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Abstract1

Neurophysiological research has found that previously experienced sequences of2

spatial events are reactivated in the hippocampus of rodents during wakeful rest. This3

phenomenon has become a cornerstone of modern theories of memory and decision4

making. Yet, whether hippocampal sequence reactivation at rest is of general impor-5

tance also for humans and non-spatial tasks has remained unclear. Here, we investigated6

sequences of fMRI BOLD activation patterns in humans during wakeful rest following a7

sequential non-spatial decision-making task. We found that pattern reactivations within8

the human hippocampus reflected the order of previous task state sequences, and that9

the extent of this offline reactivation was related to the on-task representation of task10

states in the orbitofrontal cortex. Permutation analyses and fMRI signal simulations11

confirmed that these results reflected underlying BOLD activity, and showed that our12

novel statistical analyses are, in principle, sensitive to sequential neural events occurring13

as fast as one hundred milliseconds apart. Our results support the importance of14

sequential reactivation in the human hippocampus for decision making, and establish15

the feasibility of investigating such rapid signals with fMRI, despite its substantial16

temporal limitations.17

Highlights18

• We provide fMRI evidence for sequential pattern reactivation in the human19

hippocampus20

• Sequences of patterns reflect states from a sequential, non-spatial decision-making task21

• Simulations show that our novel fMRI analysis is sensitive to fast sequences of sub-22

second neural events23

• Results support the importance of sequential reactivation in the human hippocampus24

for decision making25
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Introduction26

The hippocampus plays an important role in memory1–3, and is known to represent spatial27

as well as non-spatial information that is relevant to an animal’s current location within a28

‘map’ of the ongoing task4–8. Recent research has suggested that hippocampal memories are29

also used to inform spatial decision making and planing by reactivating neurally encoded30

experiences that are relevant for the current task9,10. Specifically, studies in rodents have31

shown that hippocampal representations of spatial locations are reactivated sequentially32

during short on-task pauses, longer rest periods, and sleep11–13. This sequential reactivation,33

or replay, is related to better planning12 and memory consolidation14, and suppression of34

replay-related short-wave ripples impairs spatial memory15.35

While these findings have provided insights into the hippocampal computations under-36

lying spatial decision making in animals, what role replay plays in non-spatial decision37

making tasks in humans has remained unclear. We instructed participants to perform a38

sequential non-spatial decision making task, and recorded functional magnetic resonance39

imaging (fMRI) activity during resting periods before and after the task. The sequential40

nature of the task was critical to correct performance, ensuring that participants would41

encode sequential information while completing the task. We investigated whether sequences42

of fMRI activation patterns during rest reflected hippocampal replay of task states. Evi-43

dencing such replay, transitions between hippocampal fMRI activity patterns were related44

to sequences of task states. Careful analyses and simulations confirmed that the structure45

seen in hippocampal data reflects sequential information in the BOLD responses above and46

beyond any structure introduced by state classifiers trained on task states. Importantly,47

reactivation in the hippocampus during rest was associated with better representation of48

the same task states in the orbitofrontal cortex during decision making, which in turn was49

related to better performance of the task, in line with our previous work16.50

Our results demonstrate sequential reactivation of non-spatial decision-making states51

in the human hippocampus and suggest that the interaction between hippocampal and52

prefrontal brain systems supports the construction and use of representations reflecting the53

structure of the current task. Our findings, together with a set of rigorous statistical tests54

and simulations, also establish the utility of noninvasive fMRI to detect possibly rapid replay55

events, despite the low temporal resolution of this method.56
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Results57

