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Abstract: Transcription factors are managers of the cellular factory, and key components to many1

diseases. Many non-coding single nucleotide polymorphisms affect transcription factors, either2

by directly altering the protein or its functional activity at individual binding sites. Here we first3

briefly summarize high throughput approaches to studying transcription factor activity. We then4

demonstrate, using published chromatin accessibility data (specifically ATAC-seq), that the genome5

wide profile of TF recognition motifs relative to regions of open chromatin can determine the key6

transcription factor altered by a perturbation. Our method of determining which TF are altered by a7

perturbation is simple, quick to implement and can be used when biological samples are limited. In8

the future, we envision this method could be applied to determining which TFs show altered activity9

in response to a wide variety of drugs and diseases.10

Keywords: transcription factor; perturbation; RNA-seq; DNase I cleavage; ATAC-seq; open11

chromatin; motif; DAStk12

1. Introduction13

Transcription factors (TFs) are the managers of the cellular factory, controlling everything from14

cellular identity to response to external stimuli[1]. Because of their central importance in interpreting15

the genome, millions of people are affected by mutations residing within TFs[2], causing a wide variety16

of symptoms (see Table 1). For example, over half of all cancers have a mutation in the TF TP53[3].17

Table 1. Examples of diseases caused by mutations in a transcription factor.

Mutated TF Disease/Symptoms

RUNX1 Familial platelet disorder with associated myeloid malignancy[4]
GRHL3 Cleft Palate[5]
MITF Deafness[6]; Waardenburg syndrome (hearing loss)[7]

LMX1B Nail-patella syndrome[8] (poorly developed nails and kneecaps)
TFAM Mitochondrial DNA depletion syndrome[9]

NKX2-5 Congenital heart disease[10]
TBX5 Holt-Oram syndrome[11] (impared development of the heart and upper

limbs)
MAF Congenital cataract[12] (severe visual impairment in infants)
TCF4 Pitt-Hopkins syndrome[13] (intellectual disability and developmental

delay, breathing problems, recurrent seizures)

Moreover, most disease-causing mutations are found in regulatory regions[14,15], e.g. enhancers,18

which are dense with TF binding sites[16]. A startling 60-76.5% of disease-associated single nucleotide19
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polymorphisms (SNPs) are in enhancers[17–20], which are short regulatory regions densely bound by20

TFs[21]. In fact, the well known program HaploReg now lists all TFs that bind over each SNP, a useful21

piece of information for understanding the impact of a SNP[22].22

The relationship between many diseases and transcription factors has led to tremendous interest23

in global investigations of transcription factor activity. To decipher transcription factor activity requires24

understanding the two major functions of a transcription factor: binding to DNA and modification25

of transcription. Transcription factors bind to specific DNA sequences, a TF recognition motif. A26

number of techniques have been utilized to identify and characterize these recognition motifs[23].27

However, because most genomic instances of the motif are not actually bound, having the recognition28

motif is insufficient. Protein-DNA interactions can be measured genome wide using chromatin29

immunoprecipitation followed by sequencing (ChIP-seq)[23–25]. Unfortunately, numerous lines of30

evidence indicate that not all binding events influence transcription[26–28]. Conceptually, this is akin31

to saying that just because someone is standing in a lab (TF binding) it does not imply they are actually32

conducting an experiment (altering transcription). Therefore, distinct assays are necessary to identify33

the locations where a TF is bound to DNA and determine whether that DNA binding leads to altered34

transcription nearby. A number of high throughput assays are available to interrogate these two key35

functions.36

Extensive attention has focused on determining where in the genome transcription factors bind[23,37

29,30]. The ENCODE project alone included approximately 2000 TF ChIP-seq experiments, including38

180 TFs in K562 (myeloid leukemia) cells alone[29]. Large regulation project such as ENCODE and39

Roadmap Epigenomics have been invaluable to our understanding of TF binding. However, there are40

an estimate 1600 TFs in the human genome and many do not have a reliable antibody for ChIP-seq[23].41

Even when antibodies are available, individual transcription factors can have distinct profiles of42

binding locations across cell types and conditions. Consequently, the cost of individually profiling43

every TF in each cell type is enormous, much less across different conditions[31]. Finally, if the effect44

of a particular perturbation is unknown, profiling assorted TFs by ChIP is prohibitively expensive.45

An alternative approach to detecting individual protein-DNA binding locations is to infer a large46

collection of binding events via DNA footprinting[32–34]. Dense mapping of DNase I clevage sites47

identifies small regions protected from cleavage by the presence of a bound transcription factor[32,33].48

