1	HIV-1 Protease Evolvability is Affected by Synonymous Nucleotide Recoding
2	
3	Maria Nevot ¹ , Ana Jordan-Paiz, Glòria Martrus ^{1,2} , Cristina Andrés ^{1,3} , Damir García-
4	Cehic ^{4,5} , Josep Gregori ^{4,6} , Sandra Franco ¹ , Josep Quer ^{4,5,7} and Miguel Angel Martinez ¹ #
5	
6	¹ IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de
7	Barcelona (UAB), Badalona, Spain
8	² Current address: Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology,
9	Hamburg, Germany.
10	³ Current address: Virology Unit, Microbiology Department, Hospital Universitari Vall
11	d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona
12	(UAB), Barcelona, Spain.
13	⁴ Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department,
14	Vall d'Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d'Hebron (HUVH),
15	Barcelona, Spain
16	⁵ Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Hepáticas y
17	Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
18	⁶ Roche Diagnostics SL, Sant Cugat del Vallès, Barcelona, Spain
19	⁷ Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
20	
21	#Address correspondence to Miguel Angel Martínez, Fundació irsiCaixa, Hospital
22	Universitari Germans Trias i Pujol, 08916 Badalona, Spain. Tel: +34 934656374; Fax:
23	+34 934653968; E-mail address: mmartinez@irsicaixa.es
24	
25	

26 ABSTRACT

27	One unexplored aspect of HIV-1 genetic architecture is how codon choice influences
28	population diversity and evolvability. Here we compared the development of HIV-1
29	resistance to protease inhibitors (PIs) between wild-type (WT) virus and a synthetic
30	virus (MAX) carrying a codon-pair re-engineered protease sequence including 38 (13%)
31	synonymous mutations. WT and MAX viruses showed indistinguishable replication in
32	MT-4 cells or PBMCs. Both viruses were subjected to serial passages in MT-4 cells
33	with selective pressure from the PIs atazanavir (ATV) and darunavir (DRV). After 32
34	successive passages, both the WT and MAX viruses developed phenotypic resistance to
35	PIs (IC $_{50}$ 14.6 \pm 5.3 and 21.2 \pm 9 nM for ATV, and 5. 9 \pm 1.0 and 9.3 \pm 1.9 for DRV,
36	respectively). Ultra-deep sequence clonal analysis revealed that both viruses harbored
37	previously described resistance mutations to ATV and DRV. However, the WT and
38	MAX virus proteases showed different resistance variant repertoires, with the G16E and
39	V77I substitutions observed only in WT, and the L33F, S37P, G48L, Q58E/K, and L89I
40	substitutions detected only in MAX. Remarkably, G48L and L89I are rarely found in
41	vivo in PI-treated patients. The MAX virus showed significantly higher nucleotide and
42	amino acid diversity of the propagated viruses with and without PIs ($P < 0.0001$),
43	suggesting higher selective pressure for change in this recoded virus. Our results
44	indicate that HIV-1 protease position in sequence space delineates the evolution of its
45	mutant spectra. Nevertheless, the investigated synonymously recoded variant showed
46	mutational robustness and evolvability similar to the WT virus.
47	

48 **IMPORTANCE**

49 Large-scale synonymous recoding of virus genomes is a new tool for exploring various50 aspects of virus biology. Synonymous virus genome recoding can be used to investigate

how a virus's position in sequence space defines its mutant spectrum, evolutionary 51 52 trajectory, and pathogenesis. In this study, we evaluated how synonymous recoding of the human immunodeficiency virus type 1 (HIV-1) protease impacts the development of 53 54 protease inhibitor (PI) resistance. HIV-1 protease is a main target of current antiretroviral therapies. Our present results demonstrate that the wild-type (WT) virus 55 and the virus with the recoded protease exhibited different patterns of resistance 56 57 mutations after PI treatment. Nevertheless, the developed PI resistance phenotype was indistinguishable between the recoded virus and the WT virus, suggesting that the 58 synonymously recoded protease HIV-1 and the WT protease virus were equally robust 59 60 and evolvable.

62 INTRODUCTION

63	Alterations in a DNA or mRNA sequence that do not change the protein amino acid
64	sequence are called synonymous mutations. Although they do not influence the
65	resulting protein sequence, synonymous mutations can still substantially affect cellular
66	processes (1, 2). Notably, synonymous virus genome recoding can impact viral
67	replication capacity and fitness (3), reportedly leading to attenuation of multiple RNA
68	and DNA viruses, including poliovirus (4-7), influenza virus (8, 9), HIV-1 (10-12), SIV
69	(13), Chikungunya virus (14), human respiratory syncytial virus (15-17), porcine
70	reproductive and respiratory syndrome virus (18), echovirus 7 (19, 20), tick-borne
71	encephalitis virus (21), vesicular stomatitis virus, dengue virus (22), adeno-associated
72	virus (23), and papillomavirus (24).
73	Synonymous virus genome recoding is being investigated as a new strategy for
74	generating novel live-attenuated vaccine candidates. This method is promising because
75	the amino acid coding is completely unaffected, thereby avoiding the potential
76	generation of new and undesirable biological properties. Moreover, synonymous virus
77	genome recoding involves the introduction of hundreds or thousands of nucleotide
78	substitutions, which minimizes the risk of phenotypic reversion via point mutations or
79	through recombination with homologous sequences in circulating strains. This is
80	particularly important with regards to RNA viruses, since viral RNA polymerases lack
81	error-correction mechanisms (25-27). The high genetic variability of RNA viruses is a
82	critical limitation when designing novel antiviral strategies.
83	The usefulness of synonymous virus genome recoding goes beyond the
84	generation of new live attenuated vaccines. This method has also been used to identify
85	specific RNA structures required for virus replication (28), virus genome cis-inhibitory
86	signal sequences important for complex viral functions (23), and novel antiviral

mechanisms within the innate immune response (11, 29, 30), as well as to resolve the
importance of codon usage in the temporal regulation of viral gene expression (31). In
one interesting example, synonymous virus genome recoding was used to demonstrate
that a synonymous position in sequence space can impact poliovirus evolvability and
pathogenesis (32, 33).

Like other RNA viruses, human immunodeficiency virus type 1 (HIV-1) 92 93 populations comprise a closely related mutant spectra or mutant clouds termed viral 94 quasispecies (34, 35). Mutant cloud composition can impact virus evolvability, fitness, 95 and virulence (25-27). One unexplored aspect of HIV-1 genetic architecture is how 96 codon choice influences population diversity and evolvability. It is presently unclear 97 whether HIV-1 sequences have evolved to optimize both protein coding and DNA/RNA sequences. The HIV-1 genome exhibits a particularly striking bias towards enrichment 98 99 of A-rich codons, which may be a selectable trait (36) and affect innate immune 100 recognition (11, 29). Similarly, synonymous codon usage can temporally regulate 101 expressions of structural gene products of the simian immunodeficiency virus (SIV) 102 (31) and regulate HIV-1 splicing and replication (12).