Thirty three human participants performed a sequential decision-making task that required58

integration of information from past trials into a mental representation of the current task59

state16 (see Methods). Specifically, each stimulus consisted of overlapping images of a face60

and a house and participants’ main task was to make age judgments (old or young) about61

one of the images (Fig. 1A). The category to be judged (face or house) was instructed62

before the first trial. Subsequent category switches were determined by the following rule:63

if the age in the current trial was the same as the age in the previous trial, then the judged64

category remained the same; on the other hand, if the age on the current trial was different65

from the age on the previous trial, the participant had to switch to the other category from66

the next trial onward (Fig. 1B). This created a ‘miniblock’ structure where each miniblock67

involved judgment of one category. No age comparison was required on the first trial after68

a switch. Miniblocks were therefore at least two trials long, and on average lasted for three69

trials. These task rules resulted in a total of 16 ‘task states’ reflecting the ‘location’ in70

the current miniblock and were experienced in a structured order (Fig. 1C). For example,71

the (Ho)Fy state, indicating a young face trial that followed an old house trial, was only72

experienced at the end of a house (old) miniblock, as the first trial of the next face (young)73

miniblock. This particular structure meant that although the task was not spatial, it involved74

navigating through a sequence of states that had predictable relationship to each other, as75

in a virtual maze. Participants performed the task with high accuracy (average error rate:76

3.1%, time-outs: 0.6%, reaction time: 969 ms), improving their performance throughout the77

course of the experiment (see Fig. 1D, significant linear trends of task block for reaction78

times and errors, both p’s<.001, see also Supplemental Information, SI, Fig. S4, for further79

details).80

The experiment was comprised of two sessions during which participants engaged in the81

above decision-making task while undergoing fMRI. The first session included ∼ 5 minutes of82

task instructions and four runs of task performance (388 trials, about 40 minutes duration).83

The second session took place one to four days later and was identical to session 1, but84

without instructions (Fig 1E). Resting state scans consisting of 5 minute periods of wakeful85

rest without any explicit task or visual stimulation (100 volumes per resting state scan) were86

administered for N = 23 participants (group 1) after session 1, before session 2 and after87

session 2, resulting in a total of 300 whole brain volumes acquired during rest. A second88

group of participants (N = 10; group 2) underwent the same procedures as group 1, plus89

one additional resting state scan at the beginning of session 1, before having had any task90
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Figure 1: Experimental task and performance. (A): On each trial, participants had to judge the age of either a face or
a house shown overlaid as a compound stimulus. Trials began with the display of a fixation cross and the response mapping
(how left/right was assigned to old/young; 1200ms), followed by the stimulus. Responses could be made at any time, and the
stimulus stayed on screen for an average of 3300 ms. (B): The task required participants to switch between judging faces and
houses following each time the age changed between two trials, see text. (C): The state space of the task, reflecting the abstract
space which participants traversed, analogous to a spatial maze although non-spatial from the point of view of the participant.
Each node represents one possible task state, and each arrow a possible transition. All transitions out of a state are equally
probable, occurring with p = 0.5. Each state of the task is determined by the age and category of the previous and current
trial, indicated by the acronyms (see legend). States are colored based on their ‘location’ within a miniblock: trials within a
miniblock in which the age and category were repeated (orange), trials at the end of a miniblock in which the age changed
(green), and trials entering a new miniblock where the category changed (purple). (D): Average error rates and reaction times
across the two sessions. Bars: ± 1 S.E.M. Grey dots represent individual subjects. (E): The experiment extended over two
sessions, each of which included about 40 minutes task experience flanked by resting state scans. *: The pre-task resting state
scan in Session 1 was performed only for a subgroup of our sample (N = 10; group 2).

experience (including being exposed to task instructions). This resulted in a total of 40091

whole brain volumes acquired during rest. The analyses reported below focus on fMRI data92

recorded during these resting scans. Resting-state data acquired after participants had task93

experience will from hereon be referred to as the TASK rest condition, whereas resting state94

data acquired before the task as the PRE rest condition. Data recorded while participants95

received instructions will serve as another control and be referred to as the INSTR condition.96

To account for differences in the number of data points constituting the TASK vs control97

conditions, we used a size-matched TASK condition where appropriate. Notably, while none98

of these conditions involves active experience of the sequential decision-making task, they99

differ in whether the task has been experienced before or not, and therefore in whether100
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hippocampal replay might be expected or not.101

