 106 174 6 292 302 0.40 0.5

Table 2: Selection criteria evaluated for the three dynamical models presented on Figure 2. L1 and L2 are
the likelihoods of the models evaluated with the data of the first and last estimation steps respectively. k is the number
of estimated parameters in each of the models, according to the procedure described in section 2.3. For each model, the
sample size is n = 15.

However, the S2B model does not describe the results of the commitment experiment (Figure 1D). In
this model indeed, self-renewing cells switch between different self-renewing rates upon medium switch-
ing. As a consequence, switching the cells back and forth between the two media should just switch
their proliferation rate, without affecting their proliferation ability. So the cells would never lose their
proliferation ability, as opposed to the result of the commitment experiment.

On the other hand, the SCB model predicts that upon switching to the differentiation medium, the
cells from the S compartment start differentiating. Once they are all differentiated, cells from the C and
B compartments can still proliferate, but this proliferation might be cancelled by a switch back to the
LM1 medium. It is thus impossible to describe the process of commmitment with the S2B model, while
it is possible with the SCB model.

As a conclusion, the SCB model is the best-fitting model which also accounts for the results of the
commitment experiment, making it our dynamic model of choice for the rest of this study.

3.2.2 Choosing an error model: selection approach

Following the same approach for selecting the error model, we computed the best-fit estimates of the
parameters of the three error models presented in Table 1, coupled with the SCB model. These parameter
values are given in Table S2, and the values of the corresponding selection criteria are given in Table 3.
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Error model −2 log(L1) −2 log(L2) k AIC AICc ∆AICc wAICc

Constant Error 107 195 6 314 325 22 1.48× 10−5

Proportional Error 106 174 6 292 302 0 0.99
Combined Error 106 174 8 296 320 18 1.58× 10−4

Table 3: Selection criteria evaluated for the three error models presented in table 1. L1 and L2 are the
likelihoods of the models evaluated with the data of the first and last estimation steps respectively. k is the number of
estimated parameters in each of the models, according to the procedure described in section 2.3. For each model, the
sample size is n = 15.

The proportional error model appears as the best one, since it offers the best fit to the data, with
the fewest parameters.

As a consequence, in the rest of this paper, we will consider the SCB model with proportional error.

3.2.3 Identifiability analysis

In order to use a model for predictive purposes, one needs to assess its identifiability. The profile likelihood
curves of all estimated parameters are displayed on Figure 3, for the SCB model with proportional error.
For ρS and b1, which are estimated together in the first step of the procedure, the identifiability threshold
at confidence α = 0.95 is χ2(0.95, 2) = 5.99. For ρC , δCB , ρB and b2, which are estimated together at
the last step of the estimation procedure, the threshold is χ2(0.95, 4) = 9.49.
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Figure 3: The SCB model with proportional error is fully identifiable. Solid curves are the profile likelihood
curves of each estimated parameter of the model. Dashed lines give the identifiability threshold of each parameter at
confidence level α = 0.95.

For every parameter of the model, the profile likelihood curve crosses the threshold on both sides of
the optimum, which means that every parameter of the model is identifiable, at the level of confidence
α = 0.95. The confidence intervals of the parameters (22), extracted from these profiles (equation (11))
are displayed in Table 4.
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Parameter Lower bound Time (h) Optimal value Time (h) Upper bound Time (h)
ρS 0.35 48 0.53 31 0.70 24
b1 0.18 - 0.34 - 1.1 -

δSC 5.6 3 - - 11 2

ρC 0.049 340 0.49 31 0.80 21
δCB 0.11 150 0.18 92 0.34 49
ρB 0.44 38 0.92 18 1.3 13
b2 0.081 - 0.15 - 0.41 -

