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Abstract1

Neurophysiological research has found that previously experienced sequences of2

spatial events are reactivated in the hippocampus of rodents during wakeful rest.3

This phenomenon has become a cornerstone of modern theories of memory and de-4

cision making. Yet, whether hippocampal sequence reactivation at rest is of general5

importance also for humans and non-spatial tasks has remained unclear. Here, we6

investigated sequences of fMRI BOLD activation patterns in humans during wakeful7

rest following a sequential but non-spatial decision-making task. We found that pattern8

reactivations within the human hippocampus reflected the order of previous task state9

sequences, and that the extent of this offline reactivation was related to the on-task10

representation of task states in the orbitofrontal cortex. Permutation analyses and fMRI11

signal simulations confirmed that these results reflected underlying neural activity, and12

showed that our novel statistical analyses are, in principle, sensitive to sequential neural13

events occurring as fast as one hundred milliseconds apart. Our results support the14

importance of sequential reactivation in the human hippocampus for decision making,15

and establish the feasibility of investigating such rapid signals with fMRI, despite its16

substantial temporal limitations.17

Highlights18

• We provide fMRI evidence for sequential pattern reactivation in the human19

hippocampus20

• Sequences of patterns reflect states from a sequential, non-spatial decision-making task21

• Simulations show that our novel fMRI analysis is sensitive to fast sequences of sub-22

second neural events23

• Results support the importance of sequential reactivation in the human hippocampus24

for decision making25
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Introduction26

The hippocampus plays an important role in memory (1–3), and is known to represent27

spatial as well as non-spatial information that is relevant to an animal’s current location28

within a ‘map’ of the ongoing task (4–8). Recent research has suggested that hippocampal29

memories are also used to inform spatial decision making and planing by reactivating neurally30

encoded experiences that are relevant for the current task (9, 10). Specifically, studies in31

rodents have shown that hippocampal representations of spatial locations are reactivated32

sequentially during short on-task pauses, longer rest periods, and sleep (11–13). This33

sequential reactivation, or replay, is related to better planning (12) and memory consolidation34

(14), and suppression of replay-related short wave ripples impairs spatial memory (15).35

While these findings have provided insights into the hippocampal computations underly-36

ing spatial decision making in animals, what role replay plays in non-spatial decision making37

tasks in humans has remained unclear. We instructed participants to perform a non-spatial38

decision making task, and recorded functional magnetic resonance imaging (fMRI) activity39

during resting periods before and after the task. We investigated whether sequences of fMRI40

activation patterns during rest reflected hippocampal replay of task states. Evidencing such41

replay, transitions between neural activity patterns were related to previously experienced42

sequences of task states. Moreover, reactivation in the hippocampus during rest was asso-43

ciated with better representation of the same task states in the orbitofrontal cortex during44

decision making. In line with our previous work, these orbitofrontal on-task representations45

were related to better performance of the task (16).46

Our results demonstrate sequential reactivation of non-spatial decision-making states in47

the human hippocampus and suggest that representations reflecting the structure of the48

current task are supported by the interaction of hippocampal and prefrontal brain systems.49

Our findings, together with a set of rigorous statistical tests and simulations, also establish50

the utility of nonivasive fMRI to detect possibly rapid replay events, despite the low temporal51

resolution of this method.52

Results53

Thirty three human participants performed a sequential decision-making task that required54

integration of information from past trials into a mental representation of the current task55

state (16, see Methods). Specifically, each stimulus consisted of overlapping images of a56

face and a house and participants’ main task was to make age judgments (old or young)57
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about one of the images (Fig. 1A). The category to be judged (face or house) was instructed58

before the first trial. Subsequent category switches were determined by the following rule:59

if the age in the current trial was the same as the age in the previous trial, then the judged60

category remained the same; on the other hand, if the age on the current trial was different61

from the age on the previous trial, the participant had to switch to the other category from62

the next trial onward (Fig. 1B). This created a ‘miniblock’ structure where each miniblock63

involved judgment of one category. Miniblocks were at least two trials long (that is, no age64

comparison was required on the first trial after a switch), and on average lasted for three65

trials. These task rules resulted in a total of 16 task states, which were experienced in66

a structured order (Fig. 1C). For example, the (Ho)Fy state, indicating an old house trial67

followed by a young face trial, was only experienced after a change from young to old houses.68

Participants performed the task with high accuracy (average error rate: 3.1 %, time-outs:69

0.6%, reaction time: 969 ms), improving their performance throughout the course of the70

experiment (see Fig. 1D, significant linear trends of task block for reaction times and errors,71

both ps<.001, see Supplemental Information, SI, Fig. S4, for further details).72

The experiment comprised two sessions during which participants engaged in the above73

described decision-making task while undergoing fMRI. The first session included task in-74

structions and four runs of task performance (388 trials, about 40 minutes duration). The75

second session took place one to four days later and was identical to session 1, but without76

instructions (Fig 1E). Resting state scans consisting of 5 minute periods of wakeful rest77

without any explicit task or visual stimulation (100 volumes per resting state scan) were78

administered for N = 23 participants (group 1) after session 1, before session 2 and after79

session 2, resulting in a total of 300 wholebrain volumes acquired during rest. A second80

group of participants (N = 10; group 2) underwent the same procedures as group 1,81

plus one additional resting state scan at the beginning of session 1, before having had82

any task experience or being exposed to task instructions. This resulted in a total of 40083

wholebrain volumes acquired during rest. The analyses reported below focus on fMRI data84

recorded during these resting scans. Resting state data acquired after participants had task85

experience will from hereon referred to as the TASK rest condition, whereas resting state86

data acquired before the task as the PRE rest condition. Data recorded while participants87

received instructions will serve as another control and referred to as the INSTR condition.88