The main goal of our study was to investigate sequential reactivation, or replay, of102

task-related experiences in the human hippocampus during rest. To this end, we trained103

a multivariate pattern recognition algorithm (see Methods) to distinguish between the ac-104

tivation patterns associated with each of the 16 task states in the data recorded during105

task performance (Fig. 2A,B). Leave-one-run-out cross-validated classification accuracy106

on the task data from the hippocampus (HPC) was significantly higher than chance and107

than classification obtained in a permutation test (11.6% vs 7.1% in the permutation test,108

t32 = 8.9, p < .001, chance level is 6.25%, Fig. 2C), indicating that hippocampal activation109

patterns indeed reflected task states. We then applied the trained classifier to each volume of110

fMRI data acquired during the resting state scans. Although classification accuracy cannot111

be assessed for the resting scan data (due to lack of ground truth), we could assess the quality112

of the classification using the mean unsigned distance to the decision hyperplane, a proxy113

for classification certainty17. This distance was larger in the TASK condition compared to114

simulated spatiotemporally-matched noise (‘NOISE’, t32 = 12.9, p < .001; for simulation115

details see Methods and SI) and compared to the PRE condition (t9 = 2.1, p = .031,116

group 2 only, Fig. 2D). This suggests that fMRI patterns recorded during resting-state117

scans following task experience could reflect reactivation of task states, in line with previous118

findings18–20.119

The defining aspect of replay is that previously experienced states are reactivated sequen-120

tially. We therefore asked next whether it is theoretically possible to measure rapid sequential121

replay events (on the order of few hundreds of milliseconds in humans21) using fMRI, given122

its low temporal resolution. To this end, we simulated fMRI activity that would result from123

fast replay events (see SI and below), and asked what order and state information could be124

extracted from these spatially and temporally overlapping patterns. The slow hemodynamic125

response measured in fMRI causes brief neural events to impact the BOLD signal over several126

seconds. Although these same dynamics might obscure the details of a replayed sequence,127

our simulations showed that two successive fMRI measurements could still reflect two states128

from the same sequence, for instance the first and last element of a multi-step replay event129

(see SI). Because replay events mainly reflect short sequences of states13 (figure 3C in Ref.130

13), if the activity we measured in the hippocampus at rest indeed reflects sequential replay,131

we can therefore expect that consecutively decoded states be close in the task’s state space132

(that is, separated by few intervening states in Fig. 1C). This is analogous to the expectation133

that spatial replay events would lead to sequential activation of place cells with place fields134
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nearby in space – even if some place cells were erroneously not identified as being active.135

However, given the low accuracy of correctly decoding task states during task performance,136

could we even expect to successfully decode a pair of states from the same replay event? Our137

simulations showed that we could: because brain activity recorded after a rapid replay event138

presumably includes several superimposed states (Fig. S5B), the likelihood of classifying139

one out of several replayed states in each resting state brain volume is actually considerably140

higher than the overall decoding accuracy when classifying a single prolonged event during141

task. Our theoretical analysis showed that the chance that analyzing two consecutive brain142

volumes results in decoding one (ordered) set of two states out of several possible sets caused143

by the same replay event may be on the order of the overall decoding accuracy (∼10%; see144

SI).145

Having established that, in principle, we can detect sequential replay in fMRI data, we146

next investigated whether the sequences of states we decoded in the TASK resting data (Fig.147

3A) reflected the sequential structure of the experienced task. We note up front that because148

the classifier was trained on task data that were themselves sequential, signs of sequentiality149

of classifier predictions might arise even in random noise—although clearly those data do not150

reflect sequential replay. We therefore conducted a series of carefully controlled assessments151

of the levels of sequentiality in our data to ensure that we were detecting true sequential152

replay, and not merely unveiling the properties of the classifier. Indeed, we found in our data153

several forms of sequentiality that are predicted by replay, above and beyond what we could154

find in a series of closely matched controls.155

First, we predicted that replay would be reflected in a smaller number of steps that156

separate two consecutively decoded states, as indicated by the above-mentioned simulations.157