Here we aimed to explore whether synonymous sequence space influences the development of protease inhibitor (PI) resistance, and to thus determine whether HIV-1 evolvability is influenced by the natural position of a protease in sequence space. To this end, we compared the development of HIV-1 resistance to the protease inhibitors atazanavir (ATV) and darunavir (DRV) between wild-type HIV-1 (WT) and synthetic HIV-1 carrying a synonymously recoded protease sequence (MAX).

109

110

111

RESULTS

113	WT HIV-1 was compared with the MAX variant that carried a protease gene including
114	38 synonymous mutations (13% of the protease sequence) (Fig. 1). These 38
115	synonymous substitutions were scattered throughout the protease coding region,
116	excluding the first 40 amino-terminal nucleotides that overlap with the carboxy-terminal
117	of the gag p6 reading frame. These 38 substitutions were chosen in order to improve
118	protease gene codon pair bias (6) without modifying its codon bias or folding free
119	energy (10). The WT and MAX viruses have identical consensus amino acid sequences,
120	and, as we have previously demonstrated (10), this MAX variant and the WT virus
121	show indistinguishable replication in MT-4 cells (Fig. 2) or PBMCs (10).
122	We subjected the WT and MAX viruses to selective pressure from two PIs: ATV
123	and DRV. The viruses were propagated in duplicate in MT-4 cells over 32 serial
124	passages (128 days of culture) without drugs or with increasing concentrations of ATV
125	or DRV. The starting PI concentrations were near the half maximal inhibitory
126	concentration (IC ₅₀) for the WT HXB2 virus (10). Before the passages, both viruses
127	showed similar IC ₅₀ values for ATV and DRV (Table 1) (10). The WTp32 and
128	MAXp32 viruses still showed comparable IC_{50} values after 32 serial passages in the
129	presence or absence of PIs (Table 1). WTp32 and MAXp32, respectively, showed 5-
130	fold and 13-fold increases in IC_{50} for ATV, and 6-fold and 10-fold increases in IC_{50} for
131	DRV (Table 1). Although MAXp32 displayed a higher resistance to ATV and DRV
132	than WTp32 (Table1), these differences were not significant ($P = 0.4816$ and $P =$
133	0.3451, respectively). These assays demonstrated that the MAX variant virus did not
134	show impaired capacity to develop phenotypic resistance to PIs.
135	After the 32 cell passages in the presence of ATV or DRV, virus RNA was
136	recovered. This RNA was RT-PCR amplified and ultra-deep sequenced, and we

137	compared the frequencies of resistant mutations. For each of the two studied viruses and
138	the two tested drugs, we sequenced between 1.9×10^7 and 4.1×10^7 individual protease
139	nucleotides (Table 2). Sequence clonal analysis revealed no resistance-associated
140	substitutions in viruses propagated without drugs (Table 3). On the other hand, both WT
141	and MAX viruses propagated in the presence of PIs developed previously described
142	resistance mutations to ATV and DRV (Table 3). Moreover, the resistance variant
143	repertoire differed between the MAX and WT viruses (Table 3). Specifically, the G16E
144	substitution was observed only in the WT protease virus propagated with ATV or DRV.
145	Notably, the WT protease required only a transition to develop this substitution,
146	whereas the MAX protease would need two substitutions, a transition, and a
147	transversion. Additionally, the L33F, G48L, Q58E/K, and I89L substitutions were
148	detected only in the recoded MAX protease. Other accompanying substitutions were
149	also detected only in the MAX virus (e.g., E21K, H69Y, and T91S), mainly in the MAX
150	virus (e.g., L10F), or only in the WT virus (e.g., L23I, P39Q, and V77I). Interestingly,
151	some resistance mutations selected by the MAX protease virus (i.e., G48L and I89L),
152	are extremely rare non-polymorphic substitutions in vivo (37). This finding indicates
153	that the MAX protease may explore a different sequence space than that of the WT
154	protease. Similar to G16E, the I89L mutation requires two substitutions in the WT
155	background and only one substitution in the MAX background. However, there were no
156	obvious reasons for the preferential emergence of K45I, G48L, Q58E and I84V in the
157	MAX background. Substitutions L10F, G16E, L33F, Q58E/K, V77I, I84V, and I89L
158	have been previously associated with PIs resistance (38). In contrast, E21K, L23I,
159	P39Q, G48L, H69Y, and T91S have not been described as associated to PIs resistance.
160	To explore the favored emergence in the presence of ATV of G48L, Q58E, I84V
161	and I89L in the MAX background and to determine the effect of these substitutions in

162	the WT background, we used site-directed mutagenesis to introduce this these mutations
163	in both the WT and MAX protease backgrounds. The substitution S37P, preferentially
164	selected in the MAX background when the virus was propagated in the absence of drug
165	(Table 2), was also included in this analysis. We found that the five generated mutants
166	displayed comparable IC_{50} values to ATV in both backgrounds, WT and MAX (Table
167	3). We also determined the replication capacity of these $\frac{1}{1000}$ ten mutant viruses in MT-4
168	cells with and without ATV (Fig. 2). Similar to the IC50 results, the five tested variants
169	exhibited similar replication capacities in both backgrounds, WT and MAX, in either
170	absence or presence of 20nM ATV (Fig. 2). Only WTG48L and MAXG48L showed a
171	lower replication capacity in the absence of drug. Likewise, only substitutions at
172	positions G48L and Q58E conferred an advantage when viruses were propagated in the
173	presence of 20nM ATV. These results demonstrated that the G48L, Q58E, I84V and
174	I89L substitutions were not intrinsically prohibited in the WT protease background, and
175	that other factors must explain their low in vivo frequency.
176	The amino acid mutant repertoire also differed between the WT and MAX
177	viruses when they were propagated without drugs (Table 2). Only one variant, D30N,
178	was detected in both virus populations. We do not know whether the observed variants
179	are adaptive or neutral mutations. Regardless, completely different mutant spectra were
180	detected in these two viruses.
181	We performed a maximum likelihood phylogenetic reconstruction of all WT and
182	MAX unique amino acid variants that were recovered after 32 MT-4 cell passages in the
183	presence of ATV or DRV. Remarkably, the results showed that the two viruses, which
184	shared an identical starting amino acid sequence, followed different evolutionary
185	trajectories (Fig. 3). Upon visual inspection of these phylogenetic trees, it was also

apparent that the MAX protease generated higher amino acid variant diversity (seebelow).