To account for differences in the number of data points constituting the TASK vs control89

conditions, we used a size matched TASK condition where appropriate. Notably, while none90

of these conditions involves active experience of the sequential decision making task, they91

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/315978doi: bioRxiv preprint 

https://doi.org/10.1101/315978
http://creativecommons.org/licenses/by-nc-nd/4.0/


Face miniblock

B

…
Start 
with 

FACE

House miniblock

young young old young young 

Resting 

state*

Instructions


Task


Resting 

state

5 min

40 min

5 min

Session 1 Session 2 

D E

5 min

Resting 

state

Task


Resting 
state

5 min

40 min

5 min

time

Age:
Category:

* only in group 2

Response  
mapping Stimulus+ 

Response

1200 ms
3300 ms

Next 
trial

1200 ms

A

1 2 3 4 5 6 7 8

0
5

10
15

Block

E
rr

or
s 

[%
]

1 2 3 4 5 6 7 8
70
0

11
00

15
00

Block

R
ea

ct
io

n 
Ti

m
e 

[m
s]

Session 
1

Session 
2

Session 
1

Session 
2

C
(Ho)FyPrevious trial: 

House old
Current trial: 
Face young

age

change 

category 

change

face face face house house …

Repeat
Age change
Category change

Figure 1: Experimental task and performance. (A): On each trial, participants had to judge the age of either a face or
a house shown overlaid in a compound stimulus. Trials began with the display of a fixation cross and the response mapping
(1200ms), followed by the stimulus. Responses could be made at any time, and the stimulus stayed on screen for an average of
3300 ms. (B): The rule of the task required participants to switch between judging faces and houses whenever the age changed
between two trials, see text. (C): The state space of the task. Each node represents one possible task state, and each arrow
a possible transition. All transitions out of a state are equally probable, occurring with p = 0.5. Each state of the task is
determined by the age and category of the previous and current trial, indicated by the acronyms (see legend). States are colored
depending on whether they correspond to trials in which the age and category were repeated (orange), the age changed (green)
or the category changed (purple). (D): Average error rates and reaction times across the two sessions. Bars: ± 1 S.E.. Grey
dots represent individual subjects. (E): The experiment extended over two sessions, each of which included about 40 minutes
task experience flanked by resting state scans. *:The pre-task resting state scan in Session 1 was performed only for a subgroup
of our sample (N = 10; group 2).

differ in whether the task has been experienced before or not.92

The main goal of our study was to investigate sequential reactivation, or replay, of93

task-related experiences in the human hippocampus during rest. To this end, we trained94

a multivariate pattern recognition algorithm (see Methods) to distinguish between the acti-95

vation patterns associated with each of the 16 task states in the data recorded during task96

performance (Fig. 2A,B). Leave-one-run-out cross-validated classification accuracy on the97

task data from the hippocampus (HPC) was significantly higher than chance (6.25%) and98

than classification obtained in a permutation test (11.6% vs 7.1%, t32 = 8.9, p < .001, Fig.99

2C), indicating that hippocampal activation patterns indeed reflected task states. We then100

applied the trained classifier to each volume of fMRI data acquired during the resting state101

scans. Although classification accuracy cannot be assessed for the resting scan data (due102
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to lack of ground truth), we could assess the quality of the classification using the mean103

unsigned distance to the decision hyperplane, a proxy for classification certainty (17). This104

distance was larger in the TASK condition compared to simulated spatiotemporally-matched105

noise (‘NOISE’, t32 = 12.9, p < .001; for simulation details see Methods and SI) and the106

PRE condition (t9 = 2.1, p = .031, group 2 only, Fig. 2D). This suggests that fMRI patterns107

recorded during resting-state scans following task experience could reflect reactivation of108

task states, in line with previous findings (18–20).109

The defining aspect of replay is that previously experienced states are reactivated se-110

quentially. We therefore asked next whether it is theoretically possible to measure rapid111

sequential replay events (on the order of few hundreds of milliseconds in humans (21)) using112

fMRI, given its low temporal resolution. To this end, we simulated fMRI activity that113

would result from fast replay events (see SI and below), and asked what order and state114

information could be extracted from these spatially and temporally overlapping patterns.115

The slow hemodynamic response measured in fMRI causes brief neural events to impact the116

BOLD signal over several seconds. Although these same dynamics might obscure the details117

of a replayed sequence, our simulations showed that two successive fMRI measurements can118

still reflect two states from the same sequence, for instance the first and last element of a119

multi-step replay event (see SI). Because replay events mainly reflect short sequences of states120

(e.g., Ref. 13, their figure 3C), we can therefore expect that consecutively decoded states be121

close in the task’s state space (that is, separated by few intervening states in Fig. 1C), if they122

indeed reflect sequential replay. We further asked whether we could expect to successfully123

decode a pair of states from the same replay event, given the low accuracy of correctly124

decoding task states during task performance. Our simulations showed that, because brain125

activity recorded after a rapid replay event includes several superimposed states (Fig. S5B),126

the likelihood of classifying one out of several replayed states in each resting state brain127

volume is actually considerably higher than the overall decoding accuracy when classifying128

a single event during task. The chance that analyzing two consecutive brain volumes results129

in decoding one (ordered) set of two states out of several possible sets caused by the same130

replay event may therefore be on the order of the overall decoding accuracy (∼10%; see SI).131

