
1 
 
 

 

Error-correcting DNA barcodes for high-throughput sequencing 
 

John A. Hawkins,1,2,3 Stephen K. Jones Jr.,2,3 Ilya J. Finkelstein,2,3,4,* 
and William H. Press1,3,5,* 

 
1 Institute for Computational Engineering and Science, The University of Texas at Austin, Austin, TX 
78712, USA 
2 Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA 
3 Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA 
4 Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA 
5 Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA 
 
* Correspondence: wpress@cs.utexas.edu, ifinkelstein@cm.utexas.edu  
 

KEYWORDS 
error-correcting codes, next-generation sequencing, DNA barcodes, DNA library, 
massively parallel synthesis 
 

ABSTRACT 
Many large-scale high-throughput experiments use DNA barcodes—short DNA 
sequences prepended to DNA libraries—for identification of individuals in pooled 
biomolecule populations. However, DNA synthesis and sequencing errors confound the 
correct interpretation of observed barcodes and can lead to significant data loss or 
spurious results. Widely-used error-correcting codes borrowed from computer science 
(e.g., Hamming and Levenshtein codes) do not properly account for insertions and 
deletions in DNA barcodes, even though deletions are the most common type of synthesis 
error. Here, we present and experimentally validate FREE (Filled/truncated Right End 
Edit) barcodes, which correct substitution, insertion, and deletion errors, even when these 
errors alter the barcode length. FREE barcodes are designed with experimental 
considerations in mind, including balanced GC content, minimal homopolymer runs, and 
reduced internal hairpin propensity. We generate and include lists of barcodes with 
different lengths and error-correction levels that may be useful in diverse high-throughput 
applications, including >106 single-error correcting 16-mers that strike a balance between 
decoding accuracy, barcode length, and library size. Moreover, concatenating two or 
more FREE codes into a single barcode increases the available barcode space 
combinatorially, generating lists with > 1015 error-correcting barcodes. The included 
software for creating barcode libraries and decoding sequenced barcodes is efficient and 
designed to be user-friendly for the general biology community.  
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SIGNIFICANCE STATEMENT 
Modern high-throughput biological assays study pooled populations of individual 
members by labeling each member with a unique DNA sequence called a “barcode.” 
DNA barcodes are frequently corrupted by DNA synthesis and sequencing errors, leading 
to significant data loss and incorrect data interpretation. Here, we describe a novel error-
correction strategy to improve the efficiency and statistical power of DNA barcodes. To 
our knowledge, this is the first report of an error-correcting method that accurately 
handles insertions and deletions in DNA barcodes, the most common type of error 
encountered during DNA synthesis and sequencing, resulting in order-of-magnitude 
increases in accuracy, efficiency, and signal-to-noise. The accompanying software 
package makes deployment of these barcodes effortless for the broader experimental 
scientist community. 
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INTRODUCTION  
Many modern large-scale biology experiments use high-throughput DNA sequencing to 
study the behavior of individual biomolecules in pooled populations. These experiments 
encode the identity of individual members via DNA barcodes—short, unique DNA 
sequences that are coupled to each member in the population (Fig. 1a). DNA barcode-
based identification is central to such diverse applications as single-cell genome and 
RNA sequencing1–7, gene synthesis8,9, high-throughput antibody screens10,11, and drug 
discovery12,13. Such experiments have been enabled by recent breakthroughs in 
massively-parallel, pooled DNA synthesis14,15. For example, a recent study used DNA 
barcodes to discover small molecule inhibitors of enzymes by screening ~108 small 
molecules. Each small molecule was attached to a unique set of three DNA barcodes. The 
highest affinity ligands were enriched via multiple rounds of selection and then identified 
via high-throughput  sequencing of the attached barcodes16. The rapid growth of such 
methodologies in all areas of biomedicine requires the development of large pools (>106 
members) of unique DNA barcodes to identify individual members (e.g., cells, proteins, 
drugs) in heterogeneous ensembles.  
 
Every assay with DNA barcodes is subject to errors introduced during DNA synthesis 
and sequencing. These errors decrease experimental power and accuracy by confounding 
the identity of individual biomolecules in the population. The most common DNA 
synthesis error is a single-base deletion (Results). This is particularly challenging to 
decode because it causes a frameshift in all downstream sequencing. Substitutions and 
insertion errors are also common during massively-parallel pooled oligonucleotide 
synthesis (Results). Our own experimental results are consistent with manufacturer-
advertised error rates of up to 1 per 200 nucleotides (nt)17. For 20 base pair (bp) long 
barcodes with no error correction, this translates to a best-case scenario of 10% data lost 
or, worse, incorrectly interpreted. Next-generation sequencing also has error rates 
between 10-3 and 10-4. This alone represents errors in approximately 1% of our example 
20 bp barcodes, which can be limiting for detection of rare events. These errors can be 
overcome through the use of error-correcting DNA barcodes—DNA sequences that can 
correctly identify the underlying individuals in a pooled experiment even in the presence 
of sequencing and synthesis errors.  
 