188	We next compared the overall population nucleotide diversity of the WT and
189	MAX proteases after 32 passages in the absence or presence of ATV or DRV (Table 4).
190	Overall, nucleotide sequence diversity was significantly higher in MAX populations
191	propagated with ATV, 0.00946 \pm 0.00005 vs. 0.00517 \pm 0.00004 (<i>P</i> < 0.0001), but not
192	meaningful differences were observed in the presence of DRV, 0.00490 ± 0.00004 vs.
193	0.00482 ± 0.00003 . As expected, in the presence of a PI, we detected a higher number
194	of nonsynonymous substitutions than synonymous substitutions in both the WT and
195	MAX virus proteases. However, the MAX populations always displayed a significantly
196	higher diversity ($P < 0.0001$) of either synonymous or nonsynonymous mutations
197	(Table 4). Diversity was also strikingly higher in MAX populations when viruses were
198	propagated in the absence of drug (0.00095 \pm 0.00001 vs. 0.00057 \pm 0.00001, $P <$
199	0.0001) (Table 4). Interestingly, in the absence of drugs, the MAX population showed
200	significantly higher nonsynonymous diversity (0.00117 \pm 0.00001 vs. 0.00061 \pm
201	0.00001, $P < 0.0001$) but not synonymous diversity (0.000310 ± 0.00002 vs. 0.00053 ±
202	0.00002, $P < 0.0001$). This suggested that the WT and MAX viruses are subjected to
203	different selective forces in the absence of pressure from a PI. Compared to WT, the
204	MAX populations also showed higher Shannon's entropy values, another parameter for
205	measuring genetic population diversity (Table 4). Notably, after 32 passages in cell
206	culture, we observed no significant reversions of the starting synonymous substitutions
207	introduced in the MAX protease, either in the presence or absence of PIs. Overall, our
208	results demonstrated that MAX viruses displayed higher population genetic diversity
209	after 32 passages in cell culture in the presence or absence of PIs.

210

211 **DISCUSSION**

212 Previous research shows that codon usage can determine the mutational robustness, 213 evolutionary capacity, and virulence of poliovirus (32). Earlier results indicate that 214 polioviruses with synonymously mutated capsids were less mutationally robust and 215 displayed an attenuated phenotype in an animal model. However, that study did not focus on how synonymous mutations might affect the development of escape mutations 216 217 to overcome specific selection pressure targeting a precise virus gene. Here we tested the extent to which a synonymously recoded HIV-1 protease reacted to the specific 218 219 selective pressure of a PI. Our present study also explored the evolvability of a 220 retrovirus which, in contrast to other RNA viruses, integrates into the host cell genome 221 such that viral proteins are translated from mRNAs using host cellular machinery. 222 We found that the WT and MAX protease viruses displayed different patterns of 223 resistance mutations after PI treatment. These findings extend those of Lauring et al. 224 (32), confirming that synonymously recoded and WT HIV-1 proteases occupy different 225 sequence spaces. We further demonstrated that although the MAX and WT proteases 226 occupied different sequence spaces, they still showed similar development of 227 phenotypic resistance to PIs. These findings indicate that the recoded protease did not 228 attenuate the virus' capability to develop PI resistance, strongly suggesting that the 229 MAX protease was as robust as the WT protease with regards to this trait. To our 230 knowledge, this is the first study to investigate the evolvability of a synonymously 231 recoded virus enzyme. Even if the resistance selection was conducted in MT4 cells and the result probably would be qualitatively different in primary cells, our results build on 232 233 and augment the convincing evidence that recoded proteins occupy a different sequence 234 space.

235	In some instances, the different mutant repertoire within the MAX protease
236	background can be easily explained by proximity within the corresponding sequence
237	space (e.g., G16E and L89I). However, with regards to other mutations, the explanation
238	for the difference is not readily apparent (e.g., S37P, G48L, Q58E and I84V). In
239	particular, the G48L substitution is very rarely selected in vivo in patients undergoing PI
240	therapy (37). However, when the above substitutions (S37P, G48L, Q58E, I84V or
241	L89I) were introduced in the WT sequence they showed parallel replication capacities
242	to those observed with a MAX background. We can speculate that the introduced
243	synonymous substitutions affected neighboring residues (e.g., RNA structure).
244	However, it must be noted that the MAX and WT proteases have similar RNA folding
245	free energy (10).
246	One plausible explanation is based on epistatic interactions between protease
247	amino acid substitutions. Epistasis is a phenomenon by which a mutation's impact on
248	protein stability or fitness depends on the genetic background in which it is acquired
249	(39). Complex mutational patterns often arise during the development of resistance to
250	HIV-1 protease inhibitors. More therapy-associated mutations accumulate under PI
251	therapy than under all other types of antiretroviral therapy. Moreover, among patients
252	experiencing therapy failure, the majority of in vivo drug-experienced protease
253	sequences include over four mutations associated with PI therapy (40). Recent findings
254	suggest that the consequences of acquiring primary HIV-1 protease resistance mutations
255	depend on epistatic interactions with the sequence background (41). In our study, over
256	80% of the MAX protease clones harboring the G48L mutation also had the I89L
257	substitution. As mentioned above, I89L requires two nucleotide substitutions in the WT
258	background and only one in the MAX background. In either case, our results strongly
259	suggest that the MAX protease's sequence position affects its genotypic PI resistance

profile. Synonymous codons differ in their propensity to mutate and, as previously
suggested (25, 32, 42), this differential access to protein sequence space may affect
adaptive pathways.

Another intriguing finding of our study is that the MAX virus showed higher 263 264 population diversity in the recoded and targeted gene following propagation in both the 265 absence and presence of PIs. Again, we can speculate that although the MAX virus 266 shows high fitness in tissue culture, it is subjected to greater pressure to changing or 267 reverting to a WT synonymous background. However, remarkably, we detected almost 268 no reversions of the synonymous substitutions introduced in the MAX protease 269 following propagation in the presence or absence of PIs. One limitation of our study is 270 that we investigated only one virus enzyme or protein. Further studies should include other virus proteins and other selective pressures (e.g., neutralizing antibodies and 271 272 cellular virus restriction factors).

273 It has been suggested that RNA virus synonymous recoding can be used to push 274 a virus to a sequence space region having a low density of neutral mutations (32). Such 275 a lack of access to neutral substitutions could potentially reduce the virus' capacity to 276 generate fit progeny and adaptability to the host's selective pressures, such that this 277 method might serve as a new strategy for development of attenuated vaccines. Our 278 present data suggest that this approach must be developed cautiously, and support a 279 need to evaluate the long-term stability of synonymously recoded viruses and to 280 carefully test individual candidates.