Having established that, in principle, we can detect sequential replay in fMRI data,132

we next investigated whether the sequences of states we decoded in the TASK resting133

data (Fig. 3A) reflected sequences experienced during the task. Note that testing for134

sequentiality in the decoded data is not trivial given that the classifier was trained on task135

data that was itself sequential. As a result, apparent ‘sequentiality’ can be found even in136
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Figure 2: Sequential replay decoding analysis. (A): Illustration of analysis procedure. For simplicity, only two dimensions
and three state classes are shown. We first trained a classifier to distinguish between the different task states in the hippocampal
fMRI data acquired during the task. The trained classifier was then applied to each volume of fMRI data recorded during resting
sessions (grey dots). This resulted in a sequence of predicted classifier labels that was then transformed into a ‘transition matrix’
T that summarized the frequency of decoding each pair of task states consecutively. The structure of the decoded sequences,
as summarized by this matrix, was then compared to the sequential structure of the task (see text). Note that the real analysis
involved 16-way classification of >1000 dimensional data, which was compared to the task state space shown in Fig. 1C. (B):
Example data from one randomly selected participant. Each dark rectangle illustrates the sequence of classified states for the
100 volumes of fMRI data recorded in one resting state scan (depicted are three resting state scans acquired throughout the
experiment; see Fig. 1E). Columns represent time, and rows states. Each color-filled cell represents the state classified at
the respective time point, and color indicates the distance (in steps in the state space; Fig. 1C) from the state decoded in
the previous timepoint (i.e., the previous TR). (C) Classification accuracy during task performance was significantly higher
in hippocampal data (HPC) than in a permutation test (PERM). The solid line represents the theoretical chance baseline of
100/16=6.25. (D): Average distance to the hyperplane for classified states during rest in the NOISE (dark grey, left bar), PRE
(light grey, middle bar, N=10) and TASK conditions (green, rightmost bar, N=33). Larger distance indicates higher certainty
in the classification of the state. Each dot indicates one participant, bars within-subject S.E.M., *: p < .05.

random noise—although clearly those data do not reflect sequential replay. We therefore137

conducted a series of carefully controlled assessments of the levels of sequentiality in our138

data. Indeed, several forms of sequentiality predicted by replay were evident in our data139

when compared to a series of carefully matched controls. First, we predicted that replay140

would be reflected in a decreased number of steps that separate two consecutively decoded141
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states, as indicated by the above mentioned simulations. In line with this idea, the number142

of steps between state transitions decoded in the TASK resting condition was smaller, on143

average, than the distance between states in the INSTR condition (t32 = 2.4, p = .01),144

smaller than the distance found in the PRE condition (t9 = 2.3, p = 0.02, group 2 only) and145

smaller compared to a permutation test in which classified states were randomly reordered146

to control for overall state frequency (PERM condition: t32 = 4.6, p < .001; Fig. 3B,C).147

Second, because replay events are separated by long pauses (21), and sequentiality should be148

present only following the replay events, we expected the occurrence of short-distance state149

pairs to be clustered in time. Indeed, short-distance state pairs (less than 3 steps apart)150

were not only more frequent than expected, but were also more likely to occur in clusters151

in the TASK rest condition compared to the INSTR (t32 = 1.7, p = .046), PRE (t9 = 1.9,152

p = .044, group 2 only), and PERM controls (t32 = 4.5, p < .001, Fig. 3D). Third, we153

confirmed that neither the high prevalence of one particular step size nor sustained state154

activation would distort our conclusions regarding sequenceness in the TASK condition.155

To this end, we tested whether the frequency of decoded state transitions was linearly156

related to the distance between them in task space while also excluding state repetitions157

from the analysis. Specifically, we tested whether the empirical frequency of decoding each158

pair of task states consecutively (the ‘transition probability’ for each pair of decoded states,159

summarized in matrix T ; Fig. 3A) was negatively correlated with the distance D between160

states during the task (where Dij corresponds to the minimum number of steps necessary to161

get from state i to state j; Fig. 3E). This was indeed the case, with an average correlation162

between D and T of r = −.16 (t32 = −17.7, p < .001, t-test of individual correlations across163

participants, Fig. 3F). While we also found a correlation when the order to decoded states164

was permuted (PERM condition, r = −.08, p < .001), reflecting an effect of overall state165

frequency, this correlation was substantially smaller than in the TASK data (∆r = −.07,166

t32 = −5.8, p < .001). Likewise, applying the trained classifier to matched fMRI noise167

(see Methods) also showed that temporal contingencies between states in the training data168

for the classifiers lead to spurious correlations (NOISE condition, r = −.08, p < .001),169

but these were also significantly smaller than the correlation found in the TASK rest data170

(∆r = −.08, t32 = −5.6, p < .001, Fig. 3G). Importantly, our hypothesis that sequential171

reactivation of task-state representations during rest was caused by task experience was also172

supported by a significantly lower correlation between D and T in the TASK condition173

as compared to the INSTR data (t32 = −12.1, p < .001, when compared only subset of174

TASK condition matched in number of TRs), as well as the PRE resting scan (t9 = −7.9,175
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p < .001, group 2, p = .059 when compared to only first resting scan in TASK condition,176

Fig. 3H). Finally, we also assessed the effect of the sequential structure in the training177

data on our results in an additional control analysis in which we systematically excluded178

sets of state pairs from classifier training (see SI, Fig S2), to test if, as a result, these pairs179

would show a lower frequency in the resting data. The excluded transitions were observed180

as often as the included transitions (t32 = 0.3, p = 0.73), in line with our conclusion that181

the transition frequencies observed during rest reflected sequential reactivation above and182

beyond any sequential structure in the classifier.183

In order to investigate the effects of task experience on pair-decoding frequency data T184

while simultaneously (a) excluding state repetitions, (b) controlling for the above-mentioned185

effect of temporal contingencies in the classifier training and (c) incorporating the different186

sources of between- and within-participant variability, we performed a logistic mixed-effects187

model that included including nuisance covariates (see Methods). We will henceforth call the188

effect estimate (beta weight) of the distances D on the data T in this model ‘sequenceness,’189

and the nuisance effect ‘randomness.’ Comparing models containing the randomness regres-190

sor with vs. without an additional sequenceness regressor to explain frequency of transitions191

showed no difference in model fit in the PRE rest condition (Aikaike Information Criterion,192