While early footprinting studies identified a large repertoire of previously un-characterized motifs49

protected from cleavage, suggesting many novel transcription factors[34], subsequent work indicates50

these regions likely reflect sequence based cleavage bias of the DNase I enzyme[35]. Additionally, it51

is also now clear that most TFs (80%) do not show a measurable footprint[36], thereby limiting the52

effectiveness of this approach.53

Despite these limitations, DNA footprinting assays uncovered a distinct function for transcription54

factors: altering DNA accessibility. When chromatin accessibility data is considered in the context of55

known TF sequence motifs[37–40], one can reasonably infer transcription factor binding profiles[41,42].56

When accessibility profiles are then compared to ChIP in the context of perturbations, transcription57

factors could be classified as “pioneer” or “settler” depending on whether they open chromatin or58

require accessible, exposed DNA to bind[42]. Whether alterations of local chromatin accessibility59

reflect a byproduct of the TF’s DNA binding or its altering of transcription remains unclear.60

Altering transcription is the second major function of transcription factors[23]. Because TFs61

alter transcription, some of the earliest studies of TFs as regulators were based on expression data.62

For nearly twenty years large compendiums of expression data have been utilized to infer gene63

regulatory networks[43,44]. Typically these approaches search for modules, collections of co-regulated64

genes across distinct conditions. Identification of nearby TF recognition motifs[45,46] or co-regulated65

transcription factors[43] link particular TFs to the module of genes they regulate. For instance, ISMARA66

(Integrated System for Motif Activity Response Analysis)[47] models gene expression in terms of TF67

sequence motifs within proximal promoters. Gene regulatory network methods have been instrumental68

for understanding large scale regulatory networks, but are inherently limited by the fact that they69
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depend on steady state expression data. Steady state expression assays (microarray or RNA-seq)70

reflect not only transcription but also RNA processing, maturation and stability. Hence, they are an71

indirect readout on the effect of perturbations to transcription factors. Additionally, they are generally72

incapable of reliably detecting small changes at short time points without an impractical number of73

replicates[48].74

Nascent transcription assays (GRO-seq, PRO-seq) directly profile RNA associated with engaged75

cellular polymerases[49,50]. Consequently, nascent assays are a direct readout on changes to76

transcription induced by perturbations[21,51]. Interestingly, an additional feature of nascent77

transcription data is the identification of short unstable transcripts immediately proximal to sites78

of transcription factor binding[52–57]. Importantly, these transcripts, now known as eRNAs can be79

employed as markers of TF activity[58]. The change in patterns of eRNA usage genome-wide relative to80

TF recognition motifs allows one to determine which transcription factors are altered by a perturbation81

with no a priori information. Unfortunately, nascent transcription protocols[49,50] are onerous, time82

consuming, and require large numbers of cells as input. Consequently, these experimental assays are83

predominantly used on cultured cell lines and not yet widely adopted. Therefore, we sought a simpler,84

easy to use approach to inferring differential transcription factor activity.85

The Assay for Transposase-Accessible Chromatin followed by sequencing (ATAC-seq), a method86

for identifying regions of open chromatin, is particularly attractive because it is quick, easy, inexpensive,87

and deployable in small cell count samples. Additionally, recent work has shown that changes in88

chromatin accessibility can inform on TF activity. Specifically, BagFoot[36] combined footprinting89

with differential accessibility to identify TFs associated with altered chromatin accessibility profiles90

in the presence of a perturbation. They predominantly focused on DNase I hypersensitivity data,91

but also examined a small number of ATAC-seq datasets. Here we seek to confirm and extend their92

results in two ways. First, we ask whether an alternative approach – namely the motif displacement93

statistic[58], developed initially for nascent transcription analysis, could infer differential TF activity94

from ATAC-seq datasets. Second, we sought to construct an easy-to-use pipeline specific to the analysis95

of differential ATAC-seq analysis.96

2. Results97

We introduce a tool, Differential ATAC-seq toolkit (DAStk), developed with simplicity and ease of98

implementation in mind, focused around inferring changes in TF activity from ATAC-seq data. Using99

nascent transcription data we had previously developed the motif displacement score (MD-score) a100

metric that assesses TF associated transcriptional activity. As such, the MD-score reflects the enrichment101

of TF sequence motif within an small radius (150 bp) of enhancer RNA (eRNA) origins relative to a102

larger local window (1500 bp)[58]. While ATAC-seq does not directly provide information on eRNAs,103

most sites of eRNA activity reside within open chromatin[59]. Therefore we utilize the midpoint of104

called ATAC-seq peaks (rather than the eRNA origin) as a frame of reference for calculating MD-scores.105