In line with this idea, the number of steps between state transitions decoded in the TASK158

resting condition was smaller, on average, than the distance between states in the INSTR159

condition (t32 = 2.4, p = .01), smaller than the distance found in the PRE condition (t9 = 2.3,160

p = 0.02, group 2 only) and smaller compared to a permutation test in which classified states161

were randomly reordered to control for overall state frequency (PERM condition: t32 = 4.6,162

p < .001; Fig. 3B,C). Second, because replay events are separated by long pauses21, and163

sequentiality should be present only following the replay events, we expected the occurrence164

of short-distance state pairs to be clustered in time. Indeed, short-distance state pairs165

(less than 3 steps apart) were not only more frequent than expected, but were also more166

likely to occur in clusters in the TASK rest condition compared to the INSTR (t32 = 1.7,167

p = .046), PRE (t9 = 1.9, p = .044, group 2 only), and PERM controls (t32 = 4.5, p < .001,168
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Figure 2: Sequential replay decoding analysis. (A): Illustration of analysis procedure. For simplicity, only two dimensions
and three state classes are shown. We first trained a classifier to distinguish between the different task states in the hippocampal
fMRI data acquired during the task. The trained classifier was then applied to each volume of fMRI data recorded during resting
sessions (grey dots). This resulted in a sequence of predicted classifier labels that was then transformed into a ‘transition matrix’
T that summarized the frequency of decoding each pair of task states consecutively. The structure of the decoded sequences,
as summarized by this matrix, was then compared to the sequential structure of the task (see text). Note that the real analysis
involved 16-way classification of >1000 dimensional data, which was compared to the task state space shown in Fig. 1C. (B):
Example data from one randomly selected participant. Each dark rectangle illustrates the sequence of classified states for the
100 volumes of fMRI data recorded in one resting state scan (depicted are three resting state scans acquired throughout the
experiment; see Fig. 1E). Columns represent time, and rows states. Each color-filled cell represents the state classified at
the respective time point, and color indicates the distance (in steps in the state space; Fig. 1C) from the state decoded in
the previous timepoint (i.e., the previous TR). (C) Classification accuracy during task performance was significantly higher
in hippocampal data (HPC) than in a permutation test (PERM). The solid line represents the theoretical chance baseline of
100/16=6.25. (D): Average distance to the hyperplane for classified states during rest in the NOISE (dark grey, left bar), PRE
(light grey, middle bar, N=10) and TASK conditions (green, rightmost bar, N=33). Larger distance indicates higher certainty
in the classification of the state. Each dot indicates one participant, bars within-subject S.E.M., *: p < .05.

Fig. 3D). Next, we ensured that the above results could not be explained by sustained169

state activation, or only one particular decoded state distance. To this end, we removed170

state repetitions (“self transitions”) from the data and tested whether the prevalence of171

each step size (a transition between two states separated by k steps) was linearly related172

to the distance between the two states in task space. In other words, we tested whether173
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the empirical frequency of decoding each pair of task states consecutively (the “transition174

probability” for each pair of decoded states, summarized in matrix T ; Fig. 3A) was negatively175

correlated with the distance D between the states in the task (where Dij corresponds to176

the minimum number of steps necessary to get from state i to state j; Fig. 3E). The177

correlation between T and D was indeed significantly negative (average r = −.16, t32 =178

−17.7, p < .001, t-test of individual correlations across participants, Fig. 3F), and was179

substantially more negative than the correlation seen in the PERM control (r = −.08,180

p < .001, reflecting an effect of overall state frequency; ∆r = −.07, t32 = −5.8, p < .001).181

Applying the trained classifier to matched fMRI noise (NOISE control, see Methods and SI,182