281

282 MATERIALS AND METHODS

Cell line and viruses. MT-4 cells were obtained from the National Institutes of Health
(NIH) AIDS Research and Reference Reagent Program, and were grown in Roswell

285	Park Memorial Institute (RPMI) 1640 L-glutamine medium supplemented with 10%
286	heat-inactivated fetal bovine serum (FBS) (Gibco). The utilized WT virus corresponded
287	to the HIV-1 HXB2 strain (http://www.hiv.lanl.gov) (Genbank accession number:
288	K03455). The synthetic MAX HIV-1 protease was generated by PCR amplification
289	with a combination of three overlapping synthetic DNA oligonucleotides, as previously
290	described (10). In MT-4 cells, the MAX protease PCR product was recombined with a
291	protease-deleted HXB2 infectious clone that had been previously linearized with BstE II
292	(43). The protease PCR oligonucleotides used to reconstruct the full-length protease
293	have been previously described (43). WT and MAX S37P, G48L, Q58E, I84V and I89L
294	mutants were generated by site-directed mutagenesis using overlap extension PCR with
295	mutated oligonucleotides as previously described (44). Again, the mutant protease PCR
296	products were recombined with the protease-deleted HXB2 infectious clone in MT-4
297	cells. Cell culture supernatants were harvested at 3, 5, and 7 days post-transfection when
298	the HIV-1 p24 antigen concentration surpassed 500 ng/ml as measured by the
299	Genscreen HIV-1 Ag assay (Bio-Rad). Virus titration was performed in MT-4 cells, and
300	values were expressed as tissue culture dose for 50% infectivity (TCID ₅₀) as previously
301	described (45).
	

Replication capacity assays. Viral replication kinetics were analyzed by infecting 1×10^{6} MT-4 cells with 200 TCID₅₀ (MOI of 0.0002). The infected cells were incubated for 4 h at 37°C and 5% CO₂, washed twice with phosphate-buffered saline (PBS), and then resuspended in RPMI medium supplemented with 10% FBS. To quantify viral replication, we measured the HIV-1 capsid p24 antigen concentration in 200-µl aliquots of supernatant collected every 24 h for 4–6 days. Growth kinetics were analyzed by fitting a linear model to the log-transformed p24 data during the

exponential growth phase using maximum likelihood methods as previously described(10).

HIV-1 drug susceptibility tests. ATV and DRV were obtained from the NIH
AIDS Research and Reference Reagent Program. Following virus propagation and
titration, we used a tetrazolium-based colorimetric method to determine the HIV-1 drug
susceptibility (IC₅₀) to ATV and DRV in MT-4 cells using a MOI of 0.003, as
previously described (10, 46).

Selection of ATV- and DRV-resistant viruses. WT and MAX viruses were 316 added at an MOI of 0.01 to 1×10^{6} MT-4 cells, and the cells were maintained as 317 318 described above. After 4 days, we transferred one-tenth of the culture, including cells and supernatant, into 1×10^6 fresh MT-4 cells. All virus passages were performed in 319 320 duplicate. Virus production was monitored by measurements of p24 antigen. The 321 starting concentrations were 4 nM ATV and 3 nM DRV. Through the passages, the drug concentration was increased until reaching 40 nM ATV and 25 nM DRV. In parallel, 322 323 both viruses were also propagated without either drug. 324 At passages 1 and 32, 140-µl aliquots of culture supernatant were collected, from 325 which we isolated WT and MAX viral genomic RNA using the QIAamp Viral RNA Kit 326 (QIAGEN). This purified viral RNA was then reverse transcribed and PCR amplified using the SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen) and 10 327 328 pmol of the corresponding protease oligonucleotides, which are described elsewhere 329 (43). Details of this protocol were previously reported (47, 48). These PCR products were the starting material for performing ultra-deep sequencing. 330

Ultra-deep sequencing. Massive parallel sequencing was performed in the
MiSeq (Illumina) platform. Libraries of 558-nt DNA fragments were ligated to the
Illumina adapters using the KAPA HyperPrep Kit (Roche #07962347001), SeqCap

334	Adapter Kit A (Roche #07141530001), and SeqCap Adapter Kit B (Roche
335	#07141548001). The products were purified using KAPA Pure Beads (Roche
336	#07983280001). All libraries were quantified using the Qubit® dsDNA HS Assay Kit
337	(ThermoFisher #Q32854) and a Qubit Fluorometer (ThermoFisher #Q33216), and were
338	qualified using the Agilent DNA 1000 Kit (Agilent #5067-1504) and a bioanalyzer
339	(Agilent #G2939BA). Sequencing was performed using the Illumina MiSeq® Reagent
340	Kit v3 (600 cycle) (Illumina #MS-102-3003) following manufacturer's protocol.
341	Sequencing and paired-end analysis were performed to obtain robust fastq data for
342	bioinformatics analysis. We obtained a mean of 50,000 sequences (reads) per amplicon
343	and per patient sample.
344	Fastq files by index and pool were obtained from MiSeq and submitted to
345	FLASH (49). The 2 \times 300 paired-end reads were overlapped to reconstruct the
346	amplicons, with the minimum number of overlapping nucleotides set to 20, and the
347	maximum number of overlapping mismatches set to 10%. The subsequent analysis was
348	performed as previously described (50). Briefly, fastq files were demultiplexed using
349	amplicon oligonucleotides, and oligonucleotides were trimmed at both ends. Each
350	amplicon and strand read was pairwise aligned with respect to the reference WT
351	sequence, insertions were removed, and deletions were repaired if fewer than three gaps
352	were produced. Reads with multiple indeterminations were removed, while reads
353	having a single indetermination were repaired as per the reference sequence. Filtered
354	and repaired reads were collapsed into haplotypes with corresponding frequencies.
355	Haplotypes with abundances below 0.1% or that were unique to the forward or reverse
356	strands were removed. Haplotypes common to the forward and reverse strands and with
357	abundances of $\geq 0.1\%$, were considered consensus haplotypes, and their frequencies
358	were summed. In the final step to remove artifacts, consensus haplotypes with

359	abundances below 0.5% were filtered out. All computations were performed in the R
360	language and platform, using in-house developed scripts as well as the packages
361	Biostrings (R package 2.24.1, 2012), Ape (51), and Seqinr (52).
362	Virus population genetic diversity (p-distance) was determined using the
363	MEGA6 software package (53). To determine possible selective pressures, the MEGA6
364	software package was used to calculate the proportion of synonymous substitutions per
365	potential synonymous sites, and the proportion of nonsynonymous substitutions per
366	potential nonsynonymous sites. Shannon's entropy values were calculated as $Sn = -\Sigma_i$
367	$(p_i ln p_i)/ln N$, where N is the total number of analyzed sequences and p_i is the frequency
368	of each sequence in the viral quasispecies. Sn values vary from 0 (no complexity) to 1
369	(maximum complexity) (54). The phylogenetic reconstructions were also performed
370	using the MEGA6 software package.
371	
372	Statistical analysis.
373	Virus population diversity was compared by unpaired t-test using GraphPad
374	Prism version 7 for Windows. The significance of the difference between replication
375	kinetic slopes and $IC_{50}s$ was calculated using an unpaired t-test with Whech's correction
376	as implemented in GraphPad Prism.
377	
378	ACKNOWLEDGEMENTS
379	This study was supported by the Spanish Ministry of Economy and Competitiveness
380	(SAF2016-75277-R) by Instituto de Salud Carlos III (PI16/00337), and cofinanced by
381	the European Regional Development Fund (ERDF). MN was supported by the Instituto

de Salud Carlos III through the Spanish AIDS network (RD16/0025/0041). AJ-P was

supported by a contract of the Spanish Ministry of Economy and Competitiveness

384 (BES-2014-069931).

