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Abstract 
Background:  
Urine biomarkers, such as creatinine, microalbumin, potassium and sodium are strongly 
associated with several common diseases including chronic kidney disease, cardiovascular 
disease and diabetes mellitus. Knowledge about the genetic determinants of the levels of 
these biomarker may shed light on pathophysiological mechanisms underlying the 
development of these diseases. 
Methods: 
We performed genome-wide association studies of urinary levels of creatinine, microalbumin, 
potassium, and sodium in up to 326,441 unrelated individuals of European ancestry from the 

UK Biobank, a large population-based cohort study of over 500,000 individuals recruited 
across the United Kingdom in 2006-2010. Further, we explored genetic correlations, tissue-
specific gene expression and possible causal genes related to these biomarkers. 
Results: 
We identified 23 genome-wide significant independent loci associated with creatinine, 20 for 
microalbumin, 12 for potassium, and 38 for sodium. We confirmed several established 
associations including between the CUBN locus and microalbumin (rs141640975, p=3.11e-
68). Variants associated with the levels of urinary creatinine, potassium, and sodium mapped 
to loci previously associated with obesity (GIPR, rs1800437, p=9.81e-10), caffeine metabolism 
(CYP1A1, rs2472297, p=1.61e-8) and triglycerides (GCKR, rs1260326, p=4.37e-16), 
respectively. We detected high pairwise genetic correlation between the levels of four urinary 
biomarkers, and significant genetic correlation between their levels and several 
anthropometric, cardiovascular, glycemic, lipid and kidney traits. We highlight GATM as 
causally implicated in the genetic control of urine creatinine, and GIPR, a potential diabetes 
drug target, as a plausible causal gene involved in regulation of urine creatinine and sodium. 
Conclusion: 

We report 78 novel genome-wide significant associations with urinary levels of creatinine, 

microalbumin, potassium and sodium in the UK Biobank, confirming several previously 
established associations and providing new insights into the genetic basis of these traits and 
their connection to chronic diseases.  
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Author Summary 
Urine biomarkers, such as creatinine, microalbumin, potassium and sodium are strongly 
associated with several common diseases including chronic kidney disease, cardiovascular 
disease and diabetes mellitus. Knowledge about the genetic determinants of the levels of 
these biomarker may shed light on pathophysiological mechanisms underlying the 
development of these diseases. Here, we performed genome-wide association studies of 
urinary levels of creatinine, microalbumin, potassium and sodium in up to 326,441 unrelated 
individuals of European ancestry from the UK Biobank. Further, we explored genetic 
correlations, tissue-specific gene expression and possible causal genes related to these 
biomarkers. We identified 78 novel genome-wide significant associations with urinary 

biomarkers, confirming several previously established associations and providing new insights 
into the genetic basis of these traits and their connection to chronic diseases. Further, we 
highlight GATM as causally implicated in the genetic control of urine creatinine, and  
GIPR, a potential diabetes drug target, as a plausible causal gene involved in regulation of 
urine creatinine and sodium. The knowledge arising from our work may improve the predictive 
utility of the respective biomarker and point to new therapeutic strategies to prevent common 
diseases. 
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Introduction 

Fluctuating levels of several urinary biomarkers are used clinically to assess an individual’s 
renal function as well as to diagnose and predict the onset of related chronic diseases(1). 
These biomarkers include creatinine, microalbumin, potassium, sodium, and other proteins 

and peptides which have been associated with chronic kidney disease (CKD) (2, 3) 
cardiovascular disease (CVD) (4-8), and type 2 diabetes (T2D) (9, 10). Urinary biomarkers 
have also shown promise in monitoring response to therapy (11). In comparison to blood, 
biomarkers in urine are less subject to homeostatic mechanisms. This situation allows for 
greater fluctuations of biomarker levels which in turn may provide a signal that more reliably 
reflects dynamic changes in human biological and pathophysiological processes (12).  

 

Little progress has been made in disentangling the genetic determinants of levels of urinary 

biomarkers in large population cohorts despite extensive research on the genetic determinants 
of biomarkers in blood (13-16), including estimated glomerular filtration rate (17). Discovering 
such associations and identifying whether they are genetically correlated with other common 
traits and physiological metrics may provide important etiological insights into their control. 
This knowledge may in turn improve the predictive utility of the respective biomarker and point 
to new therapeutic strategies to prevent common diseases.  

 

In this context, we performed a genome-wide association study (GWAS) of four urine 

biomarkers individually - creatinine, microalbumin, potassium and sodium - in up to 326,441 
participants of the UK Biobank (UKB) study. For each urinary biomarker, we estimated its 
heritability, identified genetic associations that were likely mediated by expression or 
methylation quantitative trait loci (eQTLs or mQTLs), evaluated genetic correlations with 
several anthropometric, cardiovascular, glycemic, lipid, hematological and kidney traits, and 
used a bioinformatics approach to pinpoint tissues that were significantly enriched for 
associated variants, as well as candidate causal genes. 
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Results  
Association analyses 

We found a total of 93 genome-wide significant independent variants associated with any of 
the four urine biomarkers: 23 for creatinine (N = 327,857), 20 for microalbumin (N = 326,441), 

12 for potassium (N = 327,147), and 38 for sodium (N = 327,162) (Table 1, Figures 1a-d). A 
total of 85 lead variants are novel, while 8 are located in loci previously associated with kidney 
function, including CUBN (35), CPS1, GATM and SHROOM3 (36). Out of the 85 novel variant 
associations, three were shared across creatinine, potassium and sodium (rs2472297, 
rs4410790 and rs784257) and one between creatinine and potassium (rs13143189); 
consequently, we report a total of 78 novel and unique loci associated with urinary biomarkers. 
 Many of the 78 novel lead SNPs associated with any of the four urine biomarkers are 

located near loci (± 250 kb) previously reported to be associated with several complex 

diseases/traits as compiled by the GWAS catalog (S2 Table). For our creatinine loci, the 
strongest associations (based on the lowest p-values in p-value) were found for height (37), 
lung cancer (38), schizophrenia (39), human blood cells  (40), coffee consumption (41), basal 
cell carcinoma (42), breast cancer (43), BMI (44), kidney function (17), Crohn’s disease (45), 
intraocular pressure (46), circulating parathyroid hormone (47), and liver enzyme in plasma 