Error-correcting barcodes must efficiently detect and correct all DNA sequencing and 
synthesis errors. Many current DNA barcode strategies repurpose error-correcting codes 
developed for computers18,19, such as Hamming or Reed-Solomon codes, to DNA 
applications20,21. Hamming distance, i.e., the number of substitutions between two 
sequences of equal length, is possibly the most used due to its simplicity. However, 
nearly all well-studied error-correcting codes developed in computer science—including 
the widely-used Hamming codes—were not designed to handle deletions and insertions, 
which are the most common errors in DNA synthesis. Such codes are generally used to 
only detect errors without correcting them, but even then there is a possibility that a 
single error (e.g., deletion) can convert one barcode into another. Levenshtein codes, also 
known as edit codes, can theoretically account for all three types of common error: 
substitutions, insertions, and deletions, but only when the corrupted length of each 
barcode after errors is known22,23. This is a critical limitation in real-world DNA barcode 
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applications because errors can change the barcode length unpredictably, which leads to 
erroneous decoding of Levenshtein-based barcodes in the context of a longer read (Fig. 
1b). As a workaround, Levenshtein codes can be used at twice the level of error 
correction as desired for a given application, for example using a 2 error-correcting code 
when a 1-error correcting code is desired, but this is inefficient and significantly 
decreases the number of valid barcodes for a given oligonucleotide length. In sum, 
existing DNA barcode strategies are unable to efficiently detect and decode real-world 
errors encountered during DNA synthesis and sequencing. 
 
Here, we develop and experimentally validate error-correcting Filled/truncated Right End 
Edit (FREE) barcodes. FREE barcodes can correct substitutions, insertions, and deletions 
even when the edited length of the barcode is unknown. These barcodes are designed 
with experimental considerations in mind, including balanced GC content, minimal 
homopolymer runs, and no self-complementarity of more than two bases to reduce 
internal hairpin propensity. We generate and include lists of barcodes with different 
lengths and error-correction levels that may be broadly useful in diverse high-throughput 
applications. For each barcode set, we calculate hairpin melting temperatures which can 
be used to select subsets of barcodes to match experimental conditions. Our largest 
barcode list includes >106 unique error-correcting barcodes usable in a single experiment. 
Moreover, appending two or more barcodes together combinatorially increases the total 
barcode set, producing >109-1012 unique error-correcting DNA barcodes. The included 
software for creating new barcode libraries and decoding/error-correcting observed 
barcodes is fast and efficient, decoding >120,000 barcodes per second with a single 
processor, and is designed to be user friendly for a broad biologist community.  
 

RESULTS 

Overview of Filled/truncated Right End Edit (FREE) Divergence Codes 
After DNA synthesis and sequencing, a barcode of length n can be altered, and is not 
guaranteed to end after exactly n bases. Our goal is to design barcodes that can be 
unambiguously identified from the first n bases of the sequenced read. To begin, we 
define a filled/truncated right-end m-edit, hereafter written “FRE m-edit,” of a DNA 
sequence of length n to be the result of any m edits—substitutions (sub), insertions (ins), 
or deletions (del)—followed by truncating or filling with any random bases on the right 
(as from the unknown downstream read) as necessary to return to original length n (Fig. 
1b). For any two DNA sequences X and Y of the same length, we define the 
Filled/truncated Right End Edit (FREE) Divergence between X and Y, written FreeDiv(X, 
Y), to be the minimum m such that Y is a FRE m-edit of X.  
 
Figure 1c shows a typical example of how FREE divergence captures the actual number 
of barcode edits in the context of a longer read. An insertion has caused the final T to 
move out of the barcode window, but FREE divergence correctly accounts for its loss. 
FREE divergence is a symmetric function, i.e. FreeDiv(X, Y) = FreeDiv(Y, X) (Fig. 1c). 
This is because reversing the edits and reversing the right-end fill or truncation step 
moves one from Y back to X in the same minimum number of steps (Supplemental 
Materials). FREE divergence is defined as the minimum number of steps between the 
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expected and observed barcode, but it is possible to accomplish the same transformation 
with more edits, for example via the identity ins-del = sub (Fig. 1c). Also, insertions 
and/or deletions (indels) near the end of the sequence can result in a FREE divergence of 
zero if the inserted or filled bases match the truncated or deleted bases respectively. 
While figure 1c shows this for deletions, inserting ‘GC’ instead of deleting it results in 
the same sequenced barcode. Finally, we note that FREE divergence is not a metric—a 
mathematically precise term for distance—because edits outside the barcode window can 
lead to violation of the triangle inequality (Fig. 1c, Supplemental Materials). This 
requires us to use specialized code generation techniques that do not rely on the 
properties of a metric, and also underlies usage of the term divergence rather than 
distance throughout this work.  
 