AIC, 3651.5 vs 3651.4, χ2
1 = 1.9, p = .17). In the TASK rest condition, in contrast, adding193

the sequenceness regressor improved model fit (AIC 3642.1 vs 3645.4, χ2
1 = 5.2, p = .02,194

group 2 only and considering only the first TASK resting scan from the first session to195

equate power). Modelling both conditions within one model also showed improved fit when196

the interaction of condition factor with sequenceness and randomness was included (AIC197

3660.2 vs 3674.1, p < .001). Figure 4A/B shows the sequenceness and randomness effects in198

the TASK compared to the PRE condition. Comparing the INSTR to the TASK condition in199

all participants showed the same pattern of effects: No effect of the sequencesness regressor200

was found in the INSTR condition (AIC 10046 vs 10047, p = .27), but in the TASK rest201

condition (AIC 10130 vs. 10146, p < .001, TASK data matched in size to equate power),202

see Fig.s. 4C/D. A combined model indicated no interaction between condition and the203

pattern transitions however (10142 vs 10130, p > .1). Note that the lack of sequenceness204

before task experience shows that our modelling approach analysis successfully controlled for205

bias effects due to the temporal contingencies between states in the classifier training data.206

Analyzing data from all participants (groups 1 & 2) and all TASK resting-state scans with207

this model showed that the inclusion of a state distance factor led to significantly better208

model fits even after controlling for the randomness (bias) effect as above (AIC 10789 vs209
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Figure 3: Hippocampal state transitions during rest are related to state distances in the task. (A): The matrix
T , expressing the log odds of transitions between all states in the sequence of classification labels in the hippocampal TASK
rest data, averaged across all participants. Y-axis: first state, x-axis: second state, in each consecutively decoded pair. Darker
colors reflect a higher probability of observing a pair in the data. (B): Relative distributions of number of steps separating
two consecutively decoded states. A distance of 1 corresponds to a decoded state transition as experienced in the task, 2
corresponds to a transition with one item missing in between as compared to the task, etc. Barplots show the difference
in relative frequency (∆ Density) with which each transition type was observed in the TASK condition compared to INSTR
and PRE control conditions and a permutation test (PERM), see legend. (C): The average distance in state space of two
consecutively decoded states was significantly lower in the TASK data as compared to the INSTR, PRE and PERM controls
(all ps <.05, t-test comparing difference to 0). (D): Low-distance transitions (fewer than 3 steps) occurred in succession
significantly more frequently in the TASK data compared to all controls (all ps <.05). (E): The matrix D, indicating the
minimum number of steps between each pair of states in the task, i.e. the state distances. Lighter colors reflect a higher
number of steps between states. (F): Average correlations between the state distance matrix D and the corresponding decoded
transition matrix T in the TASK condition (green bar, left), as compared to a permutation test (light grey, middle) or when
the same classifier was applied to spatio-temporally matched noise (NOISE; dark gray bar, right). (G): Within-participant
differences between correlations in TASK versus the PERM and NOISE controls (all ps <.05) (H): The correlation between
D and T in the PRE and INSTR phases and each of the TASK resting state sessions. Dots reflect correlations/differences of
individual participants, bars S.E.M.

10780, χ2
1 = 11.0, p < .001), supporting the conclusion that previously experienced sequences210

of task states are replayed in the human hippocampus during rest periods. These results211

were unaffected by the choice of distance metric, see SI. No comparable pattern of results212

emerged when data from the orbitofrontal cortex, a brain area known to contain task-state213

information during decision making (16, 22), was analyzed (see SI).214

We next tested whether the sequenceness found in the TASK condition could be explained215
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Figure 4: Effect of state distance (sequenceness) on transition frequency in hippocampal data is specific to
TASK rest conditions. Bars indicate strength of fixed effects in mixed effects model (see text). Dots indicate individual
random effects. Note that variability of dots in this case cannot be used to infer significant differences. (A): Effect of sequenceness
regressor on resting data from the PRE and TASK conditions. Model comparisons based on AIC showed that the sequenceness
regressor led to better model fit in the TASK but not the PRE condition. (B): Effect of randomness across the PRE and TASK
conditions. The randomness regressor captures the sequentiality in the data due to a classifier bias, see text. (C): Sequenceness
in the INSTR and TASK conditions, as in panel A. Adding the sequenceness regressor led to better model fit only in the TASK
condition. (D): Randomness in the INSTR and TASK conditions as in (B).

by backwards replay, or replay of partial states such as stimuli, instead of forward replay216

of complete state information. To this end, we defined alternative transition functions217

corresponding to the above hypotheses, and tested the power of these transition functions to218

explain the sequences of states during rest. We used one-step transition functions instead of219

state distances to avoid statistical disadvantages of alternative models that have very evenly220

distributed distance (high entropy) functions. As in our original analysis, all transitions221

functions were based on the sequence of trials experienced in the task. The alternative222

transition functions were created by assuming that only partial aspects of each trial are223

represented, for instance by computing the experienced transitions between attended stimuli224

without contextualisation by the event in the previous trial. As the classifier was trained225

to distinguish all 16 possible states, we assumed that different states corresponding for226

instance to the same stimulus would be fully aliased. This approach allowed to calculate the227

likelihood that the observed sequences of states were generated by (a) replay of trials, (b)228

replay of states containing only information about the current attention, (c) replay of states229

containing information about the current and past information and (d) backward replay.230