(48). Only one locus (rs13143189) had no associations with GWAS catalog traits. For our 14 
microalbumin loci, the strongest  associations were found with male-pattern baldness (49), 
educational attainment (50), human blood cells (40), allergic disease (51), and prostate cancer 
(52). Furthermore, 5 variants are located near CUBN, a well-known locus for albuminuria (35) 
(Table 1) and 6 loci have no previously known associations with traits in the GWAS catalog. 
For potassium, the strongest associations were found with breast cancer (53), esophageal 
adenocarcinoma (54), schizophrenia (39), human blood cells (40), neuroticism (55), and 
resting heart rate (56) (S2 Table). For sodium, the strongest associations were found with 
human blood cells (40), BMI (57), lipid levels (58), fasting plasma glucose (59), educational 
attainment (50), intelligence (60), neuroticism (55), alcohol consumption (61), retinal vascular 
caliber (62), liver enzyme in plasma (48), triglycerides (63), schizophrenia (39), breast cancer 
(53), blood pressure (64), non-glioblastoma glioma (65), lung cancer (38), and mumps (66). A 
total of 7 loci had no previously known association with a GWAS catalog trait.  
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 Regional plots for the 92 discovered loci are shown in S1-S4 Figs. We observed minor 
inflation in test statistics (lambda=1.149 for creatinine, 1.033 for microalbumin, 1.107 for 
potassium, and 1.158 for sodium), which is expected (67) under polygenic inheritance in large 
samples (S5a-d Fig). The gene-level association identified 51, 11, 31 and 42 genes associated 
at GWAS significance with creatinine, microalbumin, potassium and sodium, respectively (S6 
Fig, S3 Table). Several of these genes have been previously associated with complex traits, 
such as CPS1, GATM/SPATA5L1 and GIPR  (creatinine) which have been implicated in the 
development of atherosclerosis (68), CKD (17) (36) and obesity (44), respectively.  We 
confirmed the association with CUBN (microalbumin), a well-known locus for albuminuria (35). 
The potassium locus including ELL showed association with several cancers including prostate 

(18), lung (69) and esophagus (70), while the FTO locus for sodium coincides with the first and 
strongest locus identified to date for BMI through GWAS (44).  

 

Table 1. Genetic loci associated with urine biomarkers in the genome-wide association 
studies. 

creatinine   
CHR pos SNP Function Nearest gene (bp distance) EA OA EAF beta SE P_VALUE 
1 41490761 rs61780440 intergenic SLFNL1 (1,852) C G 0.191 0.018 0.003 9.23E-10 
1 77967507 rs71658797 intronic AK5  A T 0.123 0.023 0.004 3.80E-11 
1 98253738 rs10747486 intronic DPYD  G A 0.776 -0.015 0.003 2.54E-08 
1 171451621 rs35041900 downstream snoU13 ** T C 0.093 0.022 0.004 3.56E-08 
2 211540507 rs1047891 exonic CPS1  A C 0.316 0.020 0.002 2.58E-16 
4 3757380 rs13143189 intergenic AC141928.1 * (3,095) A G 0.436 -0.015 0.002 8.65E-11 
6 31804729 rs11968400 5 prime UTR C6orf48  T C 0.055 0.029 0.005 1.07E-08 
6 32075563 rs429150 intronic TNXB  C T 0.442 0.013 0.002 2.62E-08 
6 32587165 rs9271377 intergenic HLA-DQA1 (8,791) G T 0.366 -0.014 0.002 1.44E-08 
7 17284577 rs4410790 intergenic AC003075.4 (34,881) C T 0.634 -0.021 0.002 1.63E-18 
7 75611756 rs3815455 intronic POR T C 0.290 -0.015 0.003 1.38E-09 
8 77372988 rs56099375 ncRNA_intronic LINC01111 T C 0.243 -0.016 0.003 5.28E-09 
10 22058137 rs10740991 intronic DNAJC1 C G 0.719 -0.017 0.003 1.47E-10 
14 29635571 rs7142377 intergenic RP11-562L8.1 (98,460) A G 0.812 0.018 0.003 1.35E-09 
15 45661678 rs1288775 exonic GATM A T 0.256 0.016 0.003 8.17E-10 
15 75027880 rs2472297 intergenic CYP1A1 (9,929) T C 0.267 -0.027 0.003 7.97E-26 
16 20355811 rs34262842 intronic UMOD G A 0.167 -0.018 0.003 8.49E-09 
16 50914706 rs4488444 ncRNA_intronic CTD-2034I21.2 G A 0.756 0.015 0.003 1.18E-08 
18 53397199 rs784257 ncRNA_intronic RP11-397A16.1 * C T 0.813 0.026 0.003 8.00E-18 
19 41392490 rs79600176 intronic CTC-490E21.12 C T 0.022 0.048 0.008 1.14E-09 
19 46181392 rs1800437 exonic GIPR C G 0.193 -0.018 0.003 9.81E-10 
22 23412017 rs3788337 intronic RTDR1 A G 0.353 -0.014 0.002 3.37E-09 
22 24897743 rs762279 intronic UPB1  A G 0.581 -0.013 0.002 2.62E-08 
microalbumin 
CHR POS SNP Function Nearest gene (bp distance) EA OA EAF BETA SE P_VALUE 
1 47961691 rs10157710 intergenic RPL21P24 (1,875) T C 0.801 0.099 0.016 3.10E-10 
2 226684886 rs183131780 intergenic LOC646736 (322,654) T C 0.002 0.888 0.099 2.39E-19 
2 227459951 rs71431010 intergenic MIR5702 (63,475) A G 0.001 2.215 0.139 6.62E-57 
2 228511926 rs34823645 intronic C2orf83 C T 0.001 1.660 0.142 9.54E-32 
3 170027407 rs112607182 intergenic PRKCI (3,638) T C 0.075 0.162 0.023 6.03E-13 
4 77413142 rs7675217 intronic SHROOM3 C G 0.538 -0.077 0.012 2.30E-10 
4 149132756 rs6535594 intronic NR3C2 A G 0.495 0.069 0.012 1.36E-08 
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4 190769223 rs4109437 ncRNA_intronic AF146191.4  * A G 0.038 0.265 0.029 1.51E-20 
6 15138733 rs12527322 intergenic JARID2 (107,994) T A 0.213 -0.089 0.015 4.33E-09 
7 29805361 rs17158386 intergenic WIPF3 (40,741) A G 0.261 0.083 0.014 1.42E-09 
10 16874217 rs565411930 intron CUBN T C 0.000 1.680 0.215 5.95E-15 
10 16932384 rs45551835 missense CUBN A G 0.014 0.634 0.039 7.49E-59 
10 16938271 rs77744173 intronic CUBN G T 0.099 0.213 0.019 2.08E-29 
10 16992011 rs141640975 missense CUBN A G 0.003 1.254 0.072 3.11E-68 
10 17005743 rs539606836 intronic CUBN A G 0.000 2.055 0.210 1.52E-22 
10 77885337 rs7909516 intronic C10orf11 T C 0.224 0.085 0.014 2.56E-09 
11 9959698 rs147971756 intronic SBF2 T C 0.049 -0.169 0.031 2.98E-08 
11 78937277 rs74976749 intronic TENM4 A G 0.000 1.820 0.303 1.89E-09 
15 41903965 rs8036643 intronic TYRO3 C G 0.645 0.075 0.013 6.05E-09 
17 56086784 rs147347791 upstrestream SRSF1 G A 0.008 0.340 0.061 2.11E-08 
potassium 
CHR POS SNP Function Nearest gene (bp distance) EA OA EAF BETA SE P_VALUE 
3 27413566 rs4973766 downstream SLC4A7 T C 0.456 -0.016 0.002 2.20E-10 
4 3757380 rs13143189 intergenic AC141928.1 * (3,095) A G 0.436 -0.020 0.002 2.53E-16 
5 560476 rs17563576 intergenic MIR4456 (24,479) G A 0.195 -0.021 0.003 2.39E-11 
6 28712247 rs1233578 intergenic RPSAP2 (11,566) G A 0.179 -0.024 0.003 4.13E-14 
6 31308988 rs1634776 intronic HLA-B T C 0.152 -0.019 0.003 3.97E-08 
6 32005267 rs431204 upstream CYP21A2 T C 0.126 -0.024 0.004 3.66E-10 
7 17284577 rs4410790 intergenic AC003075.4 (34,881) C T 0.634 -0.015 0.003 4.05E-09 
11 126735193 rs7947480 intronic KIRREL3 T A 0.783 -0.016 0.003 3.95E-08 
12 48693423 rs2634697 intergenic RP11-370I10.2 * (15,430) C T 0.257 -0.016 0.003 2.46E-08 
12 64747352 rs12303483 ncRNA_intronic RPS11P6 A T 0.083 0.024 0.004 4.85E-08 
15 75027880 rs2472297 intergenic CYP1A1 (9,929) T C 0.267 -0.016 0.003 1.61E-08 
18 53397199 rs784257 ncRNA_intronic RP11-397A16.1 * C T 0.813 0.019 0.003 1.60E-09 
sodium 
CHR POS SNP Function Nearest gene (bp distance) EA OA EAF BETA SE P_VALUE 
1 54734191 rs3766428  intronic SSBP3 C G 0.452 -0.013 0.002 2.13E-08 
1 72714331 rs1194277 intronic NEGR1 G C 0.508 0.015 0.002 7.21E-10 
2 27730940 rs1260326 missense GCKR C T 0.607 -0.020 0.002 4.37E-16 
2 45155276 rs13383034 ncRNA_intronic RP11-89K21.1 * T C 0.308 0.015 0.003 5.74E-09 
2 51930164 rs1516187 ncRNA_intronic AC007682.1 C T 0.867 0.021 0.004 4.28E-09 
2 100986964 rs1437971 exonic AC012493.2 C A 0.650 -0.017 0.003 4.72E-11 
3 35699022 rs11706708 intronic ARPP21 T C 0.213 0.019 0.003 6.31E-11 
4 100239319 rs1229984 missense ADH1B C T 0.978 -0.044 0.008 3.31E-08 
5 87682877 rs7442885 ncRNA_intronic TMEM161B-AS1 G C 0.210 -0.019 0.003 2.17E-10 
5 148099993 rs13188076 intergenic ADRB2 (106,163) T G 0.232 -0.016 0.003 2.14E-08 
6 31241182 rs6900444 intronic HLA-C T C 0.469 0.013 0.002 2.12E-08 
6 32029415 rs204886 synonymous TNXB C T 0.504 0.013 0.002 4.67E-08 
6 51258579 rs2504706 intergenic RP3-437C15.2  (7,932) C T 0.235 -0.022 0.003 1.15E-15 
6 54070858 rs2754809 intronic C6orf142 G C 0.297 0.015 0.003 3.05E-08 
6 98333409 rs12189679 ncRNA_exonic RP11-436D23.1 A G 0.465 -0.016 0.002 4.00E-11 
7 17284577 rs4410790 intergenic AC003075.4  (34,881) C T 0.634 -0.017 0.002 6.91E-12 
7 73035857 rs7800944 intronic MLXIPL C T 0.287 -0.017 0.003 3.25E-10 
7 132064270 rs62466423 intronic PLXNA4 T C 0.085 -0.023 0.004 4.32E-08 
7 132727695 rs55861011 intronic CHCHD3 T C 0.314 -0.014 0.003 3.17E-08 
8 143495760 rs140154612 intergenic RP13-467H17.1 (7,371) C T 0.018 -0.056 0.010 4.75E-09 
9 139107925 rs11103388 intronic QSOX2 A G 0.330 0.015 0.003 3.47E-09 
9 140296734 rs778597957 intronic EXD3 A G 0.000 0.651 0.117 2.68E-08 
10 22208630 rs2807978 intronic DNAJC1 C T 0.712 -0.017 0.003 8.31E-11 
10 63466754 rs2393831 intronic C10orf107 G A 0.223 -0.016 0.003 2.51E-08 
10 65191645 rs7924036 intronic JMJD1C T G 0.503 -0.013 0.002 3.89E-08 
11 28845569 rs2945091 ncRNA_intronic RP11-115J23.1 * A G 0.558 -0.015 0.002 1.10E-09 
11 31300793 rs2210143 intronic DCDC1 G T 0.322 -0.017 0.003 2.77E-11 
11 118584498 rs569770 ncRNA_intronic AP002954.4 C T 0.641 0.014 0.002 4.22E-08 
12 78773251 rs12581220 ncRNA_intronic RP11-754N21.1 T C 0.316 -0.018 0.003 3.50E-12 
14 29781178 rs1957111 ncRNA_intronic RP11-562L8.1 T C 0.052 0.034 0.005 3.90E-10 
15 75027880 rs2472297 intergenic CYP1A1 (9,929) T C 0.267 -0.020 0.003 2.54E-14 
16 53802494 rs11642015 intronic FTO T C 0.402 0.018 0.002 4.01E-14 
17 3492998 rs12936340 intronic TRPV1 A G 0.643 0.014 0.002 3.93E-08 
18 1839601 rs8097672 intergenic RP11-161I6.2 * (43,924) T A 0.145 0.019 0.003 1.94E-08 
18 53397199 rs784257 ncRNA_intronic RP11-397A16.1 * C T 0.813 0.017 0.003 4.20E-08 
19 41350615 rs28399462 synonymous CYP2A6 A G 0.023 0.052 0.008 7.26E-11 
19 46180414 rs34783010 intronic GIPR T G 0.193 -0.022 0.003 1.24E-13 
19 49259529 rs838133 synonymous FGF21 G A 0.550 0.021 0.002 7.91E-17 
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Abbreviations: CHR, chromosome; pos, position; SNP, single-nucleotide polymorphism; GWAS, genome-wide 
association study; EA, effect allele; OA, other allele; EAF, effect allele frequency; SE, standard error. 