With FREE divergence defined, building an error correcting barcode list is conceptually 
equivalent to packing spheres in the space of possible barcodes (Fig. 2a). We set a 
barcode length n and call any DNA sequence of length n a word. For any word B, we call 
the set of all words W such that FreeDiv(B, W) ≤ m the m-error decode sphere of B, 
written as DecodeSpherem(B), or just DecodeSphere(B) if m is clear from context. Any 
observed DNA sequence within DecodeSphere(B) will by definition decode to (error-
correct to) the center word B (Fig. 2a.). Then, an m-error correcting FREE code is simply 
any set of barcodes such that the m-error decode spheres of all barcodes are disjoint, i.e., 
no two decode spheres overlap. Any corrupted barcode with up to m errors is thus in the 
decode sphere of exactly one barcode and can be decoded (error-corrected) uniquely (Fig. 
2a). Requiring disjoint decode spheres places a limit on the relationship between allowed 
m, the number of correctible errors, and n, the barcode length: to fit more than one non-
overlapping decode sphere in the space requires that 2 m + 1 ≤  n (Supplemental 
Materials).  

Efficient FREE barcode generation and decoding 
A software library accompanying this manuscript efficiently generates FREE barcodes 
with a given total length and error-correction level. The generation algorithm is 
conceptually very simple: iterate through the space of n-mers alphabetically, find the 
decode sphere for each candidate barcode, and reserve barcodes when their decode 
spheres do not overlap the decode spheres of any previously reserved barcodes (Fig. 2a). 
This set of reserved barcodes by definition forms a valid FREE code. Additional 
algorithmic details make the process faster and more memory efficient (Methods). 
Adding valid code words in alphabetical order is a heuristic method previously observed 
to efficiently pack spheres24. Experimental synthesis and sequencing limitations are also 
incorporated during barcode selection. Candidate barcodes must have: (1) balanced GC 
content (40-60%); (2) no homopolymer triples (e.g., AAA); (3) no GGC (a known 
Illumina-based error motif25); and (4) no self-complementarity of >2 bases to reduce 
hairpin propensity. All of our software is available in the GitHub repository 
accompanying this manuscript (https://github.com/finkelsteinlab/freebarcodes). 
 
The number of available error-correcting barcodes for a DNA sequence of length n will 
depend on the experimentally-required degree of error-correction (Fig. 2b). We generated 
libraries of single-error correcting codes up to a 16-nucleotide length, containing 
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>1,600,000 barcodes. In addition, we generated more robust, double-error correcting 
codes up to a 17-nucleotide length with >23,000 unique members (Table S1). Barcodes 
correcting m errors require length at least 2m + 1 bp because otherwise all decode spheres 
overlap all other decode spheres (Supplemental Materials). Thus, the 1-error and 2-error 
correcting barcode libraries have minimum lengths of 3 bp and 5 bp respectively. All 
single- and double-error correcting barcode libraries shown in Figure 2b are included as 
supplemental data (Supp. File 1), and are available in the GitHub repository 
(https://github.com/finkelsteinlab/freebarcodes). The barcode decoding software runs in 
time proportional to the length of the barcodes but constant with respect to the number of 
barcodes in the library. Hence, 1-error and 2-error correcting codes decode at the same 
speed for a given barcode length even though the 1-error libraries contain many more 
barcodes (Fig. 2c). Even the slowest decodes considered here, the 17-mer double-error 
correction barcodes, decode at >120,000 barcodes × sec-1 on a desktop computer using a 
single processor. 

Comparison with current error-correcting DNA barcode strategies 
Current state-of-the art error correcting DNA barcoding applications often use Hamming 
or Levenshtein error-correction strategies20,23. Hamming codes only correct substitutions, 
and are thus insufficient for any DNA barcode applications with indels26. However, they 
are linear codes, meaning the code words form a well-structured lattice in barcode space. 
We tested an alternative hypothesis that pruning these well-packed Hamming decode 
spheres to subsets with disjoint FreeDiv decode spheres could result in a more efficient 
packing—more barcodes for a given barcode length—than our alphabetical generation 
strategy. This was not, in fact, the case: FREE codes have about a factor of two more 
barcodes for a given length than our best pruning of Hamming codes (Fig. 2d).  
 
Levenstein codes can be used directly (i.e., without pruning) because they account for 
indels, but must be used at 2-fold higher error correction for DNA barcode applications 
(Fig. 1b). We generated such over-corrected Levenshtein barcode sets in a manner similar 
to the FREE code generation strategy. This strategy produced even fewer barcodes than 
the pruned Hamming code sets. (Fig 2d, Methods). Sequence-Levenshtein codes 
attempted to solve the problems inherent in using Levenstein codes for DNA 
applications, but an error in the derivation of these codes often causes them to decode to 
the wrong barcode (Supplemental Materials)27. In sum, FREE codes offer a substantially 
larger number of usable barcodes for a given barcode length, when taking into 
consideration real-world errors such as deletions, insertions, and substitutions that are 
encountered during DNA sequencing and synthesis. 
 

