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Abstract

Background: Bidirectional promoters (BPs) are prevalent in eukaryotic
genomes. However, it is poorly understood how the cell integrates different
epigenomic information, such as transcription factor (TF) binding and
chromatin marks, to drive gene expression at BPs. Single cell sequencing
technologies are revolutionizing the field of genome biology. Therefore, this
study focuses on the integration of single cell RNA-seq data with bulk
ChIP-seq and other epigenetics data, for which single cell technologies are
not yet established, in the context of BPs.
Results: We performed integrative analyses of novel human single cell
RNA-seq (scRNA-seq) data with bulk ChIP-seq and other epigenetics data.
scRNA-seq data revealed distinct transcription states of BPs that were
previously not recognized. We find associations between these transcription
states to distinct patterns in structural gene features, DNA accessibility,
histone modification, DNA methylation and TF binding profiles.
Conclusions: Our results suggest that a complex interplay of all of these
elements is required to achieve BP-specific transcriptional output in this
specialized promoter configuration. Further, our study implies that novel
statistical methods can be developed to deconvolute masked subpopulations
of cells measured with different bulk epigenomic assays using scRNA-seq
data.
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1 Background
Promoters are key structures for a coordinated regulation of gene expression. The increas-
ing number of large-scale high resolution epigenomic and RNA-sequencing technologies
are leading to a deeper understanding of genome-wide promoter configurations. Recent
studies show that the number of bidirectional promoters (BPs) in the human genome is
much larger than previously anticipated [1, 2, 3]. Sensitive assays, such as sequencing of
nascent RNAs (GRO-seq) or 5′-ends of capped nascent RNAs (GRO-cap and Start-seq), al-
low the detection of unstable nascent RNAs produced at promoters, and have revealed more
widespread bidirectional transcriptional initiation than previously recognized [4, 5, 6].
However, the exact classification of bidirectional or unidirectional promoters in a sample
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of interest is challenging, as it depends heavily on the sensitivity of the sequencing assay
to recognize unstable, nascent RNAs [7, 8].

Recent studies discuss two types of bidirectional promoters. The first type concerns tran-
scription of two RNAs in opposite direction from one core promoter, i.e., one promoter
leads to bidirectional transcription [9, 5, 10]. In the second type, transcriptional initiation
of both RNAs occurs at two distinct core promoters that are close to each other, but are ori-
ented in reverse direction, thus sometimes termed divergent bidirectional promoters. In this
work we focus on bidirectional promoters that have two distinct core promoter elements
that drive divergent transcription of two nearby genes.

BPs harbor overrepresented TF binding sites such as GABPA, MYC, YY1, NRF-1, E2F1
and E2F4 [11]. For example, the introduction of GABPA binding sites into unidirectional
promoters lead to bidirectional expression in 67% of the cases [12]. Further, the sequence
elements at some BPs function as inseparable units [13]. Other TFs prevent bidirectional
expression, for example, promoters that show elongation in only one direction show en-
richment of CTCF binding sites [4, 14]. However, more research is needed to investigate
how TF binding determines directionality of initiation and elongation at BPs [9].

It was recently shown that the two Transcription Start Sites (TSSs) at a BP define a Nucle-
osome Free Region (NFR) between them. The size of the NFR may be an important struc-
tural element in BP regulation, determining the availability of binding sites for different TFs
at the promoter and thus influencing gene expression strength as well as responsiveness to
external stimuli [5, 6]. The current results point to a model, where an independent Pol2
complex assembles at each TSS and initiates transcription, such that accurate phasing of
the +1 and -1 nucleosomes at these BPs allows epigenetic regulation through HMs [4, 5, 6].
Comparisons between BPs and unidirectional promoters suggest that HMs associated with
active gene expression exhibit a bimodal distribution at BPs, and that upstream proximal
enhancer marks may regulate downstream gene transcription [14, 6].

In summary, previous studies rely on the comparison of unidirectional against bidirec-
tional promoters to learn about BP regulation. In this study, we take a different approach,
making use of recent advances in single cell sequencing and study expression of genes at
BPs in individual cells to learn about their regulation. Recent developments in single cell
genomics allow the measurement of RNA expression in individual cells with a similar ac-
curacy as compared to bulk-sequencing of RNAs [15, 16]. This advance has been used to
define previously overlooked cell types and expression heterogeneity, e.g., [17].