386	REFERENCES	
387	1.	Hunt RC, Simhadri VL, Iandoli M, Sauna ZE, Kimchi-Sarfaty C. 2014.
388		Exposing synonymous mutations. Trends in genetics : TIG 30: 308-321.
389	2.	Plotkin JB, Kudla G. 2011. Synonymous but not the same: the causes and
390		consequences of codon bias. Nature reviews. Genetics 12:32-42.
391	3.	Martinez MA, Jordan-Paiz A, Franco S, Nevot M. 2016. Synonymous Virus
392		Genome Recoding as a Tool to Impact Viral Fitness. Trends in microbiology
393		24: 134-147.
394	4.	Burns CC, Campagnoli R, Shaw J, Vincent A, Jorba J, Kew O. 2009.
395		Genetic inactivation of poliovirus infectivity by increasing the frequencies of
396		CpG and UpA dinucleotides within and across synonymous capsid region
397		codons. Journal of virology 83:9957-9969.
398	5.	Burns CC, Shaw J, Campagnoli R, Jorba J, Vincent A, Quay J, Kew O.
399		2006. Modulation of poliovirus replicative fitness in HeLa cells by
400		deoptimization of synonymous codon usage in the capsid region. Journal of
401		virology 80: 3259-3272.
402	6.	Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S.
403		2008. Virus attenuation by genome-scale changes in codon pair bias. Science
404		320: 1784-1787.
405	7.	Mueller S, Papamichail D, Coleman JR, Skiena S, Wimmer E. 2006.
406		Reduction of the rate of poliovirus protein synthesis through large-scale codon

407		deoptimization causes attenuation of viral virulence by lowering specific
408		infectivity. Journal of virology 80:9687-9696.
409	8.	Mueller S, Coleman JR, Papamichail D, Ward CB, Nimnual A, Futcher B,
410		Skiena S, Wimmer E. 2010. Live attenuated influenza virus vaccines by
411		computer-aided rational design. Nat Biotechnol 28:723-726.
412	9.	Yang C, Skiena S, Futcher B, Mueller S, Wimmer E. 2013. Deliberate
413		reduction of hemagglutinin and neuraminidase expression of influenza virus
414		leads to an ultraprotective live vaccine in mice. Proceedings of the National
415		Academy of Sciences of the United States of America 110:9481-9486.
416	10.	Martrus G, Nevot M, Andres C, Clotet B, Martinez MA. 2013. Changes in
417		codon-pair bias of human immunodeficiency virus type 1 have profound effects
418		on virus replication in cell culture. Retrovirology 10:78.
419	11.	Takata MA, Goncalves-Carneiro D, Zang TM, Soll SJ, York A, Blanco-
420		Melo D, Bieniasz PD. 2017. CG dinucleotide suppression enables antiviral
421		defence targeting non-self RNA. Nature 550: 124-127.
422	12.	Takata MA, Soll SJ, Emery A, Blanco-Melo D, Swanstrom R, Bieniasz PD.
423		2018. Global synonymous mutagenesis identifies cis-acting RNA elements that
424		regulate HIV-1 splicing and replication. PLoS pathogens 14:e1006824.
425	13.	Vabret N, Bailly-Bechet M, Lepelley A, Najburg V, Schwartz O, Verrier B,
426		Tangy F. 2014. Large-scale nucleotide optimization of simian
427		immunodeficiency virus reduces its capacity to stimulate type I interferon in
428		vitro. Journal of virology 88:4161-4172.
429	14.	Nougairede A, De Fabritus L, Aubry F, Gould EA, Holmes EC, de
430		Lamballerie X. 2013. Random codon re-encoding induces stable reduction of

431		replicative fitness of Chikungunya virus in primate and mosquito cells. PLoS
432		pathogens 9: e1003172.
433	15.	Le Nouen C, Brock LG, Luongo C, McCarty T, Yang L, Mehedi M,
434		Wimmer E, Mueller S, Collins PL, Buchholz UJ, DiNapoli JM. 2014.
435		Attenuation of human respiratory syncytial virus by genome-scale codon-pair
436		deoptimization. Proceedings of the National Academy of Sciences of the United
437		States of America 111: 13169-13174.
438	16.	Le Nouen C, McCarty T, Brown M, Smith ML, Lleras R, Dolan MA,
439		Mehedi M, Yang L, Luongo C, Liang B, Munir S, DiNapoli JM, Mueller S,
440		Wimmer E, Collins PL, Buchholz UJ. 2017. Genetic stability of genome-scale
441		deoptimized RNA virus vaccine candidates under selective pressure.
442		Proceedings of the National Academy of Sciences of the United States of
443		America 114: E386-E395.
444	17.	Meng J, Lee S, Hotard AL, Moore ML. 2014. Refining the balance of
445		attenuation and immunogenicity of respiratory syncytial virus by targeted codon
446		deoptimization of virulence genes. mBio 5:e01704-01714.
447	18.	Ni YY, Zhao Z, Opriessnig T, Subramaniam S, Zhou L, Cao D, Cao Q,
448		Yang H, Meng XJ. 2014. Computer-aided codon-pairs deoptimization of the
449		major envelope GP5 gene attenuates porcine reproductive and respiratory
450		syndrome virus. Virology 450-451:132-139.
451	19.	Atkinson NJ, Witteveldt J, Evans DJ, Simmonds P. 2014. The influence of
452		CpG and UpA dinucleotide frequencies on RNA virus replication and
453		characterization of the innate cellular pathways underlying virus attenuation and
454		enhanced replication. Nucleic acids research 42:4527-4545.