** SnoRNA; *LincRNA. 

 

LD score regression 

We found evidence of high genetic correlation between every pair of the 4 urinary biomarkers, 
although the correlations between microalbumin and the other three biomarkers were generally 
lower (0.20-0.28), than between the other three (0.53-0.81). Further, we observed significant 
genetic correlation between the urinary biomarkers and several anthropometric, 
cardiovascular, glycemic, lipid, hematologic and kidney traits (Figure 2, S4 Table). Specifically, 
we identified a significant and positive genetic correlation across creatinine, microalbumin and 
sodium and several traits related to cardiometabolic disease including BMI, body fat, obesity, 
WHR, fasting insulin, and triglycerides. In addition, we detected significant negative correlation 
between urinary creatinine and eGFRcrea; and between three urinary biomarkers (creatinine, 
microalbumin and sodium) and HDL. We observed a significant and positive correlation 
between potassium and obesity, and a strong inverse correlation between potassium and 
systolic blood pressure.  The heritability of the four urine biomarkers was in the range of 0.015 

£ h2g£ 0.069 (Table 2).  

 

Table 2. Genome-wide heritability of the four urine biomarkers. 

  h2g_obs h2g_obs_se h2g_int h2g_int_se 

Creatinine 0.065 0.003 1.022 0.010 

Microalbumin 0.015 0.002 1.008 0.007 

Potassium 0.042 0.002 1.019 0.009 

Sodium 0.069 0.003 1.033 0.010 

Abbreviations: h2g, genome-wide heritability; obs, observed; se, standard error; int, intercept. 