Error Correction in Real and Simulated Data 
We validated FREE barcodes generated in this study by both numerical simulation and 
experiment. Pooled oligonucleotide synthesis was used to produce a library of >8,000 
oligos with double-error correcting barcodes at both ends (Fig. 3a). The barcodes were 
arranged such that each left barcode should only ever be observed on the same oligo with 
one specific right barcode sequence, and similarly for right barcodes. Hence, we were 
able to measure the rate of incorrectly decoding barcodes from observing unexpected left-
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right barcode pairs (Methods). We sequenced 1.4 million copies of this library on an 
Illumina MiSeq for an average coverage of 159x using the standard Illumina workflow. 
 
Full-length, paired-end Illumina sequencing was used to measure the background 
synthesis and sequencing error rates (Fig 3b-c). Using full-length paired-end reads 
permitted discrimination between synthesis and sequencing errors (Methods). 
Substitution, insertion, and deletion error rates from library amplification using Q5 
polymerase have previously been reported to occur at rates less than 10-5, and thus are a 
negligible fraction of the measured synthesis errors28. Measured errors were dominated 
by single-base synthesis deletions, which occured at rates of approximately 1 in 200 bp 
and 1 in 100 bp in the left and right barcode regions respectively (Figs. 3b and S7). The 
two-fold difference in synthesis error rates between the two sides is consistent with 
statements from the manufacturer regarding their synthesis error rates17. Sequencing error 
rates are between 10-4 and 10-3, as advertised by Illumina (Fig 3c). In sum, experimental 
error rates are dominated by deletion errors. As Hamming codes are not designed to 
error-correct deletions in barcodes, they will perform very poorly in DNA-based 
experiments.  
 
We compared the experimentally-determined error rates to simulations of the overall 
decoding error rate, i.e., the probability of incorrectly demultiplexing a barcode. 
Simulations were used to analyze the decode error rate for several error-correcting codes 
as a function of the per-base error rate, perr (Fig. 4). Simulations were performed in two 
different ways. First, we used a binomial model, which assumes independent and 
identically distributed errors at each base, to calculate the probability of observing more 
than 1- or 2-errors given per-base perr. Second, we directly simulated the errors directly 
using our decoding software: for a given per-base perr, we randomly select barcodes and 
add errors with probability perr. For simplicity, we model insertion, deletion, and 
substitution error rates of perr /3 with no correlation between individual errors within a 
given barcode. The corrupted barcodes are then decoded using our software and the 
fraction of incorrectly decoded barcodes is used as a measure of the decode error rate.  
 
At experimentally-determined per-base error rates, perr, each increase in error correction 
level results in at least an order of magnitude improvement in the decoding error rate 
(Fig. 4). For example, our experimental data showed an overall per-base perr of 
approximately 10-2 (Fig. 3b-c). At this per-base error rate, the approximate uncorrected 
decode error rate (solid line) is 8% for length 8 barcodes and 15% for length 16 barcodes. 
Without error correction a best-case scenario would be that these errors could be 
successfully filtered out, representing a significant loss of data. In other scenarios, these 
data might be erroneously counted. For zero-, single-, and double-error correction length 
8 barcodes, the approximate decode error rate decreases from 8% to 0.3% to 0.005%. For 
length 16 barcodes, the approximate decode error rate decreases from 15% to 1% to 
0.05%. A more comprehensive comparison of the various barcode lists is given in figures 
S3-S5. The simulated results are consistently better than the binomial approximation 
because indels near the right end occasionally add the correct base and because insertions 
occasionally push other errors out of the barcode window (Fig. S2). 
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We validated FREE barcodes by measuring the decoding error rates for the experimental 
dataset described earlier (Fig. 5). For double-error correction, we used mismatches in 
barcode pairs to identify erroneously decoded barcodes (Methods). After corrections, we 
observe error rates of 0.29% and 0.46% for left and right barcodes respectively. We 
counted the 0- and 1-error correction rates shown in figure 5 by also counting the number 
of errors observed in each correctly decoded barcode. That is, 0-error correction decode 
error rates were calculated as the number of erroneously decoded barcodes plus the 
number of correctly decoded barcodes with 1 or 2 errors; 1-error correction errors were 
counted similarly. On the other hand, the theoretical model was calculated using the 
synthesis and sequencing error rates found in Fig. 3 to calculate the decode error 
probability of each barcode depending on its base composition, and then combined for an 
overall error rate (Supplemental Materials).  
 