We used novel and previously produced single cell RNA-seq (scRNA-seq) data for
HepG2 and K562 cells to investigate the expression behavior of genes at a BP. We found
that four reproducible expression categories exist in BPs and that in the majority of the
cases, one gene at a BP shows much higher expression than the other one. Using high
resolution histone modification datasets produced at IHEC standards [18] by the DEEP
consortium or made available by ENCODE [19], we find novel associations of different
structural and epigenetic features in these categories.
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2 Results
To understand the regulation of the two genes at a bidirectional promoter, we propose a
novel approach to exploit RNA-seq data at the single cell level, in contrary to the exist-
ing studies that rely on bulk RNA-seq data. Bulk RNA-seq masks gene expression across
individual cells, and thus may hide interesting expression patterns of bidirectional gene
pairs (Figure 1A).
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Figure 1 Advantages of studying BPs at single cell level. A) An illustration of a BP, defined based
on two genes located on opposing strands of DNA (Watson and Crick). Bulk RNA measurements
at the BP may hide complexity of BP gene regulation. This is shown in the left single cell
expression scenario, where one of the genes is expressed and the other is silent in the same cell
compared to the other scenario where single cell expression agrees with bulk measurements. B)
Heatmaps of 65 single cell RNA-seq expression measured in four bidirectional promoters (TPM,
HepG2 cells). C) After single cell sequencing and estimating the gene expression of all genes in a
cell, a set of 1,242 BPs was extracted. Single cell expression of either genes of a BP was arranged
in two separate matrices for which the rows represent the BPs and columns the cells. Next, we
swap the higher expressed gene to the matrix on the right and lower expressed one to the left. The
resulting matrices are combined into one joint BP single cell expression matrix.

Figure 1B illustrates examples of single cell expression patterns in HepG2 cells for se-
lected BPs. It can be noted that, for instance, the magnitude of expression of the ALG2,
ECE2 gene pair alternates across the cells, meaning that in some cells ALG2 is higher
expressed than ECE2 and vice versa. Similarly, AAMP and PNKD genes exhibit this alter-
nation, but more frequently. These observations motivated us to inspect such diversities in a
systematic manner by forming an expression matrix specific to BPs for clustering analysis.

2.1 Four states of transcription with distinct bidirectional characteristics
We form an individual matrix of all BPs representing the single cell expression of the gene
located on the Watson strand (Watson matrix). Similarly, we construct the same matrix for
the gene on the Crick strand (Crick matrix) (Figure 1C). To simplify the follow-up analyses,
we swap a row of the Watson matrix with the corresponding Crick row, if the average single
cell expression of the former is lower than the latter. In this way, for a given BP, we always
keep the higher expressed gene (H) on the right side and the lower expressed one (L) on the
left. Next, we form the final swapped BP matrix, where the rows represent the bidirectional
genes (N=1,242) and the columns represent the cells (twice the number of single cells);

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/315937doi: bioRxiv preprint 

https://doi.org/10.1101/315937
http://creativecommons.org/licenses/by-nc/4.0/


Fatemeh Behjati Ardakani et al. Page 4 of 17

  

cluster BLE BSD BWD BND total

HepG2 900 94 208 40 1242

K562 870 65 272 35 1242

overlap 804 50 128 18 1090

L H

sw
ap

p
ed

 B
P

 g
en

es

single cell RNA-seq expression (log2 TPM)

BLE BSD BWD BND

NC--> NC 78* 2 12 2

NC--> PC 273 32 55 2

PC--> NC 142* 7 26 3

PC--> PC 407 53 115* 33*

A

B

C

1 65 1 65

F

L H L H L H L H

C
A

G
E

 r
ea

d 
co

u
nt

s 
(l

og
2)

* * *

B
LE

B
S

D
B

W
D

B
N

D

120cells

Concordant 
%

BLE BSD BWD BND

HepG2 0.80 1.00 0.95 0.72

K562 0.58 1.00 0.88 0.88

overlap 0.59 1.00 0.81 0.72

D

PRKDC

MCM4

Discordant Concordant

COA5

UNC50

E

Figure 2

Figure 2 Single cell RNA-seq expression in bidirectional promoters. A) Hierarchical clustering of
the HepG2 single cell transcript expression matrix visualized as a heatmap (log2, TPM). The four
distinct clusters (BLE, BSD, BWD, BND) are referred to as transcription state in this manuscript. B)
Number of BPs falling into each transcription state in HepG2 and K562 cells and their overlap. C)
Number of BPs falling into the gene product categories (NC→NC, NC→PC, etc.) in HepG2.
Statistically enriched values are shown in bold (Hypergeometric test p<0.05). D) Ratio of
concordant BPs shown separately in each state for both cell lines as well as their overlap. E)
Examples of concordant and discordant BPs in HepG2. F) CAGE read counts, measured for each
bidirectional gene (L and H), shown for each transcription state. Color code as in A. Significant
differences are marked with * (paired and two-sided Mann-Whitney test, p <0.05).

the first half of the columns represent cells’ expression of L genes and the second half
represent the same for H genes. Since, the combined matrix contains the joint expression
information for both genes of a BP in each row, we used hierarchical clustering to group the
BPs according to their similarity in single cell expression patterns. This led to four distinct
transcription states in both cell lines (Figure 2A HepG2, and Supplementary Figure 2A
K562) with the following characteristics: 1) Bidirectional Lowly Expressed (BLE), where
both genes of a BP are lowly expressed, 2) Bidirectional Weak Difference (BWD), where
the H gene is higher expressed than the L gene with a weak difference between the two, 3)
Bidirectional Strong Difference (BSD), where the H gene is much higher expressed than the
L gene and higher than in BWD, 4) Bidirectional No Difference (BND), where both genes
of a BP are expressed relatively at the same rate.