 

Functional analysis 

Most of the significant SNP associations we identified were located in intronic or intergenic 

regions, rather than in exons or regulatory regions (S7-8 Figs). Most genome-wide significant 
SNPs across the four urine biomarkers were predicted to have no or weak effects on 
transcription based on the prevalent minimum (most active) chromatin state (S9 Fig). DEPICT 
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analyses identified hematologic and immune systems as the most enriched physiological 
systems for loci associated with creatinine; cardiovascular systems for microalbumin; and 
nervous systems for potassium and sodium biomarkers. However, none of the DEPICT 
analyses reached statistical significance (FDR<0.05, S10 Fig, S5 Table). Genes identified by 
gene-level associations as associated with creatinine were enriched among upregulated DEG 
sets in the liver, and genes associated with microalbumin were enriched among downregulated 
gene sets in the bladder (Bonferroni corrected P-value ≤ 0.05). The other biomarkers did not 
show any significant relationship across the genes expressed in the 53 tissue types of GTEx 
(S11-12 Fig). 

 

Colocalization with eQTL and mQTL summary statistics 

We detected four significant eQTL probe colocalizations for creatinine (S6 Table). No 

significant eQTL colocalization signals were detected for microalbumin, potassium and sodium. 
We observed 43 significant mQTL probe colocalizations for creatinine, two for microalbumin, 
157 for potassium and 30 for sodium; however, many probes were found to map to the same 
region and are likely representing the same methylation effect (S7 Table). We observed a total 
of 24 independent (r2 for top SNPs > 0.5) and high confidence colocalizations at loci with 
significant eQTL and/or mQTL SMR p-values (Table 3). 

• Creatinine 

 We detected significant eQTL colocalizations for GATM (lead SNP rs2467858, SMR p = 
9.51e-9) and SPATA5L1 (lead SNP rs9788780, SMR p = 1.67e-9) on chromosome 15 (Figure 
3,Table 3); these GWAS signals colocalized with several mQTL probes in the region as well 

(S7 Table). The most strongly associated GWAS variant was rs1288775 (beta = 0.016, p-value 
= 8.17e-10) (Table 1), and all colocalization lead variants at this locus were strongly linked (LD 
r2 > 0.9). We identified an eQTL colocalization on chromosome 15 at the COMMD4 locus (lead 
SNP rs9673084, p = 7.01e-6). We also observed two additional clusters of mQTL 
colocalizations on chromosome 15, one set with lead variants including eQTLs (or linked 
variants) for CYP1A1/CYP1A2 (top probe SNP rs2472297, p = 3.49e-9), and another set with 
lead variants including eQTLs for SCAMP2 (top probe lead SNP rs4886649, p = 2.49e-9). 
However, we did not observe eQTL colcalizations for both these genes in blood. We also 
observed an eQTL colocalization at the POR locus on chromosome 7 (lead SNP rs11983987, 
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p=1.72e-7). Although there were no mQTL colocalizations with lead SNPs in strong linkage 
with rs11983987, we detected 4 colocalizations of mQTL probes with lead SNPs in weak 
linkage (LD r2 ~ 0.4). The SNPs rs13143189 (p = 8.56e-11), rs9271377 (p = 1.44e-8), 
rs2472297 (p = 7.97e-26) and rs1800437 (p = 9.81e-10) showed significant association in the 
GWAS analysis and significant colocalization with methylation probes. These SNPs are close 
to ADRA2C on chromosome 4, HLA-DQA1 on chromosome 6, CYP1A2 on chromosome 15 
and GIPR on chromosome 19, respectively (Table 3).  

• Microalbumin 

We detected significant mQTL colocalizations for ADM on chromosome 11 (lead SNP 

rs4910113, SMR p = 9.52e-7) and consistent signals in GWAS and mQTL colocalization 
analyses for SHROOM3 on chromosome 4 (rs7675258, p = 6.99e-7).  

• Potassium 

We detected consistent signals in GWAS and mQTL colocalization analyses for the CYP1A1 
locus on chromosome 15 (rs2472297, p = 9.38e-6). Most mQTL probe colocalizations (n = 

134) for potassium occurred for probes binding within a 5.5 Mb region on chromosome 6 
(chr6:27277996-32729059), which overlaps with the HLA region. These colocalizations 
clustered intro three broad groups based on linkage of their lead variants; identification of 
genes is complicated by the linkage structure of this region of the genome (S7 Table). 

• Sodium 

 We detected consistent significant mQTL signals for the TBL2 locus on chromosome 7 
(rs12540011, p = 1.27e-8), for the CYP1A1 locus on chromosome 15 (rs2472297, p = 1.88e-
7), and for the GIPR (rs10423928, p = 4.34-12) and FGF21 loci (rs838133, p = 8.32e-12) on 
chromosome 19.  

We also detected shared mQTL colocalizations between urine biomarkers. Creatinine and 

potassium shared an mQTL colocalization (with multiple probes) on chromosome 4; the lead 
SNP rs12641452 of the top probe is located within a POLR2A binding site in a 25kb region 
flanking ADRA2C. Creatinine and sodium shared an mQTL colocalization near GIPR on 
chromosome 19 with the same lead variant rs10423928 identified across multiple probes. The 
methylation probes that colocalize with the GWAS signal at this locus bind in or near a high 
confidence CTCF binding site in an intronic region of GIPR. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2018. ; https://doi.org/10.1101/315259doi: bioRxiv preprint 

https://doi.org/10.1101/315259


 

 11 

Table 3. Consistent significant signals across genome-wide association studies, expression quantitative trait loci 
(eQTL) and/or methylation quantitative trait loci (mQTL) probe colocalizations. 
 

 eQTL              

 ProbeChr topSNP_bp topSNP Nearest gene A1 A2 Freq b_GWAS se_GWAS p_GWAS b_eQTL se_eQTL p_eQTL p_SMR 

creatinine 7 75657850 rs11983987 POR G A 0.182 -0.017 0.003 2.85E-08 0.4 0.026 1.41E-54 1.72E-07 

 15 45711492 rs2467858 GATM G A 0.276 0.016 0.003 1.31E-09 -0.383 0.022 2.44E-70 9.51E-09 

 15 45685487 rs9788780 SPATA5L1 A T 0.273 0.016 0.003 1.19E-09 0.85 0.019 8.63E-103 1.67E-09 

 15 75622943 rs9673084 COMMD4 A G 0.245 -0.016 0.003 2.92E-10 0.139 0.022 1.48E-10 7.01E-06 

 mQTL              

creatinine 1 41487317 41560291 SCMH1 A G 0.197 0.016 0.003 6.20E-09 0.629 0.037 3.40E-64 3.88E-08 