The experimentally-observed decoding error rates follow the same trend as the simulated 
errors: decode error rates decrease by approximately an order of magnitude with each 
additional error-correction level. We also observed that experimental error rates are 
higher than the theoretical error rate. This is explained by two observations. First, the 
theoretical model assumes independent errors at each position along the barcode. This 
assumption is not observed in the experimental data (Fig. S7). Second, the starting 
position of each barcode may not be defined exactly because the primer region can have 
errors. We are careful to identify the start of each barcode as precisely as possible 
(Supplemental Materials), but any errors in starting position appear as spurious insertions 
or deletions during decoding. Nonetheless, even though per-base errors are not 
independent, the overall order-of-magnitude decrease in decode errors per error-
correction level is recapitulated in the experimental dataset. 

Combinatorially large barcode lists via concatenation 
State-of-the-art high-throughput sequencing applications already require >106 unique 
barcodes16. We anticipate that improvements in high-density pooled oligo synthesis, 
along with the continuing reduction in sequencing costs, will continue to push the need 
for even larger error-correcting barcode sets. Below, we demonstrate that arbitrarily large 
barcode lists (>1015 unique members shown here) can be constructed from FREE 
barcodes by concatenating multiple FREE barcodes in a row.  
 
As a demonstration, we concatenated two or three barcodes from the same starting list of 
sub-barcodes (Fig. 6). For the rest of this section we will refer to the original barcodes as 
sub-barcodes, while barcode will refer to the full length, concatenated barcode. Due to 
the possibility of insertions and deletions, the starting positions of the second and third 
sub-barcodes are only known approximately, and that approximation worsens as more 
sub-barcodes are added (Fig. 6a). Decoding the sub-barcodes sequentially from left-to-
right is a strategy to account for this ambiguity. The left-most sub-barcode is decoded 
first, and then the decoded sub-barcode is used to find the starting position of the next 
sub-barcode. The error-correction level of each FREE sub-barcode remain the same, such 
that, for example, three concatenated double-error correction sub-barcodes can each 
correct up to two errors for a maximum total of six corrected errors if and only if the 
errors are evenly distributed, two per sub-barcode. Overall concatenated barcode 
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decoding error rates are given by the probability of any decoding error in any sub-
barcode or -barcodes. Concatenated barcode error rates are thus slightly higher than for 
the individual sub-barcodes (Fig. 6b). The decoding process is performed automatically 
using the software accompanying this paper. 
 
Concatenating FREE barcodes results in combinatorially-large barcode sets that will be 
sufficient for even the most demanding high-throughput sequencing applications (Fig. 6). 
The concatenated barcodes were pruned to remain compatible with experimental 
constrains by removing DNA sequences that had triplet repeats of a single base or excess 
self-complementary (defined as any self-complementarity of any three or more bases). 
Even with these filters, we generated full lists of up to 1010 barcodes with concatenation 
of three single-error correcting codes (Fig. 6). Beyond that, where possible, the projected 
total barcode count was estimated via subsampling. When even that was limited by 
available hard drive space, the projected total was estimated via log-linear fit, which went 
above 1015 barcodes for 3 x (16 bp single-error) barcodes. Due to their size, we do not 
include these concatenated barcode sets explicitly with this paper. They can be generated 
on demand using the included software package and single barcode lists. In sum, 
concatenating FREE codes produces a rapid and efficient strategy for further increasing 
the size of error-correcting barcode lists for pooled high-throughput sequencing 
experiments. 
 

DISCUSSION 
Here, we described the design and experimental validation of Filled/truncated Right End 
Edit (FREE) error-correcting DNA barcodes capable of correcting substitution, insertion, 
and deletion errors, even when the corrupted length of the barcode is unknown. We 
generated lists of FREE Divergence error correcting barcodes and provided software on 
GitHub for user-friendly generation and decoding of these DNA barcodes for real-world 
applications.  
 
Most high-throughput DNA sequencing applications require PCR-based amplification or 
reverse transcription (in the case of RNA) of the input nucleic acid libraries. The 
polymerase and reverse transcriptase enzymes used during library preparation perform 
best on libraries that avoid stable secondary structures and self-complimentary regions. 
To improve the utility of our codes for such demanding applications, we used UNAFold 
to calculate the melting temperature of hairpins for the FREE barcodes included with this 
paper29. This information will allow users to prune out barcode sequences with a 
propensity to form stable hairpins in their specific experimental conditions (Fig. S8).  
Such experimental considerations will further increase the utility of FREE codes for 
demanding high-throughput sequencing applications.  
 