The data regarding the frequency and type of BPs in each state is provided in figures
2B,C. Figure 2B reveals that most of the BPs associated to these states are common be-
tween the two cell lines (1,090 out of 1,242). We investigated whether the transcription
state was related to the type of genes encoded in a BP. We found that for both cell lines
the BWD and BND states are enriched with BPs (hyper-geometric test, p ≤ 0.05), where
both bidirectional genes are annotated as protein-coding ( PC → PC, Figure 2C, Supple-
mentary Figure 2B). On the other hand, the BLE state is enriched with BPs of either two
non-coding genes (NC → NC) or where the L gene is annotated as protein-coding and
the H gene as non-coding (PC → NC).

The single cell data allowed us to estimate the frequency of (concordant or discordant)
gene signatures of BPs in all states for both cell lines (2D,E). The BLE state was overall
lowly expressed and due to stochasticity of expression, it is difficult to find a consistent
pattern for this particular state. On the other hand, BSD state consists of BPs where one
gene’s expression is always higher than the other, thus we obtained a concordant ratio
of 1. As expected, the BND state is showing some of the smallest concordant ratios, i.e,
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Figure 3 Structural features of BPs for HepG2 (left column) and K562 cells (right column). A)
Distributions of Pearson correlation coefficients (y-axis) calculated from all single cell
measurements for each BP in one of the states (x-axis). B) Distributions of TSS distance of BPs in
each state. C) Length distributions of transcripts span for L and H genes of BPs shown in each
state. Significant differences are marked with a * (paired and two-sided Mann-Whitney test,
p <0.05). For all subfigures the color-coding is consistent with Figure 1D.

highest discordance, which points to the frequent alternations (switches) occurring in the
expression of the genes in this state.

Figure 2F illustrates that the CAGE expression distributions follow the characteristics
attributed to each cluster (similarly for the bulk RNA-seq and CAGE in K562 cell line,
Supplementary Figure 2C,D). However, it is worth mentioning that performing the cluster-
ing based on the bulk data, either RNA-seq or CAGE did not lead to a reproduction of the
transcription clusters based on single cell RNA-seq, due to measuring a population of cells
in bulk assays (data not shown).

The representation used in Figure 1D is concise, but it does not provide a suitable visu-
alization to explore the associations between L and H genes in the same cell. Therefore,
to quantitatively assess the relation between single cell expression of bidirectional genes
in these states, we computed, for each BP, the correlation between expression of L and H
genes across single cells (Figure 3A, data shown for both cell lines). The correlation anal-
ysis showed that the BND state has the highest correlation. On the contrary, the BSD state
revealed lower correlation, which suggests a more independent regulation of its bidirec-
tional genes.

To address which mechanism(s) are involved in driving such differences in regulation of
BPs, we explored the following aspects: 1) structural features, 2) epigenetic signals, and 3)
transcriptional regulatory elements.

Structural features associated with transcription states
We first tested whether the distance between TSSs of bidirectional genes was associated
with the transcription states. Figure 3B depicts the distributions of TSS distances in each
state for both cell lines. We observed that the BLE state exhibits significantly larger TSS
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distances compared to the other states (t-test, p ≤ 0.001). On the contrary, the BND state
had the smallest median distance (significant for HepG2, t-test p ≤ 0.05). This observation
together with the correlation analysis in Figure 3A suggests that the smaller distance may
influence recruitment of a common regulatory complex that facilitates the simultaneous
regulation of both genes.

As the scRNA-seq protocol measures steady-state fully elongated mRNAs, we wondered
whether the length of the transcribed region differs in the genes associated to the BPs.
For this, we examined the region spanned by all transcripts originating from transcrip-
tion start sites within 2 kb from the most 5′ TSS of a BP gene, a region we refer to as
transcripts span (see Materials and methods). Surprisingly, this length was significantly
smaller (Mann-Whitney test, p-value≤ 0.05) for the H genes of states BSD and BWD com-
pared to their counterpart L genes. Connecting this observation to the actual transcription
expression depicted in Figure 1D for these two states suggests that the expressions of L
and H genes are inversely related to their transcripts spans in BPs. To elucidate whether
this association holds for all genes or only BPs, we measured the transcripts span for all
63,678 annotated genes in the human genome. We found no association of transcripts span
with gene expression for all genes (Supplementary Figure 2F), indicating that such struc-
tural configuration might be specific to BPs. As the estimated TPM values are derived from
the exonic regions only, we further examined the transcript length by measuring the exonic
region of all transcripts initiating within the 2 kb from the most 5′ TSS of a BP gene (Sup-
plementary Figure 2H,I). We found a slight increase of TPM values for the larger genes,
regardless of considering all genes or only BP (Supplementary Figure 2F).