Table 4: Confidence Intervals of the parameters of the SCB model with proportional error. Displayed are
the confidence interval boundaries at level α = 0.95, extracted from figure 3, and the best-fit estimate of all the estimated
parameters of the model. For δSC , which is not estimated, no optimal value can be computed, but absolute bounds on
its values can be computed with equation (5). Parameters are grouped by their estimation step in our procedure: ρS and
b1 are estimated together in the first step, then δSC is set, and finally the four other parameters are estimated together.
For the proliferation rates ρS , ρC and ρB , we also give the corresponding doubling times of the populations (i.e. how long
would it take to double the population in the absence of differentiation?). For the differentiation rates δSC and δCB , we
also give the half-life of the corresponding populations (i.e. how long would it take to differentiate half the cells from the
undifferentiated population, in the absence of proliferation?)

For a given parameter, the size of the confidence interval depends on the number of parameters
that are estimated together, the required level of confidence, and the likelihood function used for the
computation. By definition (equation (10)), the profile likelihood renders as large of a confidence interval
as possible, because it increases as slowly as possible on each side of the optimal parameter value.
This means that identifiability is harder to satisfy with the profile likelihood approach than with other
definitions, for example based on a linearization of the likelihood surface at the optimal parameter set (22).

As a consequence, the fact that the parameter confidence intervals presented in Table 4 may appear
as quite large is not a sign that the parameters are poorly estimated. It is rather the evidence that they
remain identifiable even with a very stringent definition of identifiability, and at a high level of confidence.

It is not possible to study the identifiability of δSC , since it is not estimated from the data. However,
the commitment experiment (figure 1D) give us access to a lower and an upper bounds for its value
(equation 5). We determined the optimal likelihood of the model, and its optimal parameters in this
range of value (figures S1 and S2), showing that the choice of δSC does not influence the dynamics of
our model.

3.3 Modelling differentiation in the control case

A simulation of the model with the identified values of its parameters, is reproduced, with the corre-
sponding experimental data, on Figure 4A. The overall quality of the fit is good, especially for the DM17
populations. Regarding the self-renewing cells in LM1 medium though, the fit seems more qualitative
than quantitative, due to technical imprecision of the measure (see section 3.1).

The precise values of each parameter of the model are reported in Table 4. The proliferation rate of
the committed cells is slightly lower than the one of the self-renewing cells (the net doubling-time of the
committed compartment is about 34h, whereas the doubling-time of the self-renewing compartment is
around 31h). The differentiated cells proliferate with a higher rate (their doubling time is about 18h).
Taken together, these doubling times explain the faster proliferation of cells in the DM17 medium than
in the LM1, in agreement with previous data (35). Finally, the self-renewing cell differentiation is very
fast: the lowest possible value of δSC gives them a half-life of 3h in DM17. This means that half of
the S compartment would differentiate every 3h in the absence of proliferation. On the contrary, the
differentiation of the committed cells is much slower (if they stopped proliferating, they would have a
half-life of 90h).

The timescales at which these processes occur are pictured on Figure 4B, which displays the number
of cells in each state during a simulation of the model. As specified by the setting of the value of δSC ,
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Figure 4: The model reproduces the cellular kinetics observed in vitro. A: Simulation of the SCB model with
proportional error in the untreated (black) and rapamycin-treated cases (red). Solid lines represent a simulation of the SCB
model with proportional error, with its best-fit parameters. Dots are the experimental data. Displayed are the total number
of living cells in LM1 and DM17 media (in log-scale), and the fraction of differentiated cells in DM17. B-C: Numbers of
cells in each compartment as a function of time in the untreated (B) and treated (C) cases.

the population of self-renewing cells quickly collapses, and the culture becomes a mixing of committed
and differentiated cells. Both of these compartments then grow at their own rate.

At this stage, we have developed a very simple model of erythroid differentiation, that accounts well
for the data used to calibrate it. Plus, it is fully identifiable (at confidence level 95%). We thus use it to
study the effect of rapamycin, a drug known to affect the in vitro erythroid differentiation (36,37).