In validating the FREE barcodes, we measured the types and frequency of errors that are 
introduced during massively-parallel oligo synthesis and Illumina-based high-throughput 
sequencing. We observed that deletions during synthesis were the most frequent sources 
of error (~1 per 100 nucleotides), followed by substitutions and insertions (~1 per 1000 
nucleotides). These experimentally measured error frequencies were used to simulate and 
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experimentally measure the decoding quality of FREE codes. Even though the observed 
decoding error rates do not follow a model that assumes independent errors at each base, 
we still obtain exponential improvement of the final decoding error rate with codes that 
correct for increasing numbers of errors. Importantly, the error-correcting decode 
software runs fast enough to handle the massive data sets involved in modern high-
throughput sequencing applications, decoding hundreds of thousands of barcodes per 
second on a single processor for all barcode lists considered. 
 
While we have here focused exclusively on filled/truncated right end edit (FREE) codes 
prepended to the start of sequenced DNA reads, the current work applies equally to their 
natural mirrored counterpart, filled/truncated left end edit (FLEE) codes. This would be 
required for applications where the barcode appears at the end of each sequenced read 
rather than the beginning. In fact, the same codes can be used by simply taking the 
reverse complement of FREE codes before synthesis and again before decoding. Hence, 
FREE barcodes can be used equally well on the 5’ or 3’ end of pooled samples, as long as 
the orientation is chosen appropriately. 
 
FREE barcodes are a powerful tool to correct DNA barcode errors, reducing 
measurement errors in modern, high-throughput experiments. We anticipate that the use 
of FREE barcodes will improve these assays in three key ways: (1) helping avoid 
spurious results; (2) decreasing the amount of discarded data; and (3) increasing 
experimental signal-to-noise ratios. Decreasing spurious results and discarded data are 
important for any experiment involving DNA barcodes, but we are most excited by the 
new possibilities available with increased signal-to-noise ratios. The power to decrease 
error rates from 15% to 0.05%, as in Fig. 4b, could open the door for entirely new assay 
designs. We anticipate that FREE barcodes will be broadly useful for the ever-growing 
set of pooled high-throughput sequencing experiments in cell and molecular biology, 
protein engineering, and drug discovery. 

 

METHODS 

Definitions and Numerical Representation of DNA 
For any barcode system, the word length, n, is given. Any DNA sequence of length n is a 
word, and any word observed in the data is an observed word.  
 
We represent strings of DNA as base-4 numbers where A, C, G, and T correspond to 0, 1, 
2, and 3 respectively. So, for example, 
 

𝐴𝐴𝐺𝐶𝑇 = (00213),-./	1 = 39		𝑙𝑒𝑛𝑔𝑡ℎ		5 
 
Here 39 is the word number and 5 is the word length. Note that the word length is 
required to uniquely convert numbers to DNA to account for leading A’s. For example, 
the word number from the example above, 39, with word length 3 is simply GCT. For 
word length n, the largest valid word number is 4n – 1. 
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For an m-error correcting code we define a decode sphere around a barcode B to be the 
set of all words with FreeDiv less than or equal to m, and we define an encode sphere to 
be the set of all words of FreeDiv less than or equal to 2m. We write these as 
DecodeSphere(B) and EncodeSphere(B). 

Barcode Generation 
FREE barcode sets are generated with a modified lexicographic code generation method. 
Lexicographic code generation consists of marching through all words lexicographically, 
alphabetically in this case, and adding new words to the list of barcodes whenever they 
are sufficiently far from all previous barcodes30. For Hamming codes, lexicographic 
codes are linear30, and more generally, lexicographic code generation has been shown to 
have relatively good sphere packing efficiency24. The first FREE modification to the 
procedure is to enforce the following sequencing and synthesis properties: 

• Balanced GC content (40-60%) 
• No homopolymer triples (e.g., TTT) 
• No triplet self-complementarity  
• No GGC (Illumina error motif25) 

 
For speed we iterate over these potential barcodes via recursive base addition: given a 
barcode prefix P, we add the next base only if it does not violate any of the above. We 
thereby skip large recursive subtrees in which all words violate one of the above 
conditions.  
 
For an m-error correcting code, the only requirement is that the decode spheres of all 
barcodes are disjoint. Because FREE divergence is not a metric, standard metric-based 
code generation methods cannot be used. Instead, we accomplish this directly with a 
sphere iterator (Supplemental Materials). For every accepted barcode B, we iterate over 
DecodeSphere(B) and reserve all words therein as mapping to B. And for any potential 
new barcode P, we first verify no words in DecodeSphere(P) are reserved before 
accepting it as a new barcode.  
 