- 455 20. Tulloch F, Atkinson NJ, Evans DJ, Ryan MD, Simmonds P. 2014. RNA
- 456 virus attenuation by codon pair deoptimisation is an artefact of increases in
- 457 CpG/UpA dinucleotide frequencies. eLife **3:**e04531.
- 458 21. de Fabritus L, Nougairede A, Aubry F, Gould EA, de Lamballerie X. 2015.
- 459 Attenuation of tick-borne encephalitis virus using large-scale random codon re-
- 460 encoding. PLoS pathogens **11**:e1004738.
- 461 22. Shen SH, Stauft CB, Gorbatsevych O, Song Y, Ward CB, Yurovsky A,
- 462 **Mueller S, Futcher B, Wimmer E.** 2015. Large-scale recoding of an arbovirus
- 463 genome to rebalance its insect versus mammalian preference. Proceedings of the
- 464 National Academy of Sciences of the United States of America **112**:4749-4754.
- 465 23. Sitaraman V, Hearing P, Ward CB, Gnatenko DV, Wimmer E, Mueller S,
- 466 Skiena S, Bahou WF. 2011. Computationally designed adeno-associated virus
- 467 (AAV) Rep 78 is efficiently maintained within an adenovirus vector.
- 468 Proceedings of the National Academy of Sciences of the United States of
- 469 America **108**:14294-14299.
- 470 24. Cladel NM, Budgeon LR, Hu J, Balogh KK, Christensen ND. 2013.
- 471 Synonymous codon changes in the oncogenes of the cottontail rabbit
- 472 papillomavirus lead to increased oncogenicity and immunogenicity of the virus.
- 473 Virology **438:**70-83.
- 474 25. Dolan PT, Whitfield ZJ, Andino R. 2018. Mapping the Evolutionary Potential
 475 of RNA Viruses. Cell host & microbe 23:435-446.
- 476 26. Andino R, Domingo E. 2015. Viral quasispecies. Virology 479-480:46-51.
- 477 27. Mas A, Lopez-Galindez C, Cacho I, Gomez J, Martinez MA. 2010.
- 478 Unfinished stories on viral quasispecies and Darwinian views of evolution. J
- 479 Mol Biol **397:**865-877.

480	28.	Song Y, Liu Y, Ward CB, Mueller S, Futcher B, Skiena S, Paul AV,
481		Wimmer E. 2012. Identification of two functionally redundant RNA elements
482		in the coding sequence of poliovirus using computer-generated design.
483		Proceedings of the National Academy of Sciences of the United States of
484		America 109: 14301-14307.
485	29.	Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M, Jones TE,
486		Landry S, Pan T, Weitzman MD, David M. 2012. Codon-usage-based
487		inhibition of HIV protein synthesis by human schlafen 11. Nature 491: 125-128.
488	30.	Vabret N, Bhardwaj N, Greenbaum BD. 2017. Sequence-Specific Sensing of
489		Nucleic Acids. Trends in immunology 38: 53-65.
490	31.	Shin YC, Bischof GF, Lauer WA, Desrosiers RC. 2015. Importance of codon
491		usage for the temporal regulation of viral gene expression. Proceedings of the
492		National Academy of Sciences of the United States of America 112:14030-
493		14035.
494	32.	Lauring AS, Acevedo A, Cooper SB, Andino R. 2012. Codon usage
495		determines the mutational robustness, evolutionary capacity, and virulence of an
496		RNA virus. Cell host & microbe 12:623-632.
497	33.	Lauring AS, Frydman J, Andino R. 2013. The role of mutational robustness in
498		RNA virus evolution. Nat Rev Microbiol 11:327-336.
499	34.	Eigen M. 1971. Selforganization of matter and the evolution of biological
500		macromolecules. Naturwissenschaften 58:465-523.
501	35.	Domingo E, Sabo D, Taniguchi T, Weissmann C. 1978. Nucleotide sequence
502		heterogeneity of an RNA phage population. Cell 13:735-744.
503	36.	van der Kuyl AC, Berkhout B. 2012. The biased nucleotide composition of the
504		HIV genome: a constant factor in a highly variable virus. Retrovirology 9:92.

505	37.	Gifford RJ.	Liu TF	. Rhee SY	. Kiuchi M	Hue S	. Pillav D	. Shafer	RW.	2009.

- 506 The calibrated population resistance tool: standardized genotypic estimation of
- 507 transmitted HIV-1 drug resistance. Bioinformatics **25**:1197-1198.
- 508 38. Wensing AM, Calvez V, Gunthard HF, Johnson VA, Paredes R, Pillay D,
- 509 Shafer RW, Richman DD. 2017. 2017 Update of the Drug Resistance
- 510 Mutations in HIV-1. Topics in antiviral medicine **24:**132-133.
- 511 39. Parera M, Martinez MA. 2014. Strong epistatic interactions within a single

512 protein. Molecular biology and evolution **31:**1546-1553.

- 513 40. Shafer RW, Schapiro JM. 2008. HIV-1 drug resistance mutations: an updated
- 514 framework for the second decade of HAART. AIDS reviews **10**:67-84.
- 515 41. Flynn WF, Haldane A, Torbett BE, Levy RM. 2017. Inference of Epistatic
- 516 Effects Leading to Entrenchment and Drug Resistance in HIV-1 Protease.
- 517 Molecular biology and evolution **34**:1291-1306.
- 518 42. Cambray G, Mazel D. 2008. Synonymous genes explore different evolutionary
 519 landscapes. PLoS Genet 4:e1000256.
- 43. Maschera B, Furfine E, Blair ED. 1995. Analysis of resistance to human
- 521 immunodeficiency virus type 1 protease inhibitors by using matched bacterial
- 522 expression and proviral infection vectors. Journal of virology **69:**5431-5436.
- 44. Parera M, Clotet B, Martinez MA. 2004. Genetic screen for monitoring severe
 acute respiratory syndrome coronavirus 3C-like protease. Journal of virology
 78:14057-14061.
- 526 45. Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P,
- 527 **Desmyter J, De Clercq E.** 1988. Rapid and automated tetrazolium-based
- 528 colorimetric assay for the detection of anti-HIV compounds. Journal of
- 529 virological methods **20**:309-321.

530	46.	Betancor G, Alvarez M, Marcelli B, Andres C, Martinez MA, Menendez-
531		Arias L. 2015. Effects of HIV-1 reverse transcriptase connection subdomain
532		mutations on polypurine tract removal and initiation of (+)-strand DNA
533		synthesis. Nucleic acids research 43:2259-2270.
534	47.	Capel E, Martrus G, Parera M, Clotet B, Martinez MA. 2012. Evolution of
535		the human immunodeficiency virus type 1 protease: effects on viral replication
536		capacity and protease robustness. J Gen Virol 93:2625-2634.
537	48.	Fernandez G, Clotet B, Martinez MA. 2007. Fitness landscape of human
538		immunodeficiency virus type 1 protease quasispecies. Journal of virology

- 539 **81:**2485-2496.
- 49. Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to
 improve genome assemblies. Bioinformatics 27:2957-2963.
- 542 50. Gregori J, Esteban JI, Cubero M, Garcia-Cehic D, Perales C, Casillas R,

543 Alvarez-Tejado M, Rodriguez-Frias F, Guardia J, Domingo E, Quer J.

- 5442013. Ultra-deep pyrosequencing (UDPS) data treatment to study amplicon
- 545 HCV minor variants. PloS one 8:e83361.
- 546 51. Paradis E, Claude J, Strimmer K. 2004. APE: Analyses of Phylogenetics and
 547 Evolution in R language. Bioinformatics 20:289-290.
- 548 52. Charif D, Thioulouse J, Lobry JR, Perriere G. 2005. Online synonymous
- 549 codon usage analyses with the ade4 and seqinR packages. Bioinformatics
- **21:**545-547.
- 551 53. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6:
- 552 Molecular Evolutionary Genetics Analysis version 6.0. Molecular biology and 553 evolution **30**:2725-2729.