Fig. 5 A-D shows the transition functions used in these analyses. Model comparison of the231

same mixed effects models as above showed that the transition function assuming full state232

representations (Fig. 5E) led to a better model fit compared to all four alternative models233

(AIC: 20808, 20808, 20806, 20796, for the 4 alternative models, respectively; AIC of true234
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model: 20782, see Fig. 5F).235
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Figure 5: Alternative state transition functions have less power to explain hippocampal state sequences during
rest. (A-E) Alternative state transitions. Rows indicate origin states and columns indicate receiving states for a given transition.
Color shading indicates log likelihood of the corresponding transition in each model, see legend. Empty (white) cells indicate
that a transition is not possible. ’Reduced model’ panels in A-C show the transition function when aliased states are collapsed.
(F) Akaike information criterion when data from the TASK rest condition was modelled using the transition functions shown
in A-E.

To test whether the observed sequenceness in hippocampal fMRI data could have been236

caused by fast sequences of neural events in principle, we then simulated fMRI signals237

generated by sequences of neural events of different speeds, and asked at which speed the238

above analyses can uncover the underlying sequential structure. In these simulations, each239

neural event triggered a hemodynamic response in a distributed pattern of voxels (see SI; Fig.240

S3). The simulations confirmed that following replay, decoding of replayed state identities is241

possible over multiple TRs, even when fast replay speeds caused the involved fMRI patterns242

to be highly overlapping (Fig. S5). Importantly, when signal-to-noise ratio was adjusted to243

yield state-decoding levels that were matched to our data (12.1% accuracy in simulations,244

vs. 11.6% in the data), significant correlations between the consecutively decoded state pair245

frequencies T and the corresponding distances D were found even at replay speeds of about246

14 items per second (i.e. inter-event intervals of 60-80ms; r = −0.018; permutation test:247

r = −0.003; t-test of sequence vs permutation results: t199 = −4.42, p < .001, corrected for248
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multiple comparisons; corresponding test for events separated by faster events at 40-60 ms:249

p = .18; p < .05 for all slower sequences; Fig. S6). This suggests that our findings in the250

resting-state data may reflect fast sequential replay in the human hippocampus.251

In combination, these analyses show that sequences of hippocampal fMRI activity pat-252

terns during rest were systematically related to previous task experience. Interestingly, we253

found no such effect when we included backward distances between states instead of the254

forward distance in the model. This indicates that the sequences of hippocampal activity255

patterns became directionally structured in correspondence to participants’ task experience.256

Finally, we investigated the functional significance of hippocampal replay of abstract257

task states. One idea is that replay helps to form, or further solidify, a representation of258

the transitions between states of the task (23–25). We therefore tested for a relationship259

between sequential state pattern reactivation during rest and better representation of states260

during the task, as measured through cross-validated state decoding accuracy in fMRI data261

recorded during task performance. We did not find any evidence of a relationship between262

hippocampal sequenceness at rest and decoding of states during task performance (r = −.05,263

p > .05). However, we did find a significant correlation between hippocampal sequenceness264

at rest and orbitofrontal state representations during the task (r = −.47, p = .005). Notably,265

in previous work we have shown that improved state decoding in the orbitofrontal cortex is266

associated with better decision making in this task (16, see). This finding therefore suggests267

a role for hippocampal replay in supporting the integrity of task-relevant orbitofrontal268

state representations during decision making. We also tested for a relationship between269

hippocampal replay at rest and behavioral measures of task performance, but did not find270

any evidence for a direct relationship between sequenceness and reaction times, error rates,271

or the change in these measures across runs (all ps > .10). However, in line with our previous272

work, we did find a relationship between the change in orbitofrontal decoding accuracy during273

the task and improvements in task performance. That is, runwise decoding within the first274

session was correlated with runwise error rates (χ2
1 = 9.1, p = .003, using the same decoding275

measure as used before, see ref. 16). This was not the case for on-task decoding in the276

hippocampus (p = .87, interaction with ROI: χ2
1 = 5.2, p = .023). This result suggests277

that the hippocampus supports the offline formation or maintenance of a ‘cognitive map’ of278

the task, while the orbitofrontal cortex is deployed to represent such a map during decision279

making (16, 26).280
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Discussion281

Our findings demonstrate that fMRI patterns recorded from the human hippocampus dur-282

ing rest reflect sequential replay of non-spatial task states previously experienced in a283

decision-making task. Previous studies have relied on sustained elevated fMRI activity in the284

hippocampus or sensory cortex as evidence for replay (18–20, 27), investigated wholebrain285

MEG signals (28), or studied EEG sleep spindles and memory improvements that are thought286

to index replay activity (29–33), but were not able to directly demonstrate sequential replay287

in the human hippocampus. Our study represents an important extension of these findings288

by providing evidence of sequential offline reactivation of non-spatial decision-making states289

in the human hippocampus.290

Evidence of sequentiality and localization of replay in the human hippocampus is in direct291

correspondence with animal studies in which replay has been shown to be sequential and292

specific to hippocampal place cells (e.g. 34). Importantly, unlike the majority of previous293

investigations in animals, the here reported sequences of activation patterns signify the294

replay of non-spatial, abstract task states. Our results therefore add to a growing literature295

proposing a significant role for ‘cognitive maps’ in the hippocampus in non-spatial decision296

making (3, 8, 26, 35).297

Our findings are in line with the idea that the human hippocampus samples previous task298

experiences in order to improve the current decision-making policy, a mechanism that has299

been shown to have unique computational benefits for achieving fast and yet flexible decision300

making (23–25). Dating back to Tolman (36), this idea requires a neural mechanism that301

elaborates on and updates abstract state representations of the current task, regardless of the302

task modality. Several studies have suggested that the hippocampus and adjacent structures303

support a broad range of relational cognitive maps (35), as evidenced by hippocampal304

encoding of not only spatial relations but also temporal (37, 38), social (7), conceptual305