This algorithm would be very slow because most decode sphere tests would run into 
reserved words and fail to add new barcodes. One further observation makes this process 
tractable. Given a barcode B and a proposed new barcode W, if FreeDiv(B, W) ≤ 2m, that 
is, if W is in EncodeSphere(B), then DecodeSphere(W) and DecodeSphere(B) overlap and 
W is not a valid new barcode (Supplemental Materials). This implies the following 
algorithm: generate the code by lexicographically iterating over words while looking for 
new barcodes to add to the code. For each accepted new barcode B, we color any 
uncolored words in EncodeSphere(B) black, and then we color all words in 
DecodeSphere(B) red. Restricting encode sphere coloring to previously uncolored words 
avoids overwriting the decode spheres of all previous barcodes. All black- and red-
colored words are guaranteed to not be valid barcodes, so addition of new barcodes is 
restricted to uncolored words. For an uncolored proposed new barcode W, 
DecodeSphere(W) is checked for red words. If no red words are found, W is added as a 
new barcode. 
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The coloring of barcodes, decode spheres, and encode spheres is accomplished by having 
an array of 4n integers valued 0, 1, or 2: 0 for uncolored, 1 for black, and 2 for red. The 
location of each integer in memory itself represents the word, via the numerical 
representation of DNA given above. This is both memory and speed efficient. Memory 
efficiency is important, as it is a limiting resource for this method. The memory required 
for barcode generation is 4k bytes, which for this paper was up to 16Gb of random access 
memory (RAM). 

Barcode Decoding 
The decoding process builds the code book and looks up decoded words directly. We do 
this in a memory efficient fashion as follows. For each barcode in a list, the barcode 
index is defined as the index of that barcode within the list of barcodes. We again reserve 
a space of 4k integers to represent the code space. For each barcode B, we store the 
barcode index of B at every word of DecodeSphere(B). We store barcode indices rather 
than barcode numbers because barcode indices require fewer bits per word. The memory 
required for barcode decoding is (1, 2, 𝑜𝑟	4) × 4? bytes, requiring 1, 2, or 4 bytes to store 
each barcode index. For this paper, the maximum memory used for barcode decoding 
was 32Gb of RAM. 

Barcode Pruning 
Specific barcode lists from literature or elsewhere may sometimes be required for a given 
experiment, but require pruning to find a subset with error-correction. We accomplish 
barcode pruning via the same strategy as barcode generation, but only considering the 
input set of barcodes as potential new barcodes. This pruning method was also used to 
prune the linear Hamming codes. 

Simulation of Errors 
To test the error-correcting capacity of FREE barcodes, we wrote error-simulating code 
which adds a given number of substitutions, insertions, deletions, or all three randomly 
distributed. We used this to verify the correctness of each of the FREE m-error correcting 
codes by randomly selecting barcodes, adding m errors, and verifying that the decoded 
word matches the expected word. We used the same code for generating Figure 4 by 
randomly choosing the number of errors from a binomial distribution with probability of 
error perr.  

Levenshtein Barcodes 
Levenshtein barcodes were generated lexicographically using the standard technique of 
code generation with a metric. Briefly, for desired barcode length n and number of 
correctable errors e, we walk through the space of n-mers lexicographically adding any 
new word if it: (a) satisfies the same sequencing and synthesis properties as above, and 
(b) is Levenshtein distance at least 2e+1 from any previously accepted barcode. 

Pruned Linear Hamming Barcodes 
We generated Hamming barcode lists using linearity in base-4 (Supplemental Materials). 
Briefly, a Hamming code of length n with k < n “message bits” can be generated by all 
linear combinations of k basis vectors of length n which are chosen to enforce the error-
correction properties required. These codes were then filtered according to the FREE 
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sequencing and synthesis property requirements and pruned as described above to form 
valid FREE codes.  

Experimental Synthesis, Sequencing, and Decoding Error Rates 
Oligonucleotide pools were designed as in Figure 3a, with primers and barcodes on each 
end and a spacer in the middle (116 bp total length). To test the FREE method, 8,634 
barcodes of length 17 and double-error correction were used in 8,634 unique pairs. 
Oligos were synthesized (CustomArray), and the oligo pool was amplified for twenty 
cycles with Q5 polymerase (NEB) and sequenced on an Illumina MiSeq machine with 
2x150 bp paired-end reads. Maximum likelihood sequences were inferred using both 
reads.  
 
The left and right primer sequences were used to determine both the read orientation and 
the starting position of each barcode (Supplemental Materials). Each barcode was then 
decoded using the FREE decoding software. Matching barcodes identified correctly 
decoded barcodes, while mismatching barcodes indicated an error. The FREE method 
was powerful enough to reveal a surprising and unrelated source of error: the creation of 
oligo chimeras, sequences with the left part of one oligo and right part of another, which 
we then also accounted for (Supplemental Materials). 
 
Once each oligo had been identified from its barcodes, the observed sequence was 
aligned with the reference sequence. At each base where the two reads agreed with each 
other but not with the reference sequence we counted a synthesis error, at each base 
where the reads disagreed and one read matched the reference sequence we counted a 
sequencing error, and at each base where the reads disagreed and neither matched the 
reference sequence we counted a synthesis and a sequencing error.  
 