We also investigated whether the difference in GC-content could be involved in driving
variation on the observed expression patterns, but we found no apparent differences (Sup-
plementary Figure 2G).

Histone modification and DNaseI patterns reflect the characteristics observed in
transcription states
To explore the role of epigenetics in transcription states observed in Figure 1D, we
produced seven histone modifications (H3K4me1, H3K4me3, H3K36me3, H3K27me3,
H3K9me3, H3K27ac, and H3K122ac) and DNaseI-seq data for HepG2 cells within the
DEEP consortium. Further we obtained data for DNaseI-seq and all modifications, except
H3K122ac, for K562 cells from [19]. Figure 4 depicts the normalized read counts measured
around the TSSs of bidirectional genes stratified according to the transcription states for all
HepG2 datasets (similarly, for K562 in Supplementary Figure 3A). Generally, we observed
that the epigenetics data show specific patterns related to these states. For instance, it is
notable that the BLE state had the lowest abundance for HMs associated with active pro-
moters (H3K4me1/3, H3K36me3, H3K27ac, and H3K122ac) and highest for H3K27me3
and H3K9me3 that are mostly associated with repressed promoters [20]. On the other hand,
the BND state exhibited the very opposite behavior to BLE, reflecting their expression char-
acteristics observed in Figure 1D.

Another interesting observation is the agreement of the elongation mark profiles,
H3K36me3, with the transcripts span distribution shown in Figure 3C. In general, the
larger the increase of the H3K36me3 mark the shorter the transcripts span for the gene.
For instance, the BSD state that has the shortest transcripts span exhibits the sharpest in-
crease in its H3K36me3 profile downstream of the H gene’s TSS. This fits to the previous
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Figure 4 Epigenetic characteristics in transcription states in HepG2 cells. A-G) Histone
modification (ChIP/Input) shown as median profiles (top panel) and log-transformed values as
heatmap (bottom panel). H) DNase1-seq median profiles (top panel) and log-transformed raw
counts (bottom panel). Arrangement of genes as in Figure 1D. The reads are measured in 40 bins
of size 100 bp forming a window of size 4000 bp centered around the TSSs, with an additional
variable bin between the TSSs.

observation that the H3k36me3 mark increases gradually and peaks at the end of genes
[21] and we can observe that general trend for the transcripts span on our data as well
(Supplementary Figure 3B).

The DNaseI-seq profile of the BND state revealed not only the highest signal, but also the
widest spread around the TSS compared to the other states. This agrees with the observation
that there is similar amount of single cell transcription for both genes.

Due to recent reports about small promoter-associated RNAs [22, 23], we obtained small
RNA data [19] for HepG2 and K562 samples (see Methods) and grouped them according
to the defined transcription states. Although we observed residual small RNA expression
in the vicinity of the bidirectional TSSs, we found no consistent patterns associated with
the transcription states (Supplementary Figure 3C).

We also examined the average methylation profiles obtained in the four transcription
states (Supplementary Materials and Methods) due to the previously reported associations
with gene expression [24, 25]. The results were consistent with other studies where higher
level of DNA methylation coincided mostly with silent genes (BLE). Consistent with the
enrichment of HMs, genes in the BND state showed the least amount of DNA methylation
(Supplementary Figure 3D).

The BND state coincides with strongest regulatory activity
It was shown that certain TFs preferentially bind to bidirectional promoters [13, 14]. As we
observed that the DNA accessibility profiles differed among the transcription states (Fig-
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Figure 5 Transcriptional regulatory features in the transcription states. A) Heatmap of TF
enrichment scores (log ratio against background) for each BP (row) in HepG2 cells. BPs are sorted
as in Figure 1D. B,C) Distributions of percentages of TFs per BP (enrichment score in A > 0) in
each state for HepG2 (top panel) and K562 (bottom panel). D,E) ChromHMM annotations,
summarized into the types: TSS, Enhancer, and Repressed, are shown as percentages in a bar
plot per state (see Materials and methods).

ure 4H), we were encouraged to investigate binding of transcription factors. We obtained
ChIP-seq data for several transcription factors [19] (44 for HepG2 and 50 for K562). One
hypothesis was that there may exist TFs that bind in the proximal region of a BP and influ-
ence gene expression as was observed in our transcription states.

To test this, we defined a novel enrichment score tailored to BPs (Supplementary Figure
4A), which preserves the spatial distribution of the ChIP-seq signal along a BP. We applied
the enrichment analysis for both cell lines (HepG2 in Figure 5A and K562 in Supplemen-
tary Figure 4B). As expected, states with higher expression showed more TF binding in
general. However, we could not pinpoint distinct TF subsets that associate with only one
of the states. Instead, the states BSD, BWD and BND showed enrichment for many of the
TFs that we analyzed. We wondered whether the number of TFs that are regulating a BP
differed in those states. Figures 5B,C represent the number of positively enriched TFs per
BP for each state in both cell lines. The BND state showed the highest percentage of pos-
itively enriched TFs (t-test, p ≤ 0.05) suggesting that more TFs are required to regulate
gene expression in this state.