Then, given two distinct biological conditions, we compare the ratio of MD-scores across the conditions106

and identify statistically significant changes by a two-proportion Z-test. Using public ATAC-seq data107

from a variety of human and mouse cell lines (IMR90, H524, NJH29, ZHBTC4) and perturbations108

(nutlin, doxycycline, tamoxifen), we assessed changes in accessibility over all putative TF sequence109

recognition motifs (for all motifs within the HOCOMOCO database[38]).110

Given our familiarity with TP53 activation[55,60], we first examined this approach on ATAC-seq111

data gathered before and 6 hours after Nutlin-3a exposure on IMR90 cells[61]. Nutlin-3a is an112

exquisitely specific activator of TP53. As expected, we found that TP53 displayed the most significant113

change (p-value < 10−5) in MD-score (Figure 1A, in red) of all motifs within the HOCOMOCO114

database[38]. Relaxing the p-value cutoff (p-value < 10−4) we subsequently identified altered activity115

in TP63 and TP73 (Figure 1A, in maroon), likely reflecting the fact that these two proteins have nearly116

identical sequence recognition motifs as TP53.117
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Figure 1. (a)Top: The motif displacement distribution as heatmap (increasingly dark blue indicates
more instances of motif), MD-score and the number of motifs within 1.5kb of an ATAC-seq peak before
and after stimulation with Nutlin-3a (e.g. Nutlin)[61] for TP53, the transcription factor known to be
activated. Bottom: For all motif models (each dot), the change in MD-score following perturbation
(y-axis) relative to the number of motifs within 1.5kb of any ATAC-seq peak center (x-axis). Red/maroon
points indicate significantly increased MD-scores (p-value < 10−5, < 10−4, respectively). (b) Similar
analysis obtained from nascent transcription data[55], where MD-scores are measured relative to eRNA
origins. Purple dots indicate significantly decreased MD-scores. Figure adapted from Azofeifa et al
[58].

Interestingly, Nutlin-3a has also been analyzed using nascent transcription data albeit in a different118

cell line (HCT116) at a shorter time point (1 hour)[55]. The MD-score analysis of the nascent data[58]119

obtained very similar results (Figure 1B). Unfortunately, a direct comparison of individual genomic120

loci between the two data sets is not feasible because they used different cell lines and drug exposure121

times. However, a couple of interesting observations concerning the overall MD-score trends are122

none-the-less noteworthy. First, the co-localization of the TP53 motif with ATAC-peak midpoints is123

far less striking than the co-localization of motifs with the eRNA origins (observed in the heatmap124

histograms). This observation, combined with the relative lower magnitude of ∆MD-scores (y-axis)125

suggests that the eRNA origin (obtained in nascent transcription) is a far more precise method of126

localizing and detecting changes in TF activity. Second, despite this lack of precision, ATAC-seq127

correctly identifies TP53 as the most dramatically altered MD-score whereas the best scoring motif with128

nascent transcription is TP63. Why this discrepancy exists is unclear, but given the relative similarity129

of these two motifs it may simply be coincidental.130
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Figure 2. (a) Top: Motif displacement distribution as heatmap (increasingly dark blue indicates more
instances of motif), MD-score and the number of motifs within 1.5kb of an ATAC-seq peak in control
and NFIB-induced H524 cells with doxycycline, for the upregulated TF NFIA. Bottom: For all motif
models (each dot), the change in MD-score following perturbation (y-axis) relative to the number of
motifs within 1.5kb of any ATAC-seq peak center (x-axis). Red/maroon points indicate significantly
increased MD-scores (p-value < 10-5, < 10-4, respectively). (b) Equivalent analysis performed on NJH29
cells, displaying a motif displacement distribution of the NFIC TF upregulation. We note that in the
doxycycline-treated cells, most ATAC-seq peaks are located closer to the motif center than on the
control cells.