Observed synthesis and sequencing error rates for each reference base were used to find 
theoretical decoding error rates for each barcode given its base composition. These were 
then used to estimate overall expected error rate (Supplemental Materials). 
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FIGURE LEGENDS 

Figure 1: Applications and error-correction strategies of DNA barcodes. 
a. Illustrative examples of high-throughput sequencing assays that require large lists of 
error-correcting DNA barcodes. Barcodes are used to identify individual cells or 
molecules in pooled libraries (Klein, 2015; Fan, 2008; Melkko, 2004). b. Current 
strategies to correct synthesis and sequencing errors in DNA barcodes are confounded by 
insertions and deletions. Hamming distance can only handle substitutions. Levenshtein 
distance is confounded by the fact that barcodes are prepended to other sequences of 
interest. Indels thus produce phantom Levenshtein distance errors when bases from the 
remaining DNA molecule shift into or out of the barcode window. c. Examples of FREE 
divergence (this work) given the actual edit history. Levenshtein and Hamming distances 
are also shown for comparison. A substitution and insertion are correctly attributed as 2 
edits by FREE divergence (first column). FREE divergence is a symmetric function, i.e., 
FreeDiv(E, O) = FreeDiv(O, E) (first and second columns). Different actual edit paths 
can result in the same observed sequence (second and third columns). Indels can have 
zero cost, particularly near the end of the barcode where they can occasionally be undone 
by fill or truncation (fourth column). Edits past the barcode end can matter since the 
fill/truncation step happens only upon observation (fifth column).  
 

Figure 2: FREE barcode generation and decoding. 
a. Error-correcting barcode generation is a sphere packing problem. Around each 
accepted barcode B (e.g., “CTCA”), we reserve DecodeSpherem(B), the set of all 
sequences within FREE divergence m of B. That is, the set of all sequences with any 
combination of up to m errors from B, followed by fill or truncation as necessary. Any set 
of disjoint decode spheres is a valid FREE code (right). b. The number of single- and 
double-error correction barcodes generated for a range of barcode lengths. c. The 
accompanying software decodes more than 120,000 barcodes per second for all barcode 
lengths considered here. d. Comparison of FREE barcode counts against pruned 
Hamming codes and Levenshtein codes. Hamming codes were pruned to remove 
members that did not decode FREE divergence errors, while Levenshtein codes were 
produced at double the error-correction levels for the same purpose. FREE codes produce 
more barcodes than either of the other methods for all barcode lengths.  
 

Figure 3: Experimental measurement of synthesis and sequencing error rates. 
a. Schematic of the DNA constructs used for barcode validation experiments. Each 
member in the synthetic library had a unique pair of left and right barcodes (green) drawn 
from a list of >8,000 17-nt FREE codes with double-error correction. By using the primer 
regions (brown) to distinguish the left and right ends from one another, we could 
determine whether the barcodes were correctly decoded (matching) or incorrectly 
decoded (mismatching). b. Synthesis error rates measured in this experiment, by intended 
reference base and error type—substitution (sub), deletion (del), and insertion (ins). c. 
Measured sequencing substitution error rates, by reference base. Insertions and deletions 
from Illumina sequencing are extremely rare and are omitted for clarity. 
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Figure 4: Decoding corrupted barcodes from simulated errors. 
Modeled and simulated decoding error rates given per-base error rate for length 8 (a) and 
length 16 (b) barcodes. Barcode sets are labeled according to length and number of errors 
corrected; for example, the 16-2 code is length 16 and corrects up to 2 errors. Solid lines 
show the error rate approximations using a binomial model. Circles and triangles show 
direct simulation error rates for single- and double-error correcting codes, respectively. 
Substitution, insertion, and deletion errors each have simulated error rate P(error per 
base)/3 for simplicity. 

Figure 5: Decoding corrupted barcodes from experimental data. 
Observed decoding error rates compared with theoretical rates from the synthesis and 
sequencing error rates.  

Figure 6: Combinatorial barcode libraries via concatenation of FREE barcodes. 
a. Concatenated barcodes can be decoded sequentially in a left-to-right order, even when 
the end position of each edited sub-barcode is not initially known. The decoded first 
FREE sub-barcode can be used to find the starting position of the next sub-barcode, and 
similarly for subsequent sub-barcodes. b. Concatenated barcode decoding error rates. 
Concatenated barcode labels use the following format: a 3x(16-1) barcode consists of 
three concatenated sub-barcodes, each of which is 16 bp long and can correct up to 1 
error. Lines: binomial model. Points: direct simulation. c, d. Concatenating multiple 
barcodes combinatorially increases the numbers of effective FREE barcodes. 
Concatenated barcodes can correct the same number of errors per sub-barcode. When the 
errors are distributed evenly among the sub-barcodes, concatenated barcodes can correct 
a higher total number of errors than the individual sub-barcodes. (c) Concatenated single-
error correcting barcodes. (d) Concatenated double-error correcting barcodes. Dashed 
lines: projected quantities calculated by sampling; dotted lines: log-linear projections.  
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