(6) or general contingency relations (39). Here, we showed that the human hippocampus306

not only represents these abstract task states, but also performs sequential offline replay of307

these states during rest.308

Our results imply a relationship between hippocampal replay and the representation309

of decision-relevant task states that are thought to reside in the orbitofrontal cortex (16,310

22, 40–42). The relationship between ‘offline’ hippocampal sequenceness and the fidelity of311

‘online’ orbitofrontal task-state representations raises the possibility that the hippocampus312

supports the maintenance and consolidation of state transitions that characterize the task313

and are employed during decision making (38). Given our findings and recent evidence314

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/315978doi: bioRxiv preprint 

https://doi.org/10.1101/315978
http://creativecommons.org/licenses/by-nc-nd/4.0/


implying hippocampal place and entorhinal grid cells in signaling non-spatial task-relevant315

stimulus properties (6, 8), a crucial question for future studies will be to further specify how316

flexible, task specific representations in the hippocampus interact with task representations in317

other brain regions (26). Of particular interest will be investigations asking whether neural318

populations in the hippocampus and entorhinal cortex share a common neural code for319

abstract task states with orbitofrontal (16) and medial prefrontal regions (43), as indicated320

by recent studies (6, 44, 45). Together with our findings, this research promises to shed light321

on the neural representations and computations underlying memory and decision making.322

Experimental Procedures323

Participants324

Thirty nine participants were selected according to standard fMRI screening criteria (right325

handedness, 18–35 years of age, normal or corrected-to-normal vision and no contraindication326

for fMRI) from the Princeton University community, and were compensated with $20 per327

hour plus up to $5 performance-related bonus. Six participants were excluded from analysis328

due to either technical errors (3 participants), violation of performance criteria standards (2329

subjects with over 3 times the average error rate in the last two blocks of the experiment)330

or incomplete data (1 participant). The final sample consisted of 33 participants (22 female,331

mean age 23.4 years).332

Stimuli333

Stimuli consisted of spatially superimposed images of a face and a house (see (16); face334

images from http://faces.mpdl.mpg.de/faces described in (46), see Fig. 1). Faces and335

houses could be classified as either young or old, e.g. a stimulus could show an old face336

image blended with a contemporary (i.e., young) house image. Four classes of stimuli were337

possible: (1) two old or (2) two young face and house pictures, (3) a young face with an old338

house or (4) vice versa.339

Task340

The task was identical to Schuck et al. 2016 and will be described only briefly. Each trial341

began with the display of the mapping of a left and right key to a young and old response342

(changing randomly trialwise) below a fixation cross for 1.2s (range: 0.5–3.5s). Then, a343
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compound face-house stimulus was shown for 3.3s (range: 2.75-5s; Fig. 1) and participants344

had to make an age judgment about one of the two image categories. Participants knew345

which category of the stimulus they had to judge by applying the following rules: 1. before346

the first trial of each run, the category to judge was displayed on the screen; 2. Once the age347

of the relevant category changed (e.g., from young to old), the judged category changed on348

the next trial. 3. No age comparison was necessary on the first trial after a category change,349

i.e. each category was judged for at least two trials in a row before a switch. The average350

trial duration was 4.5s (range: 3.25-8.5s), all timings were randomly drawn from a truncated351

exponential distribution and the response deadline was 2.75s. The category instruction cue352

at the beginning of a run was displayed for 4s. Erroneous or time-out responses led to353

feedback (written above stimulus for 0.7s) and trial repetition. If an error trial involved an354

age change (and thus would require a category switch on the next trial), participants had to355

repeat the trial before the error as well as the error trial, giving them the chance to observe356

the age change. Otherwise, they had to repeat the trial on which they made the error.357

Design358

Participants underwent two fMRI sessions. The first session began with the display of359

written instructions while participants underwent a functional scan (group 1), or a 5 minute360

resting-state scan followed by instructions (group 2). The instructions explained the rules of361

the task and contained a training phase in which simple age judgments had to be made on362

(non-overlapping) face and house images. The images shown in this period were later used in363

the task, thus familiarizing participants with the age judgment aspect of the task as well as364

the stimuli. The instructions furthermore involved an annotated walk-through of four trials365

of the real task (i.e., with overlapping images and the requirement to switch attention after366

an age change). Following the instructions, participants performed 4 runs of the task (97367

trials per run, 388 total). Each run lasted about 7-10 minutes and participants were given368

the chance to rest briefly between runs. A 5 minute fieldmap scan was done between runs369

2 and 3, resulting in a longer break for participants. After run 4, participants underwent a370

resting state scan as well as a structural scan. Lights were turned off during resting-state371

scans and participants were instructed to stay awake for the entire duration of the scan (5372

minutes, 100 TRs). The second session was identical for all participants and involved the373

following scans: resting state, 2 task runs, fieldmap, 2 task runs, resting state and structural374

scan. Thus, overall, participants performed 8 task runs and 3 (group 1) or 4 (group 2)375

resting-state scans. In all other regards, the task design involved the same characteristics as376
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detailed in Schuck et al. (2016).377