3.4 Modelling differentiation under Rapamycin treatment

Rapamycin is known to increase the proportion of differentiated cells in cultures of chicken erythroid
progenitors (36,37) (Figure 1C). Yet this effect might have several origins: a decreased mortality of the
differentiated cells, or an increased differentiation rate for example. To decipher between these different
possible effects of the rapamycin treatment, we estimated the values of the parameters of our model in
the rapamycin treated case.

To avoid an overparameterization of the rapamycin effect, we considered that for each estimated
parameter of the model, the value under rapamycin treatment could be either equal to the value in the
untreated case, or equal to another value yet to be estimated. The first option would not introduce
a new parameter in the model, but the latter would. Our model has seven parameters (5 dynamical
parameters and 2 error parameters), of which 6 only are estimated (since δSC is entirely determined by
the value of ρS). This means that we can define 26 = 64 models of rapamycin treatment, by keeping
some of the parameters unchanged compared to the untreated case, and re-estimating the others with

12

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2018. ; https://doi.org/10.1101/314955doi: bioRxiv preprint 

https://doi.org/10.1101/314955
http://creativecommons.org/licenses/by/4.0/


the data presented on Figure 1C.
We thus estimated the parameters of these 64 possible models of the treatment, and computed their

likelihood-based selection criteria, the same way as we did for the dynamic model and the error model
(see section 3.2). The Akaike’s weights of the best three of these models are shown on Figure 5A. The
best model of the treatment is responsible for 94 % of the weight of the 64 models, making it by far
the best model for the rapamycin treatment. A simulation of this model is displayed on Figure 4, which
indeed shows the quality of its fit to the data obtained under rapamycin treatment.
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Figure 5: Modelling erythropoiesis under rapamycin treatment. A. Akaike’s weights of the three best models
of the rapamycin treatment. The 61 other models are not displayed for readability. B. Parameter values in the best model
of rapamycin treatment. Red dots are the ratio of the parameter values under rapamycin treatment with their values in
the untreated case. Straight lines represent the confidence intervals of the values in the untreated case, computed from
Figure 3. The dashed line indicates the parameter values in the untreated case, by which all parameters are scaled for
readability.

This model is obtained by varying all the parameter values except b1, compared to the control case,
as displayed on Figure 5B. Moreover, 4 of the other parameters are varied outside of their 95% confidence
intervals, showing the strength of the treatment effects. The three proliferation rates ρS , ρC and ρB are
reduced under the treatment, while the differentiation rate δCB is increased.

Finally, the effect of rapamycin on the repartition of cells between the different compartments is
displayed on Figure 4C. Under rapamycin, the C compartment decays, when it proliferated in the control
case. Moreover the B compartment has a longer doubling time under rapamycin treatment (48h instead
of 18h in the untreated case). These two effects explain why the drug treatment reduces the overall
amount of cells and increases the proportion of differentiated cells in the culture.

4 Discussion

We proposed a model for the in vitro erythroid differentiation, which comprises two components. First,
the dynamic component is the set of ODE written in equation (3), which describes the dynamics of three
cell populations. Second, we added an error component which describes the distribution of the residuals
of the dynamic model,

The three populations of our dynamical model are related to three different stages of differentiation
of the progenitors. The first one is in a self-renewal state S where differentiation has not started, and the
third one has finished differentiating. The second population lies in the middle, in a state of commitment
C where cells are not fully differentiated yet, but cannot go back to self-renewal.

Similar 3-states models have already been used to describe differentiation (19). Their success probably
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stems from the fact that it would be difficult to describe differentiation as the transition between only
2 states, as we highlighted in the context of in vitro erythropoiesis with our SB model. Actually,
differentiation from one cell type to another is a continuous process, so its best description would probably
be a continuum of states, which would punctuate the transition between the two cell types (19,46).