 1 78442554 78623626 GIPC2,LOC100132264 T C 0.1 0.021 0.003 6.44E-10 0.527 0.046 4.99E-30 5.61E-08 

 4 3748154 3748134 LOC100129786,ADRA2C A C 0.404 0.015 0.002 9.28E-10 -0.636 0.032 2.61E-88 4.87E-09 

 6 32165183 32587165 HLA-DRB1,HLA-DQA1 G T 0.383 -0.014 0.002 1.44E-08 -0.322 0.034 2.45E-21 1.14E-06 

 7 17337976 17338147 LOC100131512 T C 0.136 0.019 0.003 1.46E-08 0.419 0.047 3.84E-19 1.70E-06 

 7 75624427 75695081 MDH2 A G 0.173 -0.017 0.003 1.74E-08 -0.69 0.042 1.72E-61 9.55E-08 

 15 74891207 75027880 CYP1A1,CYP1A2 T C 0.231 -0.027 0.003 7.97E-26 0.264 0.037 9.21E-13 3.49E-09 

 15 75165896 75328595 SCAMP2 C T 0.335 -0.016 0.002 1.61E-10 -0.531 0.032 4.05E-61 2.49E-09 

 19 46181546 46182304 GIPR A T 0.208 -0.018 0.003 1.52E-09 -0.804 0.039 2.13E-93 6.81E-09 

microalbumin 4 77409957 77413179 SHROOM3 G A 0.489 0.077 0.012 2.83E-10 0.268 0.033 0 6.99E-07 

 11 10323902 10269178 ADM G A 0.22 0.079 0.015 2.36E-07 -0.63 0.041 0 9.52E-07 

potassium 4 3748154 3748134 LOC100129786,ADRA2C A C 0.404 0.018 0.003 3.95E-12 -0.636 0.032 2.61E-88 5.64E-11 

 5 601475 599269  A G 0.198 -0.018 0.003 2.23E-09 -0.991 0.035 4.23E-177 4.87E-09 

 6 28830902 28934352  C T 0.073 -0.025 0.004 2.44E-11 -1.597 0.039 8.63E-120 4.35E-11 

 15 74891207 75027880 CYP1A1,CYP1A2 T C 0.231 -0.016 0.003 1.61E-08 0.264 0.037 9.21E-13 9.38E-06 

sodium 7 72993570 72991704 TBL2 A G 0.269 -0.015 0.003 3.94E-09 0.755 0.034 1.68E-109 1.27E-08 

 8 143484414 143527647  T C 0.016 -0.043 0.008 2.65E-08 -1.178 0.11 5.79E-27 7.77E-07 

 15 74891207 75027880 CYP1A1,CYP1A2 T C 0.231 -0.02 0.003 2.54E-14 0.264 0.037 9.21E-13 1.88E-07 

 19 46181546 46182304 GIPR A T 0.208 -0.022 0.003 1.87E-13 -0.804 0.039 2.13E-93 4.34E-12 

 19 49259452 49259529 FGF21 A G 0.418 -0.021 0.002 7.91E-17 0.386 0.032 7.59E-33 8.32E-12 
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Abbreviations: CHR chromosome; pos, position; SNP, single-nucleotide polymorphism; EA, effect allele; OA, other allele; EAF, effect allele frequency; b, 
beta; p, p-value; SMR, summary-based-results Mendelian Randomization.  
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Discussion 
Principal findings 

We achieved three broad goals in this study of up to 326,441 unrelated UKB participants of 
European descent. We (1) established the genetic determinants of levels of creatinine, 

microalbumin, potassium and sodium in urine, (2) evaluated genetic correlation between these 
biomarkers and several physiological measurements, and (3) explored the functional impact of 
associated loci using variant annotations, tissue-specific gene expression patterns, and 
colocalization analysis with expression and methylation summary statistics. Our main findings 
are several-fold. First, we report a total of 78 novel loci associated with one or more of the 4 
urine biomarkers, providing new leads regarding biological processes involved in regulating 
urinary creatinine, microalbumin, potassium and sodium. Second, our analyses indicate low 
heritability, but high pairwise genetic correlation for the four urinary biomarkers; as well as 
significant genetic correlations with several traits related to chronic kidney disease, 
cardiovascular disease, and type 2 diabetes. Third, we highlight a significant positive 
relationship for creatinine and microalbumin and genes highly expressed in liver and bladder, 
respectively. Fourth, we identify 4 and 20 independent colocalization events of GWAS data 
with blood gene expression and DNA methylation respectively, and we provide evidence for a 
functional mechanism at colocalized GWAS loci. As an example of the latter, we identified 
GATM and SPATA5L1 as possible causal genes involved in the genetic underpinning of 
urinary creatinine; and GIPR, a potential drug target in the treatment of obesity-associated 
metabolic disorders, as a plausible causal gene involved in regulation of urine creatinine and 
sodium.  
 

Comparison with prior literature 
This study is the first GWAS of urinary creatinine, potassium and sodium to the best of our 
knowledge while genetic determinants of microalbumin have already been explored in 
previous, smaller studies (10, 35). In this study, we replicated the well-known association in 
CUBN, and extend prior GWAS of microalbumin by highlighting several novel pathways 
influencing this trait. We also replicated the known association of variants in the CPS1 locus 
with serum creatinine, previously reported to affect creatinine production and secretion; and 
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with GATM, a gene that encodes a mitochondrial enzyme previously associated with serum 
creatinine (36).  
 Previous epidemiological studies have showed significant associations between sodium 
and potassium intake and CVD  (6, 7), and between higher levels of sodium and lower levels 
of potassium intake and higher blood pressure (8), but there is a lack of studies studying the 
genetics underpinning of these biomarkers. Our genetic correlation analysis confirmed a 
negative association of blood pressure with urinary potassium, and the positive association 
with urinary sodium. We also confirmed a significant positive genetic correlation between 
creatinine, microalbumin and sodium and several anthropometric measurements related with 
CVD (BMI, body fat, obesity and WHR), and with fasting insulin, and triglycerides. In addition, 

we detected significant negative correlations of urinary creatinine, microalbumin and sodium 
with HDL.  
 We report heritability estimates of the 4 urinary biomarkers in the range of 2-7%, which 
is lower than many complex traits, but quite consistent with prior studies of kidney-related 
biomarkers. Previous studies applying family-based designs have generally reported similar, 
but somewhat higher estimates for other kidney-related biomarkers (71-73). Specifically, the 
estimates for albumin/creatinine ratio, potassium and sodium have been reported to be in the 
range of 13-19 %, lowest for potassium and highest for creatinine (71, 73). This discrepancy 
can probably be explained by prior studies focusing on serum biomarkers, and due to 
differences in statistical methods used. Indeed, our method captures SNP-based heritability 
due to common variation, whereas twin and other family-based analyses also capture 
components of heritability due to rare variation (74).  
 
Novel biology 

We observed colocalization of the GWAS signal for urine creatinine at GATM and SPATA5L1 

with both eQTL and mQTL signals in the region. The GATM locus is not novel in terms of 
association with renal function as previous studies have shown its association with CKD and 
reduced glomerular filtration rate (17, 36). GATM, which stands for glycine amidinotransferase, 
encodes a rate-limiting enzyme involved in creatinine biosynthesis, and has been suggested to 
act as a functional link between statin-mediated lowering of cholesterol and susceptibility 
to statin-induced myopathy (75). In addition, a previous study showed a significant association 
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of SNPs in the GATM locus with plasma and urine creatinine but not with cystatin C in plasma, 
another biomarker of renal function (36). This association may indicate that the regulatory 
variant(s) in this locus influence creatinine production rather than creatinine excretion. 
Consistent with this finding, our genetic correlation analysis indicated a significant negative 
association of urine and eGFRcrea (p = 2.08e-06), but no significant correlation with eGFRcys, 
pointing more broadly to common pathways between urine and serum creatinine. The 
colocalization lead variants for all eQTL and mQTL probes in the region were strongly linked 
with each other and with the previously reported statin-induced response eQTL rs9806699 for 
GATM (LD r2 > 0.9). Consistent with the expectation that increased methylation of CpG-dense 
promoters correlates negatively with gene expression, the linked lead eQTL and mQTL 

colocalization SNPs showed association with decreased GATM expression and increased 
methylation in the region (S6 Table).  