Behavioral Analyses378

Behavioral analyses were done using mixed effects models implemented in the package lme4379

(47) in R (48). The model included fixed effects for Block, Condition, Category and intercept.380

Participants were considered a random effect on the intercept and the slopes of all fixed381

effects. The reported p-values correspond to Wald chi-square (χ2) tests as implemented in382

R. Reaction time (RT) analyses were done on error-free trials only and reflect the median383

RT within each factor cell.384

fMRI Scanning Protocol385

Magnetic-resonance images were acquired using a 3-Tesla Siemens Prisma MRI scanner386

(Siemens, Erlangen, Germany) located at the at the Princeton Neuroscience Institute. A387

T2*- weighted echo-planar imaging (EPI) pulse sequence was used for functional imaging388

(2×2 mm in plane resolution, TR = 3000 ms, TE = 27 ms, slice thickness = 2 mm, 53389

slices, 96×96 matrix (FOV = 192 mm), iPAT factor: 3, flip angle = 80◦, A→P phase390

encoding direction). Slice orientation was tilted 30◦ backwards relative to the anterior391

– posterior commissure axis to improve acquisition of data from the orbitofrontal cortex392

(Deichmann2003). Field maps for distortion correction were acquired using the same393

resolution (TE1 = 3.99ms) and a MPRAGE pulse sequence was used to acquire T1-weighted394

images (voxel size = 0.93 mm). The experiment began 20 seconds after acquisition of the395

first volume of each run to avoid partial saturation effects.396

fMRI Data Preprocessing397

FMRI data preprocessing was done using SPM8 (http://www.fil.ion.ucl.ac.uk/spm)398

and involved fieldmap correction, realignment, and co-registration to the segmented struc-399

tural images. The task data used to train the classifier were further submitted to a mass-400

univariate general linear model that involved run-wise regressors for each state (see below),401

nuisance regressors that reflected participant movement (6 regressors) and run-wise inter-402

cepts. The resulting voxelwise parameter estimates were z-scored and spatially smoothed (4403

mm FWHM). The resulting activation maps were used as the training set for a support-vector404

machine with a radial basis function (RBF) kernel that was trained to predict the task state405

from which a particular activation pattern came from (Chang2011). Like the activation406
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maps used for classifier training, the resting-state data were z-scored and smoothed (4mm407

FWHM). Anatomical ROIs were created using SPM’s wfupick toolbox. The hippocampus408

(HC) was defined as the left and right hippocampus AAL labels. The orbitofrontal cortex409

was defined as in (16). Behavioral analyses and computations within the assumed graphical410

model of state space (see below) were done using R (48).411

fMRI Classification Analysis412

The support vector machines were trained on 8 maps of parameter estimates (“betas”) for413

each of the 16 states (one map for each state and run) restricted to the anatomical mask414

of the hippocampus (back-transformed into each subject’s individual brain space) or the415

orbitofrontal cortex. Classification accuracy was assessed with a leave-one-run-out cross-416

validation scheme in which data from 7 runs were used for training and the held-out run was417

used for testing (Fig. 2). The resting-state analysis used a classifier trained on all available418

task data (8 runs). This classifier was applied to each volume of the resting-state data419

and the most highly classified state was considered as the output of the classifier for that420

volume. The resulting sequence of predictions was the main focus of our analyses (see below).421

We obtained the distance to the hyperplane by dividing the decision value by the norm of422

the weight vector w, as specified in the libSVM webpage (http://www.csie.ntu.edu.tw/423

~cjlin/libsvm/faq.html#f4151). For each volume, we then calculated the average of the424

distances of all pairwise comparisons of the predicted class against all other classes, to obtain425

a proxy of how certain the classifier is in its prediction. Student t tests pertaining to decoding426

results were one-tailed, given the a priori expectation of larger-than-chance decoding in the427

hippocampus.428

Sequenceness Analysis429

The main question of the sequenceness analysis was whether the state transitions decoded430

from resting state scans, T , were related to the distance between states experienced during431

the task,D. To this end, we analyzed the neural state transitions T with logistic mixed-effects432

models, using the lme4 (47) package in R (48). Because the slow hemodynamic response433

function leads to encoding of sequential structure in activity patterns (i.e., there is high434

similarity between temporally adjacent patterns), a classifier trained on sequential task data435

can be biased to decode states in a similar sequence to the training data, even if the test data436

are random (i.e., the sequenceness comes from the training, not the test set). We therefore437
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applied the trained classifier to matched fMRI noise (see below) and used the resulting438

spurious ‘state transitions,’ T (ε), as a covariate that would account of the spurious base439

rate of transitions that is due to the classifier rather than the data. Applying these models440

to control conditions consistently yielded non-significant effects of sequenceness, showing441

that this analysis appropriately controls for the above mentioned spurious structure that is442

observable for instance in the significant correlations between D and T in the noise data443

(Fig. 3F). Specifically, our model included the following fixed effects: (1) the distance444

between states, D, which was the regressor of interest, and as regressors of no interest445

(2) the transition probabilities obtained in the above mentioned noise simulations, T (ε),446

(3) an orthogonal quadratic polynomial of T (ε) that was included in order to account447

for as much noise-related variance as possible, and (4) an intercept. Models of change448

in sequenceness across PRE, INSTR and TASK conditions (Fig. 4) additionally involved449

interaction terms of condition with the distance D and condition with the noise transitions450

T (ε). Participant identity was included as a random factor to account for between subject451

variability. To capture state-related variability (state frequency effects affect the distribution452

of state transitions), state identity sj of a transition from state i to state j was used as an453

additional random effect nested within subject. Participant and state were random grouping454

factors for all fixed effects with exception of the quadratic expansion of T (ε), where including455

these random factors caused problems in fitting the logistic regression models.456