However, explicitly accounting for this continuum would require an infinity of intermediary states. For
example, the levels of differentiation factors inside the cell could be used as a measure of its differentiation
state (47,48). Such kind of a model should be able to describe differentiation more faithfully than ours. Yet
our model, though simplistic, reproduces our experimental data quite well, and is identifiable. Moreover,
since it is fully linear and thus analytically integrable, its simulation and calibration are very quick.

Such simplicity and identifiability of our model would probably make it valuable to describe differen-
tiation in other contexts.

Once the model was chosen, we verified the accuracy of its parameter estimates. We showed that
among the seven parameters of our model, the six that are estimated by the maximum-likelihood approach
are identifiable, and that the choice of the seventh one does not alter the behaviour of the others. Using
the Profile Likelihood approach, we computed confidence intervals for our parameters. Even though
their relatively large size might be interpreted as a lack of accuracy in the estimates of the parameters,
it is not the case since the identifiability of a parameter is harder to satisfy by the Profile-Likelihood
approach than using other methods. We thus showed that our model is fully identifiable, even using a
very stringent criterion.

After demonstrating the validity of our model in the control case, we used it to study the effect of
rapamycin, a chemical drug which is known to impact the differentiation of erythroid progenitors (36,37).
We designed 64 different models of the rapamycin treatment, which differ by the combinations of pa-
rameters that are affected by the treatment. Evaluating the quality of their fit to the data allowed us
to retain only the best model of rapamycin treatment. The parameter values in this model reveal that
rapamycin increases the differentiation rate of the intermediary cell compartment, and reduces the net
growth rates of the three other compartments. This means that rapamycin increases the differentiation
of the cells in culture, and also affects the balance between their proliferation and mortality. The reduced
net proliferation rates might be caused by a reduced proliferation, an increased mortality or any joint
variation of the two processes equivalent to one of these effects (e.g. reduced mortality, and an even
more reduced proliferation).

In the context of other perturbations of differentiation (for instance, treating cultures with a different
drug than rapamycin), should the drug influence be less strong, we might need a more subtle means of
parameter evaluation, such as the fused lasso penalized regression (49).

At the moment, our approach suffers one major drawback that is the size of our dataset. Indeed,
the precision of our prediction of cell numbers at one timepoint relies on the precision of our measures
of these numbers. And this measurement precision is directly related to the number of repetitions of the
measurements which are performed by the experimentalist.

Repeating the same experiment several times would thus increase measurement precision and average
out measurement noise. This would allow a more precise estimation of the error model parameters, and
in turn would increase the precision of the dynamic model. What we call repeating the same experiment
here does not simply consist in counting cells from the same time point several times to average out
sampling biases. It rather involves putting new cells in culture and following their populations over time,
as two full replicates of the experiment.

In this setting, the measurement error would not just be limited to technical noise due to the sampling
of cells from the culture for counting. It would rather be related to differences between the kinetic features
of the cells in culture, i.e. to actual biological heterogeneity. This heterogeneity would be averaged by
the estimation of one parameter set to fit all the data.

One way of accounting for this heterogeneity in a model, without averaging it out during parameter
estimation, is through the use of mixed effect models, that is a mathematical model (e.g. a set of
deterministic ODE, like ours) whose parameters are modeled by distributions of random variables (39).
We are presently assessing the ability of such mixed effect models to characterize both the behaviour of
the cells in culture on average, as well as their variability.
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6 Supplementary Materials

The supplementary materials file shows the analytical solutions of our three dynamic models, the param-
eter values estimated for the three dynamic models (table S1) and the three error models (table S2), as
well as the influence of our choice of δSC on the likelihood of the model (figure S1) and on its parameter
values (figure S2).

All the datasets and pieces of code analysed and generated during the current study are available in
a public github repository, at https://github.com/rduchesn/Dynamic_Model_Erythropoiesis.

References

[1] L. Sharney, L. R. Wasserman, L. Schwartz, and D. Tendler. Multiple pool analysis as applied to
erythro-kinetics. Annals of the New York Academy of Sciences, 108:230–249, 1963.