Next, we tested whether specific genomic regions, such as enhancers, are associated with
these four transcription states. For this, we inspected the genome-wide segmentation of
HepG2 and K562 cells using an 18-state ChromHMM model [26] (Supplementary Figure
5, Supplementary Materials and Methods). For simplification we collapsed all TSS-related,
enhancer-related, and repression-related ChromHMM states into TSS, Enhancer, and Re-
pressed, respectively. We assigned all the remaining chromatin states to Others (data not
shown). The results provided in Figures 5D,E suggest that the enhancer-related regions are
the most frequent amongst the BSD and BND states, reflecting their stronger expression
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profiles. In the case of HepG2 (Figure 5D), this quantity is even higher than the number
of TSS regions. Concurrent with Figure 4 most of the repressed regions belong to the BLE
state, where genes were lowly expressed.

3 Discussion and conclusions
In this work we compared single cell expression of genes at BPs. Currently, we only have
access to single cell protocols for RNA-seq, and other techniques for quantification of
transcription start sites cannot be used [6, 4, 27]. Thus, other effects on the mRNA steady
state level, e.g. post-transcriptional regulation, may influence the gene clustering produced.
Here, we have used two high quality single cell datasets for ENCODE cell lines allowing
us to benefit from a plethora of epigenomic datasets, which are available or have been
produced in this work. We found that 88% of the BPs have the same transcription state in
scRNA-seq data despite the difference in origin of HepG2 and K562 cells, which suggests
that the majority of these configurations may be stable for many cell types.

In previous work that has analyzed BP regulation, analyses were often limited to a certain
configuration at the BP, e.g. a non-coding gene upstream of a coding gene, therefore care
has to be taken when comparing to previous studies. Here, we have limited our results to
annotated protein- or non-coding genes that originate from a bidirectional promoter. We
found that the BPs that show similar expression for both genes are mostly restricted to a
configuration with two protein-coding genes. It was shown previously that core promoter
strength differs for genes with bidirectional expression and unidirectional promoters [5].
Here, we show that, beyond differences in the strength of the core promoter, the number
of TF regulators that bind to BPs with high bidirectional expression is largest compared to
all other expression configurations we observed. In this analysis we used several ChIP-seq
datasets for TFs and developed a BP-specific enrichment analysis approach that measures
spatial differences in read coverage along the BP regions compared to the median back-
ground, unified in a single quantity for each BP and TF. This is different to other studies
that have compared TF ChIP-seq data at BPs, e.g. [14], where the background often were
unidirectional promoters rather than all BPs. Thus, to find enrichment in the observed states
we properly adjust for the fact that there are two genes, which are regulated by TF binding.

We observed that the BND state shows the largest (although not strong) single cell corre-
lation values and that there is a trend with correlation at BP genes being inversely propor-
tional to TSS distance (Figures 2A,B). A similar observation was recently made for BPs in
the rice genome with correlation measured over several bulk RNA-seq datasets [28]. Small
distance between the two TSSs may ease the coupled regulation of transcription from both,
for example through a shared or co-regulated Mediator complex [29].

We also found that the transcripts span, the genomic region covered by all transcripts
that start in the vicinity of the TSS, was imbalanced for the BSD and BWD states, with the
shorter span linked to the highly expressed gene at the BPs. One possibility is that shorter
regions of elongation lead to faster transition cycles for Pol2, assuming similar elongation
rate of both genes at a BP. This could be a mechanism by the cell to create imbalanced
expression output from a shared regulatory region of two BP genes. Anecdotally, we inves-
tigated bulk GRO-cap data for K562 cells [4], and found that the amount of transcription
initiation is more similar for both genes at a BP in our states (Supplementary Figure 2E),
compared to the amount of stable RNAs expressed (CAGE and RNA-seq). Even though the
initiation is the same we get significantly different steady-state transcript expression, which
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Figure 6 Hypothetical model of three different genomic architectures underlying epigenetic
regulations of BPs. BPs that drive single cell expression patterns observed in the BLE state show
large TSS distance and higher abundance of repression associated marks and depletion of most
TFs. BSD and BWD, on the other hand, exhibit smaller TSS distance and more TF binding
compared to BLE. In addition, the transcripts span of the H gene is observed to be significantly
smaller compared to the L gene. BPs categorized in BND show the smallest TSS distance with the
most TF binding events that require more accessible DNA to regulate both the L and H genes.

could be explained by the difference in length of the genomic region to be elongated, here

referred to as transcripts span. Once single cell measurements of nascent transcription are

available, one could investigate the difference in elongation and transcriptional initiation in

these BPs.