554 54. Wolinsky SM, Kunstman KJ, Safrit JT, Koup RA, Neumann AU, Korber

- 555 **BT.** 1996. Response: HIV-1 Evolution and Disease Progression. Science
- **274:**1010-1011.

558 Figure legends

FIG 1 HIV-1 protease nucleotide sequences of the wild-type (WT) virus that
corresponds to the HIV-1 HXB2 strain (<u>http://www.hiv.lanl.gov</u>), and of the synthetic
MAX variant that was generated by PCR combining three overlapping synthetic DNA
oligonucleotides as previously described (10). No substitution was introduced in the
first 40 protease amino-terminal nucleotides that overlap with the carboxy-terminal of
the gag p6 reading frame.

565

566	FIG 2 Replication kinetic assay of wild-type HIV-1 (WTp1) and the recoded MAX
567	protease variant (MAXp1) in MT-4 cells. HIV-1 antigen p24 concentrations in culture
568	supernatants were measured on days 0-4 in the absence of drug or days 0-6 in the
569	presence of drug. For each virus, the slope of the plot provides an estimate of the viral
570	replication capacity. Bars show the slope of the p24 antigen production from each virus
571	after infection of MT-4 cells. Comparison between WTp1 (HXB2) and the mutant
572	MAX recoded viruses are shown, as well as between the corresponding WT and MAX
573	virus variants (i.e., S37P, G48L, Q58E, I84V and I89L). The significance of the
574	difference between slopes was calculated using an unpaired t-test with Whech's
575	correction in GraphPrism v. 7 software. (A) Kinetic assays performed in the absence of
576	drug. All slopes values were statistically tested against the WT value. Only WTG48L
577	and MAXG48L displayed a lower replication capacity than the WT. (B) Kinetic assays
578	performed in the presence of 20nM atazanavir (ATV). All slopes values were
579	statistically tested against the WT value. WTG48L, MAXG48L and WTQ58E displayed
580	a higher replication capacity than the WT in the presence of ATV. Values represent the
581	mean \pm standard deviation (SD) from at least three independent experiments.

582

583	FIG 3 Maximum	likelihood phylogram	of wild-type (WT) and MAX unique HIV-1
-----	---------------	----------------------	------------------	------------------------

- protease amino acid variants selected after 32 passages in MT-4 cells and in the
- 585 presence of (A) atazanavir (ATV) or (B) darunavir (DRV). Phylogenetic reconstruction
- 586 was generated using a Jones-Taylor Thornton (JTT) model as implemented in the
- 587 MEGA6 software package. Both phylogenetic trees showed that the WT and MAX
- viruses, which shared an identical starting amino acid sequence, followed different
- evolutionary trajectories. Blue and red labels correspond to WT and MAX variants,
- respectively. Green labels represent the starting HXB2 protease amino acid sequence.
- 591

593 **TABLE 1** Susceptibility of HIV-1 carrying WT or MAX proteases to atazanavir (ATV)

594 or darunavir (DRV)

	IC ₅₀ (nM)				
Protease	ATV	DRV			
WTp1	$3.1 \pm 1.2 (1)^1$	0.9 ± 0.3 (1)			
WTp32	14.6 ± 5.3 (5)	5.7 ± 1.0 (6)			
MAXp1	1.6 ± 0.1 (1)	0.9 ± 0.2 (1)			
MAXp32	21.2 ± 9.0 (13)	9.3 ± 1.9 (10)			

¹Fold change.

596 **TABLE 2** Substitutions associated with protease inhibitor resistance detected after MT-

597 4 cell passages in the presence of atazanavir (ATV), darunavir (DRV), or no drug (ND)

ATV	Experiment 1		Experiment 2		DRV	Expe	Experiment 1		Experiment 2		Experiment 1		
	WTp1	MAXp1	WTp1	MAXp1		WTp1	MAXp1	WTp1	MAXp1		WTp1	MAXp	
L10F ¹	1.0 ²	28.0	0	0	L10F	0	19.2	0	0	D30N	1.4	2.3	
G16E	1.7	0	1.8	0	G16E	16.5	0	55.5	0	S37P	0	11.7	
L23I	0.8	0	0	0	E21K	0	1.4	0	0	P39Q	2.1	0	
V32A	76.3	0	53.3	59.9	A28S	46.1	45.4	6.6	0	P39T	0.8	0	
V32I	10.1	24.0	2.9	23.8	L33F	0	94.2	0	89.2	R41K	0.8	0	
V32T	0.65	0	0	0	P39Q	0.6	0	0.6	0	K43R	0	0.5	
L33F	0	0.8	0	0	K45I	0	0	0	9.8	Q58K	0	1.1	
P39Q	0.9	0	0.9	0	M46I	6.0	3.9	94.0	14.6	I72T	1.8	0	
K45I	0	10.2	6.0	0	150L	49.7	52.3	39.1	100	V82I	1.3	0	
K45R	0	0.8	0	0	Q58K	0	0	0	1.2				
M46I	12.1	0	1.1	10.4	H69Y	0	0.6	0	0				
G48L	0	0	0	22.4	A71V	0	25.2	0	0				
150L	0	28.6	27.3	0	V82I	85.2	0.6	34.8	19.7				
Q58E	0	20.2	0	0	I84V	3.4	0	0	0				
Q58K	0	0	0	0.8									
A71V	88.2	23.2	62.8	71.1									
V77I	0	0	11.4	0									
V82I	0	0	9.8	0									
V82D	0	0	0	1.2									
I84V	0	43.0	0	0									
N88S	14.0	28.2	19.7	3.4									
189L	0	0	0	59.4									
T91S	0	3.6	0	0									

⁵⁹⁸ ¹HIV-1 protease amino acid position.

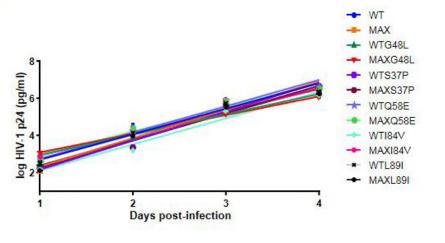
²Percentage of the corresponding substitution.

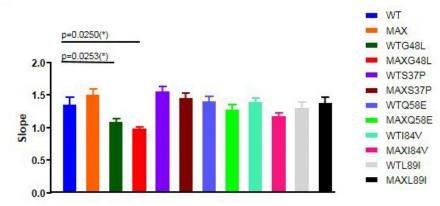
TABLE 3 Susceptibility of HIV-1 carrying WT or MAX protease variants to atazanavir

602 (ATV).