Fig S1) also resulted in a negative correlation (r = −.08, p < .001, showing that temporal183

contingencies between states in the classifier training data can lead to spurious correlations),184

which was nevertheless significantly weaker than the correlation found in the TASK rest data185

(∆r = −.08, t32 = −5.6, p < .001, Fig. 3G). Importantly, our hypothesis that sequential186

reactivation of task-state representations during rest was caused by task experience was187

also supported by a significantly stronger anti-correlation between T and D in the TASK188

condition as compared to the INSTR data (t32 = −12.1, p < .001, when comparing a subset189

of the TASK condition matched in number of TRs to the INSTR data), as well as the PRE190

resting scan (t9 = −7.9, p < .001, group 2; p = .059 when compared to only the first resting191

scan in TASK condition), as shown in Fig. 3H. Finally, we also assessed the effect of the192

sequential structure in the training data on our results in an additional control analysis in193

which we systematically excluded sets of state pairs from classifier training (see SI, Fig.194

S2), to test if, as a result, these pairs would seem to have a lower transition frequency in195

the resting data. This concern was allayed as the excluded transitions were observed as196

often as the included transitions (t32 = 0.3, p = 0.73), in line with our conclusion that197

the transition frequencies observed during rest reflected sequential reactivation above and198

beyond any sequential structure in the classifier.199

In order to investigate the effects of task experience on pair-decoding frequency data T200

while simultaneously (a) excluding state repetitions, (b) controlling for the above-mentioned201

effect of temporal contingencies in the classifier training and (c) incorporating the different202

sources of between- and within-participant variability, we performed a logistic mixed-effects203

analysis. In this, we modeled both the effect of interest (D) and nuisance covariates that204

could potentially affect T (see Methods). We will henceforth call the effect estimate (beta205

weight) of the distances D on the data T in this model ‘sequenceness,’ and the nuisance206

effects ‘randomness.’ Comparing a model of the frequency of transitions T that contained207
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Figure 3: Hippocampal state transitions during rest are related to state distances in the task. (A): The matrix
T , expressing the log odds of transitions between all states in the sequence of classification labels in the hippocampal TASK
rest data, averaged across all participants. Y-axis: first state, x-axis: second state, in each consecutively decoded pair. Darker
colors reflect a higher probability of observing a pair in the data. (B): Relative distributions of number of steps separating
two consecutively decoded states. A distance of 1 corresponds to a decoded state transition as experienced in the task, 2
corresponds to a transition with one item missing in between as compared to the task, etc. Barplots show the difference in
relative frequency (∆ Density) with which each transition type was observed in the TASK condition compared to INSTR and
PRE control conditions and a permutation test (PERM), see legend. Smaller distances are more frequently observed in the
TASK data, whereas larger distances are more common in the control data, suggesting that the TASK resting-state data reflect
reactivation of short sequences (C): The average distance in state space of two consecutively decoded states was significantly
lower in the TASK data as compared to the INSTR, PRE and PERM controls (all ps <.05, t-test comparing difference to
0). (D): Low-distance transitions (fewer than 3 steps) occurred in succession significantly more frequently in the TASK data
compared to all controls (all ps <.05). (E): The matrix D, indicating the minimum number of steps between each pair of states
in the task (i.e. the state distances). Lighter colors reflect larger distance between states. (F): Average correlations between
the state distance matrix D and the corresponding decoded transition matrix T in the TASK condition (green bar, left), as
compared to a permutation test (PERM; light grey, middle) or when the same classifier was applied to participant-specific
spatio-temporally matched noise (NOISE; dark gray bar, right, see also Fig. S1). (G): Within-participant differences between
correlations in TASK versus the PERM and NOISE controls (all ps <.05) (H): The anti-correlation between D and T in the
PRE and INSTR phases was lower than in the TASK resting state sessions (matched in amount of data compared). Dots reflect
differences in correlations for individual participants.