Taken together, we observed three different genomic and epigenomic architectures un-

derlying single cell transcription states in BPs. We propose a model depicted in Figure 5 to

describe these architectures. This model supports distinct characteristics of the BLE state,

where the bidirectional genes were lowly expressed. They mostly exhibited large TSS dis-

tance and more prevalence of repression associated HMs, fewer regions of accessible DNA,

and less TF binding. The BSD and BWD states, on the other hand, had reduced TSS dis-

tance in comparison with BLE and more abundance of activation associated HMs as well

as higher rate of TF binding. Interestingly, the transcripts span associated to the H gene

of BPs in these states was observed to be shorter than the L one. Lastly, BND showed

strongest single cell co-expression and smallest TSS distance among the states. Further-

more, we observed the widest accessible regions of DNA, the largest number of binding

TFs and highest amount of activation related HMs.

Although the transcription state definition was based on the single cell data, several bulk

datasets showed consistent and matching patterns for those states. Our results suggest that

novel statistical methods can be developed to deconvolute masked subpopulations of cells

measured with different bulk epigenomic assays with the help of single cell RNA-seq data.

Further advances in single cell sequencing technologies [30] are necessary such that we

can measure not only RNA expression, but also TF binding and histone modifications in

single cells to understand the hidden complexity, in particular, in BP regulation.
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4 Methods
Datasets and pre-processing
Single cell RNA-seq
Single HepG2 cells were manually picked to prepare poly-A enriched cDNA libraries us-
ing Smart-seq2 as described by [31] with modifications. Briefly, 65 single cell samples
were supplemented with 0.5 µl of a 1:40,000 dilution of the Ambion ERCC RNA Spike-In
Mix 1 (Thermo Sientific, #4456740). After cell lysis polyadenylated mRNA was reverse
transcribed using a biotinylated template switch oligo (5′-Biotin-
AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3′) with two riboguanosines (rG)
and one LNA-modified guanosine (+G) at the 3′ end. Preamplified cDNA (18 PCR cy-
cles) was purified with Agencourt Ampure XP Beads (Beckman Coulter, #A 63881) in a
1:1 ratio. cDNA quality of 8 random samples was assessed on the Agilent 2100 Bioana-
lyzer (Agilent Technologies, #G2938C) using the Agilent high-sensitivity DNA kit (Ag-
ilent Technologies, # 5067- 4626). Sequencing libraries were prepared using the Nextera
XT DNA Sample Preparation Kit (Illumina, #FC-131- 1024) with approximately 480 pg
of cDNA in a 4 µl tagmentation reaction followed by a dual indexing PCR with 9 cycles.
Individual single cell libraries were pooled and purified with 0.8 X Agencourt Ampure XP
Beads. The library pool was sequenced on a HiSeq 2500 (Illumina) using the TruSeq SBS
Kit v3-HS (Illumina, #FC-401- 3001) in a single read run with 90 bp read length.

Single cell transcript expression
The TPM values for transcript isoforms of each Ensembl gene (GRCh37) were computed
using RSEM [32]. To attribute the transcription expression to each bidirectional gene, we
summed the isoform TPM values of transcripts that had their annotated TSS within a 2 kb
window downstream of the most 5′ TSS of that gene.

HepG2 and K562 datasets
Epigenomic data for the HepG2 cell lines have been produced by the DEEP consortium
and are deposited at the European Genome-Phenome Archive under the accession number
EGAS00001001656. The rest of the data, K562 (HM-ChIP-Seq, TF-ChIP-seq, CAGE),
and HepG2 (TF-ChIP-seq, CAGE) were obtained from the ENCODE portal.

Bidirectional promoter (BP) gene set
The BP dataset contained 1,242 divergent promoters with two core promoter elements,
obtained from annotated ENSEMBL genes (GRCh37.75), such that the distance between
TSSs of each BP does not exceed 500 bp. This set excludes loci overlapped by any other
annotated gene region (±2 kb from the TSS).

Clustering BPs into four states
Hierarchical clustering (TPM values) using the complete linkage method with Euclidean
distance as distance metric was applied on the swapped BP matrix using R.

Constructing the single cell TPM matrix for BPs
For a particular BP , BPi = (gcrick,i, gwatson,i), we compute the sum of TPM values
across single cells as following:

Sum(gj,i) = ΣN
c=1TPM(gcj,i), (1)
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where N denotes the number of single cells, and TPM(gcj,i) returns the TPM value for
gene j ∈ {crick, watson} of BPi in cell c. The orientation of genes at a BP is not specific
to the DNA strand, but the lower expressed gene of a BP is always swapped to the left
and higher expressed gene to the right. In this way, without loss of generality, all analyses
correctly adjust for differences of expression. Precisely, we define gH,i denoting the gene
of BPi having higher expression as follows:

gH,i =

gwatson,i, if Sum(gwatson,i) ≥ Sum(gcrick,i)

gcrick,i, else .
(2)

Similarly, we define gL,i denoting the gene of BPi having lower expression:

gL,i =

gwatson,i, if Sum(gwatson,i) < Sum(gcrick,i)

gcrick,i, else .
(3)

After defining gH,. and gL,. for each BP, we form the single cell matrix for BPs, scBP ,
as follows:

scBP =


g1L,1 g2L,1 gNL,1 g1H,1 g2H,1 . . . gNH,1

g1L,2 g2L,2 gNL,2 g1H,2 g2H,2 . . . gNH,2
...