We next analyzed differential ATAC-data gathered by Denny et. al to examine whether Nfib131

promotes metastasis via increasing chromatin accessibility. For this question, they examined two132

human small cell lung carcinoma (SCLC) cell lines (H524 and NJH29), profiling by ATAC-seq before133

and four hours after doxycycline treatment. Using the MD-score approach, we detect changes in TF134

activity for multiple members of the NFI family (Figure 2A,B). An increase in NFIA (two different135

motifs) and NFIC was detected in both cell types (p-value < 10−5 for H524s; p-value < 10−10 for136

NJH29s). As further confirmation of the NFI signal, we tested one of their mouse samples (KP22 cells)137

and found an increase of NFIA (p-value < 10−5), consistent with the human results. We next asked138

whether our results were sensitive to the particular peaks utilized. To this end we sub-sampled peaks139

from the NJH29 data and re-ran our analysis. Both NFIA and NFIC are detectable as significant (p-value140

< 10−10) even when using only half of the ATAC-seq peaks, suggesting the signal is reasonably robust.141

We then sought to determine how the ∆MD-score approach compared to the BagFoot[36] at142

identifying differential TF activity. BagFoot also identified NIFA and NIFC within the SCLC differential143

ATAC-seq data[36]. However, they additionally claimed HNF6 as potentially altered in the SCLC144

data. Importantly, Baek et. al. noted that the HNF6 result did not hold when their approach utilized145

bias corrected data (based on naked DNA digested with Tn5). Given our MD-score approach does146

not identify HNF6 as altered further supports the idea that this result reflects a data artifact rather147

than a true biological phenomena. Interestingly, the MD-score approach and Bagfoot obtained nearly148

identical results on a second differential ATAC-seq dataset. In this case, King and Klose[62] showed149

BRG1, essential for pluripotency-related chromatin modifications, is required to make chromatin150

accessible at OCT4 target sites. To this end they treated ZHBTC4 mouse embryonic stem cells (ESCs)151

with tamoxifen for 72 hours to block BRG1 expression. When compared to the unperturbed mouse ESC152

control, we observed lowered MD-scores for SOX2, PO5F1 (Oct4) and NANOG in the BRG1-blocked153

cells (p-value < 10−13; Figure 3A), directly confirming the BagFoot findings.154
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Figure 3. (a) Top: Motif displacement distribution as heatmap (increasingly dark blue indicates more
instances of motif), MD-score and the number of motifs within 1.5kb of an ATAC-seq peak before and
after stimulation with Tamoxifen[62] for the inhibited TF POU5F1, also known as OCT4. We observe
that the decreased MD-score reflects not only a smaller number of peaks nearby this motif, but also a
sharp decrease in co-localization with the motif. Bottom: For all motif models (each dot), the change in
MD-score following perturbation (y-axis) relative to the number of motifs within 1.5kb of any ATAC-seq
peak center (x-axis). Red points indicate significantly increased MD-scores (p-value < 10−13). Purple
dots indicate significantly decreased MD-scores, at the same indicated p-value. (b) Equivalent analysis
performed on endometrial stromal cells, before and after undergoing a decidualization process[63].
The motif displacement heatmap illustrates ATAC-seq peak distances to CEBPA, the TF expected to be
upregulated.

Finally, we also examined a differential ATAC-seq data obtained for decidualized and155

undecidualized human endometrium cells[63]. Spontaneous decidualization occurs in response156

to progesterone signalling (i.e. by an implanted embryo at the early stages of pregnancy). Using157

our MD-score approach, we found the CEBP family of transcription factors had increased activity in158

decidualized cells, consistent with the author’s conclusion (Figure 3B). Additionally, we also found159

significantly lowered MD-scores for the KLF16 motif (a TF known to be involved in regulatory uterine160

cell biology[64]) and TFDP1 (a known target to the estrogen receptor ERβ present in all endometrial161

cell types[65] of lower activity during the secretory phase, in concert with the decidualization process).162

In all cases, the magnitude of MD-score alterations were relatively small, and yet the transcription163

factors uncovered can be linked to the underlying decidualization process.164

3. Discussion165

We sought to identify changes in TF activity across differential ATAC-seq datasets, as this protocol166

is inexpensive, simple and requires relatively small cell counts. Here we demonstrate two important167

results. First, using a simple statistic (the motif displacement score) as a co-localization measure of168

ATAC-seq peak midpoints to TF sequence motif sites across the genome, we correctly detect changes169

in TF activity. Second, our approach independently confirms the results obtained by BagFoot[36],170

as the two analysis techniques are distinct in their approach to quantifying differences in chromatin171

accessibility across conditions. Arguably, regardless of which analysis technique is preferred —172

differential ATAC-seq is a relatively simple and inexpensive way to assess for changes in TF activity173

induced by perturbations.174

We believe there are two distinct advantages to the MD-score approach to assessing TF activity.175