 Variants in SHROOM3 showed significant association with microalbumin in the GWAS 
and in the mQTL colocalization. SHROOM3 encodes an actin-associated protein important in 
epithelial morphogenesis that has been previously shown to be strongly associated with kidney 
function (36). Studies in zebrafish and rat show that alterations in SHROOM3 can result in 
glomerular dysfunction. Furthermore, human SHROOM3 variants can induce impaired kidney 
function in animal models (76). Variants near CYP1A1 on chromosome 15 showed a 
significant association with urinary creatinine, potassium and sodium in the GWAS; and in the 
mQTL colocalization analysis. This locus has been previously suggested as a potential drug 
target for the prevention of CVD because variants in this locus are also associated with blood 
pressure (77). Likewise, variants in the GIPR locus significantly associated with creatinine and 
sodium in our GWAS and mQTL colocalization have been previously associated with several 

cardiometabolic traits including obesity (78), BMI (44), and hip circumference (79). The 
glucose-dependent insulinotropic peptide (GIP) has a central role in glucose homeostasis 
through its amplification of insulin secretion. Incretin hormones such as GIP act to promote 
efficient uptake and storage of energy after food ingestion and have become important players 
for glucose homeostasis in pancreatic and extra pancreatic tissue. A recent study 
demonstrated that mice with selective ablation of GIPR in beta cells exhibited lower levels of 
meal-stimulated insulin secretion, decreased expansion of adipose tissue mass and 
preservation of insulin sensitivity when compared to controls (80). Hence, the GIPR represents 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2018. ; https://doi.org/10.1101/315259doi: bioRxiv preprint 

https://doi.org/10.1101/315259


 

 16 

a potential therapeutic in the treatment of diabetes. Similarly, the fibroblast growth factor 21 
(FGF21) significant associated with sodium in our GWAS and mQTL colocalization, is 
considered a novel promising candidate in the treatment of T2D, obesity, dyslipidemia, 
cardiovascular and fatty liver diseases (81). FGF21 encodes a fibroblast growth factor involved 
in glucose and lipid metabolism, and has been previously associated with macronutrient intake 
(82). In vitro, FGF21 promotes insulin-dependent glucose uptake through the transcription of 
GLUT1 in rodent and human adipocytes (83). Pharmacologic doses of FGF21 improve glucose 
clearance and insulin sensitivity, and lower plasma triglycerides and free fatty acids in diabetic 
and obese animal models (84, 85). In humans, the role of FGF21 remains ill-defined, but 
reports have linked serum levels of FGF21 with adiposity, fasting insulin, and triglycerides (86). 

 

Strengths and limitations 

Strengths of the present study include the very large sample size with both genetic profiling 

and phenotypic data which enabled us to detect a large number of genetic associations, the 
use of state-of-the-art methods to validate our results including a conservative analytical 
framework with strict multiple testing correction, and a variety of pathway analyses. 
Furthermore, our study is the most comprehensive to date on the genetics of urine biomarkers, 
combining GWAS, genetic correlation, as well as functional and eQTL and mQTL 
colocalization analyses.  

 We also acknowledge some limitations. First, we did not replicate our findings in an 
external study sample due to unavailability of a similar independent large study; although we 
applied an internal replication strategy given the very large sample size. Second, participants 
included in our analyses were restricted to middle-aged and elderly individuals of European 

ancestry potentially limiting the generalizability of our results to other age groups and 
ethnicities. 
 
Conclusions 
We report 78 novel genome-wide significant associations with urinary creatinine, 
microalbumin, potassium and sodium in the UKB, confirming several known associations and 
providing new insights into the genetic basis of these traits and their connection to chronic 
diseases. We detected high genetic correlations between the four urinary biomarkers and 
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significant genetic correlations with several anthropometric, cardiovascular, glycemic, lipid and 
kidney traits. Through this effort, we highlight GATM as a plausible causal gene controlling 
levels of urinary creatinine, and GIPR – a potential diabetes drug target – as being associated 
with urine creatinine and sodium. 
 

Materials and Methods 

Study sample 

The UKB is a longitudinal cohort study of over 500,000 individuals aged 40-69 years at the 
time of recruitment between 2006 and 2010. Participants were enrolled in 22 study centers 
located in England, Scotland and Wales. The UKB study was approved by the North West 

Multi-Centre Research Ethics Committee and all participants provided written informed 
consent. Details of these measurements can be found in the study protocol (18) and in the 
UKB Data Showcase (http://biobank.ctsu.ox.ac.uk/crystal/). 

 

Phenotype 
Urine samples were collected at baseline in all UKB participants. All urinary biomarker 
measurements were carried out on a single Beckman Coulter AU5400 clinical chemistry 

analyzer using the manufacturer’s reagents and calibrators, except for urinary microalbumin, 
which used reagents and calibrators sourced from Randox Bioscience. Internal quality control 
was performed for all the four urinary biomarkers data 
(http://biobank.ctsu.ox.ac.uk/crystal/docs/urine_assay.pdf). Baseline characteristics of UKB 
participants who had included in the analyses are shown in S1 Table. Details of these 
measurements can be found in the UKB Data Showcase (http://biobank.ctsu.ox.ac.uk/crystal/). 
We used rank-based inverse normal transformed phenotype levels in all continuous 
association tests performed. 
 
Genotypes 
Genotyping was performed with the UK BiLEVE and UK Biobank Axiom arrays (Affymetrix 
Research Services Laboratory, Santa Clara, California, USA). Initial quality control (QC) was 
conducted centrally by the UKB, and has been described in detail by Bycroft et al (19). At the 
time of this study, genotype data was available for 488,377 participants at 805,426 markers; 
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genotype imputation was also conducted centrally using IMPUTE2 and a reference panel from 
the Haplotype Reference Consortium (HRC) (19). In our analysis, we used the July 2017 
release of the imputed genetic marker data, and excluded genetic markers with minor allele 
count ≤ 30 and imputation quality < 0.8. As a result, the total number of genetic markers 
included in our analysis was 15,640,977.  
 