...
...

. . .
...

. . .
...

g1L,M g2L,M gNL,M g1H,M g2H,M . . . gNH,M


Imputation of drop-outs

To address the bias caused by drop-outs, we performed the most recent and accurate drop-
out imputation tool called scImpute [33], which aims to improve the single-cell data quality
by removing the effects of drop-outs without introducing new biases to the data. scImpute
has two parameters.K denotes the number of existing cell types in the data, which we set to
1, as we work on the cell lines. The second parameter t controls the drop-out probabilities.
The authors show that their results are robust to different parameter values, therefore, we
carried on with the default of 0.5 for this parameter. The comparison between raw and
imputed read counts performed on the bidirectional genes is shown in Supp. Fig. 1A for
both HepG2 and K562. The Pearson correlation between imputed and raw data in both cell
lines is ∼ 1.

Quality of scRNA-seq

Imputed expression of bidirectional genes averaged over single cells was compared with
their corresponding bulk RNA-seq expression. For both, HepG2 and K562, the single cell
expression agrees well with bulk measurements (Spearman correlation coefficient of∼ 0.8,
Supplementary Figure 1B). Additionally, the imputed TPM values were divided into three
intervals, 1 < TPM < 10, 10 ≤ TPM ≤ 100, TPM > 100 to account for the number
of genes falling in those intervals per cell (Supplementary Figure 1C, and similarly for the
imputed read counts in 1D).
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Bidirectional gene signature: concordant or discordant
We define two types of signatures to address the changes in bidirectional gene expression.
Intuitively, if the two genes are mostly expressed in a consistent manner across the single
cells, for example one is always higher than the other, this would be considered as concor-
dant signature. However, if the expression of these two genes flips across cells, we refer to
this case as discordant. To analytically differentiate between both signatures for each pair
of genes in a BP, we performed the Wilcoxon signed rank test on their imputed single cell
expression (BPs where both genes had zero expression in all cells were removed for the
test). If the p-value after using Benjamini-Hochberg multiple testing correction is smaller
than or equal to 0.05, the gene pair is considered to be concordant. The number of concor-
dant BPs normalized by the total number of BPs in a given cluster is defined as concordant
ratio.

Enrichment of gene products categorized according to transcription states
We categorized the gene product annotations into two groups, protein-coding (PC) and
the rest as non-coding (NC). In the context of BPs, we introduce a new notation, gp ∈
{NC → NC,NC → PC,PC → NC,PC → PC}, representing the gene products of
a pair of genes. We measured the occurrences of each of the above four categories for the
gene pairs of our transcription states as shown in Figures 1F and Supplementary Figure 2C.
To compute the enrichment of such occurrences, we applied a hypergeometric test on their
contingency table, C ∈ Z4×4, where Ci,j represents the frequency of the jth gene product
category in the ith state. Precisely, let h(x;N,n, k) be the hypergeometric distribution,
where N denotes the population size, n denotes the sample size, k is the frequency of
successes in the population, and x represents the frequency of successes in the sample.
To apply this distribution to each entry Ci,j of the contingency matrix C, we used the
following setup:

h(Ci,j ; Σ4
r=1Σ4

s=1Cr,s,Σ
4
r=1Cr,j ,Σ

4
r=1Ci,r) . (4)

The p-value derived from this test was used to quantify the significance of enrichment of a
gene product category in a particular state.

Enrichment of TF ChIP-seq data
To preserve the spatial distribution of the TF ChIP-seq signal around the promoter, the
ChIP-seq reads are counted in bins of size 100 bp forming a window starting at the TSS
of each bidirectional gene and extending up to 2000 bp downstream of each of two TSSs
(Supplementary Figure 4A). An additional bin with variable size is allocated to count the
reads falling within the region between the TSSs of the two bidirectional genes. The 20
bins from the L gene, the bin for region between both TSSs, and the 20 bins from the H
gene are all combined into one vector of size 41 that represent the binned ChIP-seq signal
per BP for a particular TF. To compute the enrichment score of the ith TF at a particular
BP, we define:

Enrich(TF i) = Σ41
j=1log2(

TF i
j + 1

BGi
j + 1

), (5)
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where TF i is the signal measured for ith TF (for HepG2, i ∈ {1, . . . , 44} and for K562,
i ∈ {1, . . . , 50}) at the given BP. TF i

j denotes the read counts measured at the jth bin of
TF i signal and BGi

j denotes the median of TF i signal measured at the jth bin across all
BPs.