[2] G. C. Nooney. Iron kinetics and erythron development. Biophysical Journal, 5(6):755–765, 1965.

[3] L. Pujo-Menjouet. Blood Cell Dynamics: Half of a Century of Modelling. Mathematical Modelling
of Natural Phenomena, 11(1):92–115, 2016.

[4] C. Foley and M. Mackey. Dynamic hematological disease: a review. Journal of Mathematical
Biology, 58(1-2):285–322, 2009.

[5] M. Loeffler, K. Pantel, H. Wulff, and H. E. Wichmann. A mathematical model of erythropoiesis in
mice and rats. Part 1: Structure of the model. Cell and Tissue Kinetics, 22(1):13–30, 1989.

[6] M. C. Mackey and P. Dörmer. Continuous maturation of proliferating erythroid precursors. Cell and
Tissue Kinetics, 15(4):381–392, 1982.

[7] F. Crauste, L. Pujo-Menjouet, S. Génieys, C. Molina, and O. Gandrillon. Adding self-renewal
in committed erythroid progenitors improves the biological relevance of a mathematical model of
erythropoiesis. Journal of Theoretical Biology, 250(2):322–338, 2008.

[8] A. Krinner, I. Roeder, M. Loeffler, and M. Scholz. Merging concepts - coupling an agent-based
model of hematopoietic stem cells with an ODE model of granulopoiesis. BMC Systems Biology,
7:117, 2013.

[9] I. Roeder, L. Kamminga, K. Braesel, B. Dontje, G. Haan, and M. Loeffler. Competitive clonal
hematopoiesis in mouse chimeras explained by a stochastic model of stem cell organization. Blood,
105(2):609–616, 2005.

[10] D. Dingli and J. Pacheco. Modeling the architecture and dynamics of hematopoiesis. Wiley Inter-
disciplinary Reviews. Systems Biology and Medicine, 2(2):235–244, 2010.

[11] M. Kimmel. Stochasticity and determinism in models of hematopoiesis. Advances in Experimental
Medicine and Biology, 844:119–152, 2014.

15

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2018. ; https://doi.org/10.1101/314955doi: bioRxiv preprint 

https://github.com/rduchesn/Dynamic_Model_Erythropoiesis
https://doi.org/10.1101/314955
http://creativecommons.org/licenses/by/4.0/


[12] S. Schirm, C. Engel, M. Loeffler, and M. Scholz. A Biomathematical Model of Human Erythropoiesis
under Erythropoietin and Chemotherapy Administration. PLOS ONE, 8(6):e65630, 2013.

[13] O. Angulo, O. Gandrillon, and F. Crauste. Investigating the role of the experimental protocol in
phenylhydrazine-induced anemia on mice recovery. Journal of Theoretical Biology, 437:286–298,
January 2018.

[14] F. Crauste, I. Demin, O. Gandrillon, and V. Volpert. Mathematical study of feedback control roles
and relevance in stress erythropoiesis. Journal of Theoretical Biology, 263(3):303–316, 2010.

[15] S. Fischer, P. Kurbatova, N. Bessonov, O. Gandrillon, V. Volpert, and F. Crauste. Modeling
erythroblastic islands: using a hybrid model to assess the function of central macrophage. Journal
of Theoretical Biology, 298:92–106, 2012.

[16] N. Eymard, N. Bessonov, O. Gandrillon, M. J. Koury, and V. Volpert. The role of spatial organization
of cells in erythropoiesis. J Math Biol, 70(1-2):71–97, 2015.

[17] A. Richard, L. Boullu, U. Herbach, A. Bonnafoux, V. Morin, E. Vallin, A. Guillemin, N. Papili Gao,
R. Gunawan, J. Cosette, O. Arnaud, JJ. Kupiec, T. Espinasse, S. Gonin-Giraud, and O. Gandrillon.
Single-Cell-Based Analysis Highlights a Surge in Cell-to-Cell Molecular Variability Preceding Irre-
versible Commitment in a Differentiation Process. PLoS biology, 14(12):e1002585, 2016.