Genetic association analysis 
We excluded individuals who had withdrawn consent at the time of this study, who were 
related, and who did not self-report as white or did not cluster with Europeans based on 
principal component analysis of genetic data (N=337,542). Unrelated individuals were defined 

as those who were no closer than the third-degree based on pairwise kinship coefficients by 
Bycroft et al (19).  
 In remaining participants, we performed GWAS to identify genetic variants associated 
with each of the 4 biomarkers (creatinine, N = 327,857 [3.0% missing values]; microalbumin, N 
= 326,441 [3.3% missing values]; potassium, N = 327,147 [3.1% missing values]; sodium, N = 
327,162 [3.1% missing values]). Urine creatinine (μmol/L; ID 30510), potassium (mmol/L; ID 
30520) and sodium (mmol/L; ID 30530) were analyzed as continuous traits, while 

microalbumin (mg/L; ID 30500) was dichotomized into a binary trait (£30 mg/L = 0 and >30 

mg/L = 1)(20). The rationale for dichotomizing urinary microalbumin was that the distribution 
was bimodal, as expected in a community-based sample where the majority has no 
measurable urine albumin. We conducted association analyses with PLINK (version 2.0) (21) 
using linear or logistic regression of biomarker levels on imputed genotypes assuming an 
additive model between phenotypes and genotype dosages. We adjusted all models for age, 

sex, batch (3 levels; UK BiLEVE, UK Biobank release 1 and UK Biobank release 2) and the 
first ten genotype principal components, and restricted association analyses to single 
nucleotide polymorphisms (SNPs) with minor allele count ≥ 30 and imputation quality 
information score (info) ≥ 0.8.  
 We pruned results based on distance retaining variants with the strongest associations 
within this distance for downstream analysis. We identified regions containing one or more 
SNPs with p<5e-8 (“index SNPs”) by screening a window of 500kb adjacent to the first index 
SNP on each chromosome. If no additional SNPs were identified, the region was limited to that 
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specific SNP, and screening was continued at the next index SNP. If additional index SNPs 
were present in this 500kb window, the window was expanded by a distance of 300kb from the 
last SNP in search of additional SNPs with p<5e-8 until no more SNPs with p<5e-8 within the 
next 300kb could be found. From this pruning, we identified a number of regions containing 
one to several index SNPs and assigned the SNP with lowest p-value within each region as 
the lead SNP. Within each region, we repeated association analysis after including all index 
SNPs in the region as well as lead SNPs from other regions on the same chromosome.  We 
considered any SNP with a p<5e-8 in this final analysis to be an independent locus. Regional 
plots were created for the association test results at significant loci using LocusZoom v1.4 (22). 
 

LD-score regression 
We applied LD-score regression (23) using available GWAS summary statistics from the LD 
Hub database (24) to evaluate genome-wide heritability (h2g) of the four urine biomarkers and 
to identify genetic correlation with other traits. We used pre-calculated European LD scores 
and restricted the analysis to SNPs found in HapMap Phase 3 (25). We evaluated pairwise 
genetic correlations of all four urine biomarkers, and between each biomarker and a total of 27 
other traits. Specifically, we analyzed correlations with anthropometric (body mass index [BMI], 
body fat percentage, height, obesity, waist-hip ratio [WHR]), cardiovascular (atrial fibrillation, 
coronary artery disease, diastolic and systolic blood pressure, heart rate, ischemic stroke), 
glycemic (T2D, fasting glucose and insulin, 2-hour glucose adjusted for BMI, and glycated 
hemoglobin), lipid (high and low density lipoprotein cholesterol [HDL-C and LDL-C], 
triglycerides and total cholesterol), hematologic (mean platelet, platelet count) and kidney 
(CKD, estimated glomerular filtration rate of creatinine [eGFRcrea] and cystatin c [eGFRcys]) 
traits. A conservative Bonferroni-corrected threshold of 4.46e-04 (adjusting for 28 traits * 4 
biomarkers) was used to identify significant correlations. 

 

Functional analysis 

We evaluated all genome-wide significant loci for functional impact using variant annotations, 
gene-level analysis, and colocalization analyses. We annotated chromatin states of all 
significant SNPs based on the 15-state model used in the NIH Roadmap Epigenomics study 

(26), and added functional annotations using RegulomeDB categories (27). We used predicted 
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gene functions as implemented in DEPICT (28) to provide biological interpretation of 
association signals and identify relevant tissues contributing to the signals. To balance power 
with specificity, DEPICT analysis was performed in two ways: 1) by including independent loci 
at genome-wide significance; 2) by including loci at a lower significance level (p ≤ 10-5) in the 
GWAS after pruning variants in high LD (r2 > 0.05). Apart from a SNP-level GWAS, we 
conducted a MAGMA gene-level association analysis using gene-level tests as implemented in 
the FUMA GWAS platform (29). We explored pathways and tissues that were significantly 
enriched for associated genes using MAGMA (30). Tissue specificity was determined in 53 
tissues based on gene expression data from the Genotype Tissue Expression project (GTEx 
V6) (31). We also determined whether the genes identified by gene-level associations were 

overrepresented in differentially expressed gene sets (DEG) for each tissue as implemented in 
FUMA. In these gene-based tests, two-sided Student’s t-tests were performed per gene per 
tissue against all other tissues. After Bonferroni correction, genes with corrected P-value < 
0.05 and absolute log fold change ≥ 0.58 were defined as a DEG set in a given tissue. We 
distinguished between genes that are upregulated and downregulated in a specific tissue 
compared to other tissues, by taking the sign of t-score into account. Genes were tested 
against those DEG sets by hypergeometric tests to evaluate if the prioritized genes are 
overrepresented in DEG sets in specific tissue types. 

 

Colocalization with eQTL and mQTL summary statistics 

We performed summary data-based Mendelian Randomization (SMR) (32) with blood cis-
eQTL and cis-mQTL data to evaluate the evidence for colocalization between biomarker 
GWAS and white blood cell gene expression or methylation signals. We used colocalization to 
refer to evidence of a causal mechanism between expression and/or methylation and the 
GWAS signal. eQTL and mQTL colocalization analyses were performed at the level of 
individual probes; eQTL summary statistics were obtained from Westra et al. (33), and mQTL 
summary statistics were obtained from McRae et al. (34). We tested 5,959 and 93,220 probes 
which had genome wide significant cis-eQTLs and cis-mQTLs, respectively (QTL p-value < 5e-
08), and controlled false discoveries using Benjamini-Yekutieli (5% FDR) control in both 
analyses. As some genes have multiple gene expression probes, we estimated pairwise LD 

between all significant eQTL colocalization lead SNPs while analyzing results to ensure that 
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the same colocalization was not reported using multiple probes. Similarly, multiple methylation 
probes map to a given region; hence, we repeated the above process while reporting mQTL 
colocalizations as well. 
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Figures 
Figure 1. Manhattan plot for genetic associations for urinary creatinine (a), microalbumin (b), potassium (c) and sodium 

(d). The nearest gene for each chromosome labeled. Negative log10-transformed P values for each SNP (y axis) are plotted by 

chromosomal position (x axis). The gray line represents the threshold for genome-wide statistically significant associations (P = 5 

× 10−8). Red points represent significant hits. 
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Figure 2. Genetic correlations between urinary creatinine, microalbumin (a), potassium 
and sodium (b) and other traits. Significant correlations after Bonferroni correction (4.46 

x 10-4) are highlighted with a red triangle. 
a. 
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b. 