Definition of transcribed regions
For each gene, we consider all the annotated transcripts that start within 2 kb downstream of
the most 5′ TSS of the gene. We measured the length of the exonic region encompassed by
these transcripts, which we refer to as transcript length. Similarly, the exonic and intronic
region spanned by those transcripts is referred to as transcripts span. For instance, if the
following transcripts start downstream within 2 kb of the most 5′ TSS, T1 = (start :

0, end : 1000), T2 = (start : 200, end : 3000), T3 = (start : 200, end : 2000), then
the transcripts span would be equal to (start : 0, end : 3000), where start and end are
relative coordinates to the most 5′ TSS. Note that all regions in this interval are considered,
regardless of their exonic or intronic annotations. Also note that other transcripts of the
gene that would start outside of the 2 kb region are not considered for the definition of
transcripts span or transcript length.
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Figures

Figure 7 Advantages of studying BPs at single cell level. A) An illustration of a BP, defined
based on two genes located on opposing strands of DNA (Watson and Crick). Bulk RNA
measurements at the BP may hide complexity of BP gene regulation. This is shown in the left
single cell expression scenario, where one of the genes is expressed and the other is silent in the
same cell compared to the other scenario where single cell expression agrees with bulk
measurements. B) Heatmaps of 65 single cell RNA-seq expression measured in four bidirectional
promoters (TPM, HepG2 cells). C) After single cell sequencing and estimating the gene expression
of all genes in a cell, a set of 1,242 BPs was extracted. Single cell expression of either genes of a
BP was arranged in two separate matrices for which the rows represent the BPs and columns the
cells. Next, we swap the higher expressed gene to the matrix on the right and lower expressed one
to the left. The resulting matrices are combined into one joint BP single cell expression matrix.

Figure 8 Single cell RNA-seq expression in bidirectional promoters. A) Hierarchical clustering
of the HepG2 single cell transcript expression matrix visualized as a heatmap (log2, TPM). The
four distinct clusters (BLE, BSD, BWD, BND) are referred to as transcription state in this
manuscript. B) Number of BPs falling into each transcription state in HepG2 and K562 cells and
their overlap. C) Number of BPs falling into the gene product categories (NC→NC, NC→PC, etc.)
in HepG2. Statistically enriched values are shown in bold (Hypergeometric test p<0.05). D) Ratio
of concordant BPs shown separately in each state for both cell lines as well as their overlap. E)
Examples of concordant and discordant BPs in HepG2. F) CAGE read counts, measured for each
bidirectional gene (L and H), shown for each transcription state. Color code as in A. Significant
differences are marked with * (paired and two-sided Mann-Whitney test, p <0.05).

Figure 9 Structural features of BPs for HepG2 (left column) and K562 cells (right column).
A) Distributions of Pearson correlation coefficients (y-axis) calculated from all single cell
measurements for each BP in one of the states (x-axis). B) Distributions of TSS distance of BPs in
each state. C) Length distributions of transcripts span for L and H genes of BPs shown in each
state. Significant differences are marked with a * (paired and two-sided Mann-Whitney test,
p <0.05). For all subfigures the color-coding is consistent with Figure 1D.

Figure 10 Epigenetic characteristics in transcription states in HepG2 cells. A-G) Histone
modification (ChIP/Input) shown as median profiles (top panel) and log-transformed values as
heatmap (bottom panel). H) DNase1-seq median profiles (top panel) and log-transformed raw
counts (bottom panel). Arrangement of genes as in Figure 1D. The reads are measured in 40 bins
of size 100 bp forming a window of size 4000 bp centered around the TSSs, with an additional
variable bin between the TSSs.
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Figure 11 Transcriptional regulatory features in the transcription states. A) Heatmap of TF
enrichment scores (log ratio against background) for each BP (row) in HepG2 cells. BPs are sorted
as in Figure 1D. B,C) Distributions of percentages of TFs per BP (enrichment score in A > 0) in
each state for HepG2 (top panel) and K562 (bottom panel). D,E) ChromHMM annotations,
summarized into the types: TSS, Enhancer, and Repressed, are shown as percentages in a bar
plot per state (see Materials and methods).

Figure 12 Hypothetical model of three different genomic architectures underlying
epigenetic regulations of BPs. BPs that drive single cell expression patterns observed in the
BLE state show large TSS distance and higher abundance of repression associated marks and
depletion of most TFs. BSD and BWD, on the other hand, exhibit smaller TSS distance and more
TF binding compared to BLE. In addition, the transcripts span of the H gene is observed to be
significantly smaller compared to the L gene. BPs categorized in BND show the smallest TSS
distance with the most TF binding events that require more accessible DNA to regulate both the L
and H genes.
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