[18] S. Semrau, J. Goldmann, M. Soumillon, T. Mikkelsen, R. Jaenisch, and A. Oudenaarden. Dynamics
of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells.
Nature Communications, 8(1):1096, 2017.

[19] P. Stumpf, R. Smith, M. Lenz, A. Schuppert, FJ. Müller, A. Babtie, T. Chan, M. Stumpf, C. Please,
S. Howison, F. Arai, and B. MacArthur. Stem Cell Differentiation as a Non-Markov Stochastic
Process. Cell Systems, 5(3):268–282.e7, 2017.

[20] C. Cobelli and M. P. Saccomani. Unappreciation of a priori identifiability in software packages causes
ambiguities in numerical estimates. American Journal of Physiology-Endocrinology and Metabolism,
258(6):E1058–E1059, 1990.

[21] A. Villaverde and A. Barreiroc. Identifiability of Large Nonlinear Biochemical Networks. 2016.

[22] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, and J. Timmer.
Structural and practical identifiability analysis of partially observed dynamical models by exploiting
the profile likelihood. Bioinformatics, 25(15):1923–1929, 2009.

[23] OT. Chis, J. Banga, and E. Balsa-Canto. Structural Identifiability of Systems Biology Models: A
Critical Comparison of Methods. PLOS ONE, 6(11):e27755, 2011.

[24] H. Pohjanpalo. System identifiability based on the power series expansion of the solution - Sci-
enceDirect. Mathematical Biosciences, 41(1-2):21–33, 1978.

[25] S. Vajda, K. R. Godfrey, and H. Rabitz. Similarity transformation approach to identifiability analysis
of nonlinear compartmental models. Mathematical Biosciences, 93(2):217–248, 1989.

[26] E. Walter and Y. Lecourtier. Global approaches to identifiability testing for linear and nonlinear
state space models - ScienceDirect. Mathematics and Computers in Simulation, 24:472–482, 1982.

[27] F. Froehlich, F. Theis, and J. Hasenauer. Uncertainty Analysis for Non-identifiable Dynamical
Systems: Profile Likelihoods, Bootstrapping and More. 2014.

[28] D. J. Venzon and S. H. Moolgavkar. A Method for Computing Profile-Likelihood-Based Confidence
Intervals. Journal of the Royal Statistical Society. Series C (Applied Statistics), 37(1):87–94, 1988.

[29] Y. Bard. Nonlinear parameter estimation. Academic Press, San Diego, Calif., 1974.

16

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2018. ; https://doi.org/10.1101/314955doi: bioRxiv preprint 

https://doi.org/10.1101/314955
http://creativecommons.org/licenses/by/4.0/


[30] B. Efron and R. Tibshirani. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other
Measures of Statistical Accuracy. Statistical Science, 1(1):54–75, 1986.

[31] Tatyana Luzyanina, Sonja Mrusek, John T. Edwards, Dirk Roose, Stephan Ehl, and Gennady
Bocharov. Computational analysis of CFSE proliferation assay. Journal of Mathematical Biology,
54(1):57–89, January 2007.

[32] Mark K. Transtrum, Benjamin B. Machta, Kevin S. Brown, Bryan C. Daniels, Christopher R. Myers,
and James P. Sethna. Perspective: Sloppiness and emergent theories in physics, biology, and beyond.
The Journal of Chemical Physics, 143(1):010901, 2015.

[33] Omer Karin, Avital Swisa, Benjamin Glaser, Yuval Dor, and Uri Alon. Dynamical compensation in
physiological circuits. Molecular Systems Biology, 12(11):886, November 2016.