 

Abbreviations: BMI, body mass index; WHR, waist-hip ratio; AF, atrial fibrillation; CAD, coronary artery disease; 
DBP, diastolic blood pressure; SBP, systolic blood pressure; HR, heart rate; IS, ischemic stroke; T2D, type 2 
diabetes; FG, fasting glucose; FI, fasting insulin; 2hrGluAdjBMI, 2-hour glucose adjusted for BMI; HbA1C, 
glycated hemoglobin; HDL, high density lipoprotein; LDL, low density lipoprotein; TG, triglycerides; TC, total 
cholesterol  CKD, chronic kidney disease; eGFRcrea, estimated glomerular filtration rate of creatinine; eGFRcys, 
estimated glomerular filtration rate of cystatin. 
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Figure 3. Expression quantitative trait loci (eQTL) and methylation quantitative trait loci 
(mQTL) colocalization probes for the locus GATM/SPATA5L1. Colocalization of GWAS, 
eQTL and mQTL signals at the GATM locus on chromosome 15. eQTL signals for GATM and 
SPATA5L1, and the two top mQTL probes are shown, along with their respective 
colocalization top variants (determined by maximum SMR effect size). 
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Supporting Information 

Tables 

ST1 Table. Baseline characteristics of UK Biobank participants who had included in the 

analyses. 
Abbreviations: SD, standard deviation; T2D, type 2 diabetes; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; BMI, body mass index; WHR, waist-to-hip ratio. 

S2 Table. GWAS catalog  reference for genetic loci (500 bp) of the 78 novel lead variants 

associated with urine biomarkers in the genome-wide association studies. GWAS hits 
are highlighted and associations are sorted by p-value. GWAS catalog references were 
selected applying the following filters: minimum p values of 5e10-8, minimum samples size of 
10000 for continuous traits and 5000 cases for binary traits. 
Abbreviations: SNP, single-nucleotide polymorphism; POS, position; CHR, chromosome; PMID, pub med 
identification number. 

S3 Table. P-value per gene-based genome-wide analysis for urinary biomarkers. 

Abbreviations: CHR, chromosome; SNP, single-nucleotide polymorphism; P, p-value. 

S4 Table. Genetic correlation between urinary biomarkers and other traits. 
Abbreviations: rg, genetic correlation; P, p-value; BMI, body mass index; WHR, waist-hip ratio; AF, atrial 
fibrillation; CAD, coronary artery disease; DBP, diastolic blood pressure; SBP, systolic blood pressure; HR, heart 
rate; IS, ischemic stroke; T2D, type 2 diabetes; FG, fasting glucose; FI, fasting insulin; 2hrGluAdjBMI, 2 hours 
glucose adjusted for BMI; HbA1C, glycated hemoglobin; HDL, high density lipoprotein; LDL, low density 
lipoprotein; TG, triglycerides; TC, total cholesterol; CKD, chronic kidney disease; eGFRcrea, estimated glomerular 
filtration rate of creatinine; eGFRcys, estimated glomerular filtration rate of cystatin c.  

S5 Table. P-value of tissue enrichment for urinary biomarkers. 

S6 Table. Significant expression quantitative trait loci (eQTL) probe colocalizations for 

creatinine. 
Abbreviations: Chr, chromosome; bp, base position; SNP, single-nucleotide polymorphism; A1, effect allele; A2, 
other allele; Freq, minor allele frequency; b, beta; se, standard error; p, p-value; GWAS, genome-wide association 
study; eQTL, expression quantitative trait loci; SMR, summary-based-results Mendelian Randomisation; HEIDI, 
heterogeneity in dependent instruments. 

S7 Table. Significant methylation quantitative trait loci (mQTL) probe colocalizations for 

creatinine, potassium and sodium. 
Abbreviations: Chr, chromosome; bp, base position; SNP, single-nucleotide polymorphism; A1, effect allele; A2, 
other allele; Freq, minor allele frequency; b, beta; se, standard error; p, p-value; GWAS, genome-wide association 
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study; eQTL, expression quantitative trait loci; SMR, summary-based-results Mendelian Randomisation; HEIDI, 
heterogeneity in dependent instruments; p.BY, Benjamini Yekutieli adjusted p-value. 

 

Figures 

S1 Figure. Regional association and linkage disequilibrium plots for 23 genome-wide 

significant loci for creatinine. The y axis represents the negative logarithm (base 10) of the SNP P value 

and the x axis represents the position on the chromosome, with the name and location of genes in the UCSC 
Genome Browser shown in the bottom panel. The SNP with the lowest P value in the region is marked by a 
purple diamond. The colors of the other SNPs indicate the r2 of these SNPs with the lead SNP. Plots were 
generated with LocusZoom. 

S2 Figure. Regional association and linkage disequilibrium plots for 20 genome-wide 

significant loci for microalbumin. The y axis represents the negative logarithm (base 10) of 

the SNP P value and the x axis represents the position on the chromosome, with the name 
and location of genes in the UCSC Genome Browser shown in the bottom panel. The SNP 
with the lowest P value in the region is marked by a purple diamond. The colors of the other 
SNPs indicate the r2 of these SNPs with the lead SNP. Plots were generated with LocusZoom. 

S3 Figure. Regional association and linkage disequilibrium plots for 12 genome-wide 

significant loci for potassium. The y axis represents the negative logarithm (base 10) of the 

SNP P value and the x axis represents the position on the chromosome, with the name and 
location of genes in the UCSC Genome Browser shown in the bottom panel. The SNP with the 
lowest P value in the region is marked by a purple diamond. The colors of the other SNPs 
indicate the r2 of these SNPs with the lead SNP. Plots were generated with LocusZoom. 

S4 Figure. Regional association and linkage disequilibrium plots for 38 genome-wide 

significant loci for sodium. The y axis represents the negative logarithm (base 10) of the 

SNP P value and the x axis represents the position on the chromosome, with the name and 
location of genes in the UCSC Genome Browser shown in the bottom panel. The SNP with the 
lowest P value in the region is marked by a purple diamond. The colors of the other SNPs 
indicate the r2 of these SNPs with the lead SNP. Plots were generated with LocusZoom. 

S5 Figure. Q-Q plot for genetic associations for urinary creatinine (a), microalbumin (b), 

potassium (c) and sodium (d). 

S6 Figure. Gene-based genome-wide analysis for urinary creatinine (a), microalbumin 
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(b), potassium (c) and sodium (d). The significant genes for each chromosome labeled. 
Negative log10-transformed P values for each gene (y axis) are plotted by chromosomal 
position (x axis). The gray line represents the thresholds for genome-wide statistically 
significant associations (p = 5e-08). 

S7 Figure. Functional categories for the genome-wide significant SNPs for urinary 

creatinine (a), microalbumin (b), potassium (c) and sodium (d). 

S8 Figure. The Regulome database score for the genome-wide significant SNPs for 

urinary creatinine (a), microalbumin (b), potassium (c) and sodium (d). 

S9 Figure. The minimum (most active) chromatin state for the genome-wide significant 

SNPs for urinary creatinine (a), microalbumin (b), potassium (c) and sodium (d). 

S10 Figure. Tissue enrichment for urinary creatinine (a), microalbumin (b), potassium 

(c) and sodium (d). 

S11 Figure. Differentially Expressed Gene (DEG) Sets across 30 general tissue types for 

urinary creatinine (a), microalbumin (b), potassium (c) and sodium (d). Significant 
enrichment at Bonferroni corrected P-value ≤ 0.05 are colored in red. 

S12 Figure. Differentially Expressed Gene (DEG) Sets across 53 specific tissue types for 

urinary creatinine (a), microalbumin (b), potassium (c) and sodium (d). Significant 

enrichment at Bonferroni corrected P-value ≤ 0.05 are colored in red. 
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