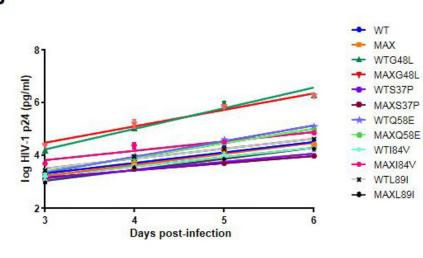
Protease	ATV IC50 (nM)
WT	$1.8 \pm 1.2 (1)^1$
MAX	$1.6 \pm 0.4 \; (0.9)$
WTS37P	2.2 ± 1.0 (1.2)
MAXS37P	2.2 ± 1.4 (1.2)
WTG48L	14.4± 0.5 (8.1)
MAXG48L	14.4± 1.4 (8.1)
WTQ58E	4.6± 2.5 (2.6)
MAXQ58E	5.6± 3.8 (3.2)
WTI84V	$1.3 \pm 0.9 \; (0.7)$
MAXI84V	1.5± 0.8 (0.8)
WTL89I	1.5± 0.5 (0.8)
MAXL89I	2.1±0.6 (1.2)
¹ Fold change.	

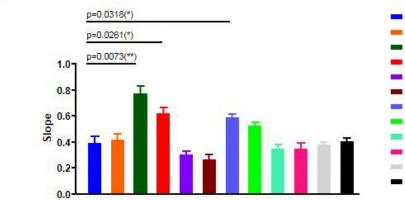
Protease	Bases	Mutations	Sequence	Synonymous	Nonsynonymous	Sn
	sequenced	detected (%)	diversity	diversity	diversity	
			(p-distance)	(p-distance)	(p-distance)	
WTp1	$8.8 imes 10^6$	2691 (0.03)	0.00047 ±	0	0.00062 ±	0.0
			0.00000		0.00001	
MAXp1	$8.5 imes 10^6$	4257 (0.05)	$0.00085 \pm$	0	0.00113 ±	0.0
			0.00004		0.00006	
WTp32	$7.2 imes 10^6$	2465 (0.03)	$0.00057 \pm$	$0.00053 \pm$	$0.00061 \pm$	0.0
			0.00001	0.00002	0.00001	
MAXp32	$5.2 imes 10^6$	2924 (0.06)	$0.00095 \pm$	$0.000310 \pm$	$0.00117 \pm$	0.0
			0.00001	0.00002	0.00001	
WTp32 ATV	$1.9 imes 10^7$	71206 (0.37)	$0.00517 \pm$	$0.00016 \pm$	$0.0067 \pm$	0.2
			0.00004	0.00001	0.00003	
MAXp32 ATV	$2.5 imes 10^7$	180514 (0.73)	$0.00946 \pm$	$0.000356 \pm$	$0.01252 \pm$	0.2
			0.00005	0.00001	0.00005	
WTp32 DRV	$4.1 imes 10^7$	148066 (0.36)	$0.00482 \pm$	$0.00016 \pm$	$0.00624 \pm$	0.1
			0.00003	0.00001	0.00003	
MAXp32 DRV	$1.9 imes 10^7$	95202 (0.73)	$0.00490 \pm$	$0.00026 \pm$	$0.00756 \pm$	0.1
			0.00004	0.00001	0.00004	

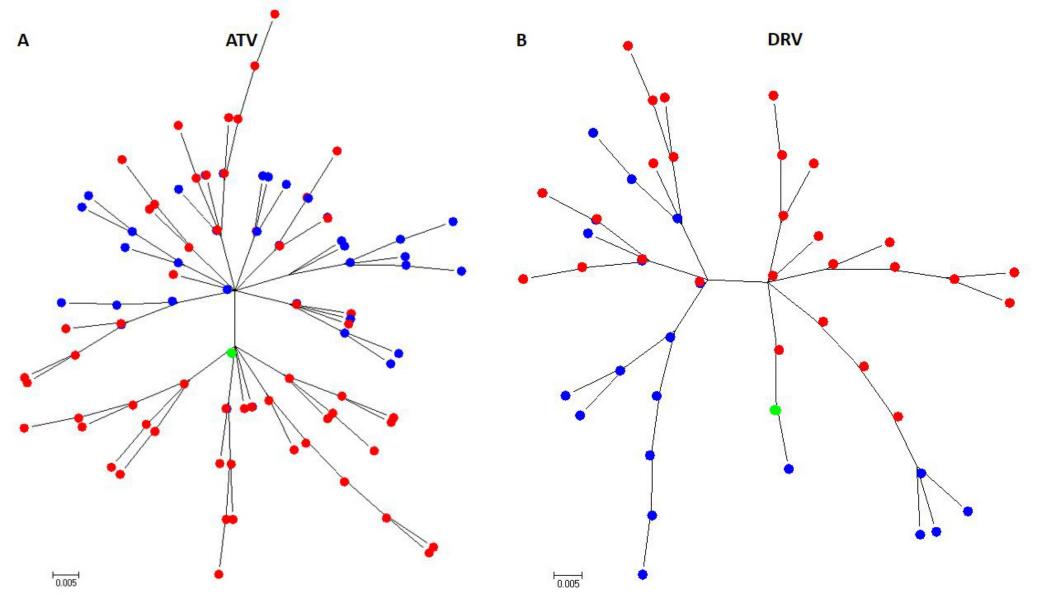

TABLE 4 Summary of population metrics


606 ¹Shannon's entropy.

		*	20	*	40	*		
WTp1	:	CCTCAGATCACTC	TTTGGCAACGA	CCCCTCGTC	ACAATAAAGA	AGGGGG	:	50
MAXp1	:					T	:	50
		60	*	80	*	100		
WTp1	:	GCAACTAAAGGAA	GCTCTATTAGA	TACAGGAGCA	AGATGATACA	TATTAG	:	100
MAXp1	:	TA	T		т	. . T	•	100
		*	120	*	140	*		
WTp1	:	AAGAAATGAGTTT	GCCAGGAAGAT	GGAAACCAA	AATGATAGGO	GGAATT	:	150
MAXp1	:	TCGC.	GCC.C.	G	IBR	c	:	150
		160	*	180	*	200		
WTp1	:	GGAGGTTTTATCA	AAGTAAGACAG	TATGATCAG	ATACTCATAG	AATCTG	:	200
MAXp1	:	<mark>AA</mark> .	A	A	T .A	A	:	200
		*	220	*	240	*		
WTp1	:	TGGACATAAAGCT	ATAGGTACAGT	ATTAGTAGG	ACCTACACCTO	TCAACA	:	250
MAXp1	:	A	T		CGG		:	250
		260	*	280	*			
T.TTT- 1						mmm (10	7


WTp1	:	TAATTGGAAGAAATCTGTTGACTCAGATTGGTTGCACTTTAAATTTT	:	297
MAXp1	:	.CAT.AAAAA	:	297




В

ATV