[34] Alejandro F. Villaverde and Julio R. Banga. Dynamical compensation and structural identifiability
of biological models: Analysis, implications, and reconciliation. PLOS Computational Biology,
13(11):e1005878, November 2017.

[35] O. Gandrillon, U. Schmidt, H. Beug, and J. Samarut. TGF-beta cooperates with TGF-alpha to
induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism.
The EMBO journal, 18(10):2764–2781, 1999.

[36] S. Dazy, F. Damiola, N. Parisey, H. Beug, and O. Gandrillon. The MEK-1/ERKs signalling pathway is
differentially involved in the self-renewal of early and late avian erythroid progenitor cells. Oncogene,
22(58):9205–9216, 2003.

[37] S. Gonin-Giraud, C. Bresson-Mazet, and O. Gandrillon. Involvement of the TGF-β and
mTOR/p70s6kinase pathways in the transformation process induced by v-ErbA. Leukemia Research,
32(12):1878–1888, 2008.

[38] A. Raue, M. Schilling, J. Bachmann, A. Matteson, M. Schelke, D. Kaschek, S. Hug, C. Kreutz,
B. Harms, F. Theis, U. Klingmüller, and J. Timmer. Lessons learned from quantitative dynamical
modeling in systems biology. PloS One, 8(9):e74335, 2013.

[39] M. Lavielle and K. Bleakley. Mixed Effects Models for the Population Approach: Models, Tasks,
Methods and Tools. Chapman & Hall/CRC Biostatistics Series. CRC Press/Taylor & Francis Group,
Boca Raton, Florida, 2014.

[40] J. Nocedal and S. Wright. Numerical Optimization. Springer series in operations research. Springer,
New York, 2nd ed edition, 2006.

[41] S. Nash. Newton-Type Minimization Via the Lanczos Method. SIAM Journal on Numerical Analysis,
21(4):770–788, 1984.

[42] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python,
2001–. [Online; accessed f].

[43] K. Burnham and D. Anderson. Model selection and multimodel inference: a practical information-
theoretic approach. Springer, New York, 2010.

[44] S. A. Murphy and A. W. Van Der Vaart. On Profile Likelihood. Journal of the American Statistical
Association, 95(450):449–465, 2000.

[45] A. Raue, C. Kreutz, F. Theis, and J. Timmer. Joining forces of Bayesian and frequentist
methodology: a study for inference in the presence of non-identifiability. Phil. Trans. R. Soc.
A, 371(1984):20110544, 2013.

[46] Adam L. MacLean, Tian Hong, and Qing Nie. Exploring intermediate cell states through the lens
of single cells. Current Opinion in Systems Biology, 9:32–41, June 2018.

17

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2018. ; https://doi.org/10.1101/314955doi: bioRxiv preprint 

https://doi.org/10.1101/314955
http://creativecommons.org/licenses/by/4.0/


[47] Loic Barbarroux, Philippe Michel, Mostafa Adimy, and Fabien Crauste. Multi-scale modeling of the
CD8 immune response. page 320002, 2016.

[48] A. Friedman, CY. Kao, and CW. Shih. Asymptotic phases in a cell differentiation model. Journal
of Differential Equations, 247(3):736–769, 2009.

[49] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the
fused lasso. Journal of The Royal Statistical Society: Series B (Methodological), 67(1):91–108,
2005.

18

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2018. ; https://doi.org/10.1101/314955doi: bioRxiv preprint 

https://doi.org/10.1101/314955
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Data
	Models
	Structural Model
	Error Model

	Parameter Estimation
	Model Selection
	Identifiability Analysis

	Results
	Measurement error
	Fitting the Model with no Treatment: Model Design and Validation
	Choosing a structural model: selection approach
	Choosing an error model: selection approach
	Identifiability analysis

	Modelling differentiation in the control case
	Modelling differentiation under Rapamycin treatment

	Discussion
	Acknowledgements
	Supplementary Materials