Formally, the model followed the general assumption that the number of transitions Y is
drawn from a binomial distribution of n draws and probability T :

Yijk ∼ B(nk, Tijk)

where nk corresponds to the number of measurements for subject k, and i and j index457

the outgoing and incoming states of a given transition. The logit transformed probabilities458

T (shown in Fig. 2D; logit is the canonical link function for binomial models) were then459

modeled in a mixed effects regression model with the above mentioned fixed and random460

effects structure:461

logit(Tijk) = β0 +Dijβ1 + T (ε)ijβ2 + T (ε)2
ijβ3 +

γ0k +Dijγ1k + T (ε)ijγ2k +

ζ0kj +Dijζ1kj + T (ε)ijζ2kj + εijk

In the text, we describe the fixed effect of D, β1 in the models, as ‘sequenceness,’ and the462

fixed effect of T (ε), β2, as ‘randomness’ (Fig. 4B,C). The subject-specific random effects of463
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D, γ1k, were used as individual sequenceness indicators in the correlations in Fig. 4F,G. The464

state and subject specific random effects are indicated by ζ. Correlations between random465

effects were estimated. Model comparisons were conducted using likelihood-ratio tests by466

comparing base models including the noise transitions T (ε) with versus without the fixed467

effect regressor of distance (sequenceness), or without the condition interaction terms to the468

full models that included these terms. The random effects structure was kept constant across469

these comparisons.470

T-tests pertaining to sequenceness results (number of steps, etc.) are one-tailed, given471

our a priori expectation of larger sequenceness in the hippocampus compared to the various472

controls.473

Alternative Transition Functions474

Alternative transition functions were computed directly from the true transition functions T .475

These alternatives were based on the assumption that the hippocampus has access to only476

partial state information, and hence correspond to transition functions defined over subsets477

of states. We define the set of all states S:478

S = {(Fy)Fy, (Fy)Fo, (Fy)Hy, (Fy)Ho, (Fo)Fy, (Fo)Fo, (Fo)Hy, (Fo)Ho,

(Hy)Fy, (Hy)Fo, (Hy)Hy, (Hy)Ho, (Ho)Fy, (Ho)Fo, (Ho)Hy, (Ho)Ho}

To compute the transition function of the current trial model, for instance, we define479

that Strial
Fy is the subset of states that indicate that Fy was the current trial:480

Strial
Fy = {(Fy)Fy, (Fo)Fy, (Hy)Fy, (Ho)Fy} ⊆ S

Strial
Fo , Strial

Hy , Strial
Ho are the corresponding subsets of states with Fo, Hy and Ho as current481

trials. The transition function is then computed such that if a transition between states si482

and sj exists, a transition between si and all states of the trial matched subset to which sj483

belongs, Strial
·sj , exists with equal probability:484

T trial
si,sj

=
1

N

N∑
{sx:sx∈Strial·sj }

Tsi,sx
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Following this procedure, we defined subsets of states that have the same current atten-485

tion, and subsets of states that have the same current and past attention, and then computed486

the transition functions as described above. The transition functions of the different models487

are shown in Figure 5A-C. The reverse replay transition function was simply the transpose488

of T .489

Synthetic fMRI Data and Noise Simulations490

In order to estimate to what extend training the classifiers on sequential data influenced491

the sequenceness of their predictions, we simulated, for each participant, individually spatio-492

temporally matched fMRI noise, and applied the classifiers to these data. For each partici-493

pant and resting state session, we first extracted fMRI data from the hippocampus and the494

orbitofrontal cortex. As in the classification analyses, we applied linear detrending to each495

voxel. We then estimated the average standard deviation of the voxels within these regions, as496

well as the average autocorrelation using an AR(1) model in R. Next, we used the neuRosim497

toolbox in R (49) to simulate fMRI noise with the same standard deviation and temporal498

autocorrelation as the real data. Finally, we used AFNI’s 3dFWHMx and 3dBlurToFWHM499

functions to first estimate the spatial smoothness of the real data, and then smooth the500

simulated noise until it has the same effective smoothness. For each existing resting-state501

run, matched noise data with the same number of TRs and voxels were generated. Figure502

S1 (SI) shows the temporal and spatial smoothness of the real and simulated data separately503

for each run. In all cases, the properties of the simulated data did not differ from the real504

data, paired t-tests, all ps > .05.505

Finally, we applied each participant’s classifier to the matched noise data. The classifier506

was identical to the classifier that was used in estimating the sequences of states from507

the real data. The resulting sequence of predicted states reflects the bias of the classifier508

to make sequential predictions because of pattern overlap in the training set, even when509

applied to noise, as well as any tendency of the classifier to decode certain states more510

often than others. We therefore used the sequence of states from this analysis to construct511

the nuisance covariate for the mixed effects models, i.e. the noise ‘transition matrix,’ T (ε),512

and to perform the appropriate comparisons in the correlation analysis. These comparisons513

between sequenceness in real data versus simulated noise in the correlation and mixed effect514

analyses indicated that the noise sequenceness T (ε) indeed explained a significant amount515

of sequential variability of the decoded states (see Figs. 3F,G, 4B, D), and thus served as a516

powerful control. Together with the permutation tests (Fig. 3B-D, 3F,G), the comparisons517
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across brain regions (Fig. 4E) and the within-participant comparisons between the PRE,518

INSTR and TASK conditions (3B-D, H and 4A-D), our approach represents a stringent519

control of potential biases.520
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