First, the MD-score is calculated relative to a local background window. Consequently it cleanly176
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accounts for the localized sequence bias observed at promoters and enhancers[58], which likely reduces177

false positives. Second, the statistic is relatively simple to implement and naturally accommodates178

multiprocessing for faster computations. DAStk can easily be incorporated at the tail-end of a179

traditional processing pipeline for ATAC-seq data, in that MD-scores are calculated directly from called180

peaks and genomic sequence.181

Our MD-score statistic was originally developed for analysis of nascent transcription data[58]182

and focused on enhancer RNA co-localization with motifs. Given most eRNAs originate from areas183

of open chromatin[21,57,66] and many transcription factors can alter chromatin accessibility[42], it184

is perhaps unsurprising that differential chromatin accessibility can be used to infer changes in TF185

activity. However, it remains unclear whether the observed alterations of chromatin reflect a distinct186

functional activity of transcription factors or are simply a side effect of DNA binding and/or altering187

transcription. While a careful examination of the two Nutlin-3a datasets (Figure 1) identifies several188

genomic regions altered uniquely in only one of the two datasets (ATAC-seq or nascent), the lack of189

matched data makes interpretation of these differences difficult. Do they reflect differences of cell type190

or distinct functional activities of TP53? A careful comparison of chromatin accessibility and nascent191

transcription data in the context of a perturbation will be necessary to fully address this question.192

4. Materials and Methods193

4.1. Processing pipeline194

Each ATAC-seq dataset was subjected to a standard data processing pipeline. The SRR datasets195

were converted to FASTQ format using fastq-dump v2.8.0 with argument –split-3. Paired-ended196

raw reads were trimmed using trimmomatic v0.36 at a fixed length with options PE -phred33197

CROP:36 HEADCROP:6. After verifying the dataset quality with FastQC v0.11.5, the reads were aligned198

to the hg19 or mm10 reference genome, using Bowtie v2.2.9 with arguments -p32 -X2000. The199

resulting SAM files were converted to BAM format using samtools v1.3.1 using the view -q 20 -S200

-b arguments and sorted with the sort -m500G arguments. Bam files were then converted to BedGraph201

format for easier processing using bedtools v2.25.0 with arguments -bg -ibam INPUT_BAM_FILE202

-g GENOME_REFERENCE and read counts were normalized by the millions mapped. Finally, MACS203

v2.1.1.20160309 was used to call broad peaks from the ATAC-seq BAM files with arguments callpeak204

-n ASSAY_PREFIX –nomodel –format BAMPE –shift -100 –extsize 200 -B –broad.205

The human motif sites calculated in Azofeifa et al[58] for the hg19 reference genome were used206

for human cells. The motif sites for mouse cells were obtained using FIMO with position weight207

matrices (PWMs) from HOCOMOCO, with a p-value cutoff of 10−6 (arguments -max-stored-scores208

10000000 –thresh 1e-6.209

4.2. Public Datasets210

We used samples from the following public GEO datasets for our analysis: GSE58740211

(samples SRR1448793 and SRR1448795), GSE81255/GSE81258 (samples SRR3493647, SRR3493653,212

SRR3493643, SRR3493645, SRR3493626, SRR3493627, SRR3493634, and SRR3493635), GSE87822213

(samples SRR4413799 and SRR4413811), and GSE104720 (samples SRR6148318 and SRR6148319).214

4.3. DAStk Software215

The Differential ATAC-seq toolkit (DAStk) is a collection of scripts publicly available at216

https://biof-git.colorado.edu/dowelllab/DAStk for download. We used 642 PWMs of human motifs217

in the HOCOMOCO[38] database (to verify the presence of ATAC-seq peaks nearby), and 427 mouse218

motifs. TF sequence motifs were mapped to the hg19 or mm10 reference genomes with a p-value cutoff219

of 10−6. For each motif, the number of ATAC-seq peaks was accounted for, within a large (1500bp220

radius) and small (150bp radius) window, to calculate the motif displacement score. The difference221

between the MD-score in each condition and the number of ATAC-seq peaks nearby (large window)222
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each motif were used to produce the MA plots. Those motifs with a statistically significant difference223

in MD-score were labeled, as determined by a z-test of two proportions[58].224
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TF Transcription factor
ATAC Assay for Transposase-Accessible Chromatin
SNP single nucleotide polymorphisms
ChIP chromatin immunoprecipitation
eRNA enhancer RNA
MD-score motif displacement score
SCLC small cell lung carcinoma
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