only randomness regressors with a model that also included the sequenceness (task distances)208

regressor D, we found no difference in model fit in the PRE rest condition (Aikaike Infor-209

mation Criterion, AIC, 3651.4 vs. 3651.5 for the model without and with the sequenceness210

regressor, respectively, χ2
1 = 1.9, p = .17). In the TASK rest condition, in contrast, adding211

the sequenceness regressor improved model fit significantly (AIC 3645.4 vs. 3642.1, lower212
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numbers indicate a better fit, χ2
1 = 5.2, p = .02, group 2 only and considering only the first213

TASK resting scan from the first session to equate power with the PRE analysis above).214

Indeed, the difference between the two datasets was statistically significant: including both215

PRE and TASK conditions within one model showed improved fit when the interaction of216

condition factor with sequenceness and randomness was included (AIC 3660.2 vs. 3674.1,217

p < .001). Figure 4A,B shows the sequenceness and randomness effects in the TASK218

compared to the PRE condition. Comparing the INSTR to the TASK condition in all219

participants showed the same pattern of effects: No effect of the sequenceness regressor was220

found in the INSTR condition (AIC 10046 vs 10047, p = .27), but there was a significant221

effect in the TASK rest condition (AIC 10130 vs. 10146, p < .001, TASK data matched222

in size to equate power), see Figure 4C,D. However, here the combined model indicated no223

interaction between condition and sequenceness vs. randomness (10142 vs 10130, p > .1).224

Note that the lack of sequenceness before task experience shows that our modelling analysis225

successfully controlled for bias effects due to the temporal contingencies between states in the226

classifier training data. Analyzing data from all participants (groups 1 & 2) and all TASK227

resting-state scans with this model indeed showed that the inclusion of a state distance228

factor led to significantly better model fits even after controlling for the randomness (bias)229

effect as above (AIC 10789 vs 10780, χ2
1 = 11.0, p < .001), supporting the conclusion that230

previously experienced sequences of task states are replayed in the human hippocampus231

during rest periods. These results were unaffected by the choice of distance metric, see SI.232

No comparable pattern of results emerged when data from the orbitofrontal cortex, a brain233

area known to contain task-state information during decision making16,22, were analyzed in234

a similar fashion (see SI).235

The above analyses relied on the forward distance between states, as experienced during236

the task. We next tested whether the sequenceness found in the TASK condition could be237

explained better by alternative forms of replay, namely backward replay or forward replay of238

partial states such as the stimuli experienced. To this end, we defined alternative distance239

matrices corresponding to the above hypotheses, and tested the power of these alternative240

models to explain the sequences of states decoded during rest. For these analyses, instead241

of distances we used one-step task transition matrices to avoid statistical disadvantages of242

alternative models that have very evenly distributed distances (high entropy). As in our243

original analysis, all 1-step matrices were based on the task state diagram. The alternative244

1-step matrices were created by either transposing the original 1-step matrix (backward245

analysis) or by assuming that only partial aspects of each trial’s state are represented,246
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Figure 4: Effect of state distance (sequenceness) on transition frequency in hippocampal data is specific to
TASK rest conditions. Bars indicate strength of fixed effects in mixed effects model (see text). Dots indicate individual
random effects. Note that variability of dots in this case cannot be used to infer significant differences. (A): Effect of sequenceness
regressorD on resting data from the PRE and TASK conditions. Model comparisons based on AIC showed that the sequenceness
regressor led to better model fit in the TASK but not the PRE condition. (B): Effect of randomness across the PRE and TASK
conditions. The randomness regressor T (ε) captures the sequentiality in the data due to classifier bias, see Methods. (C):
Sequenceness in the INSTR and TASK conditions, as in panel (A). Adding the sequenceness regressor led to better model fit
only in the TASK condition. (D): Randomness in the INSTR and TASK conditions as in panel (B).

for instance by computing the experienced transitions between attended stimuli without247

representing the events in the previous trial (see Methods). As the classifier was trained248

to distinguish all 16 possible states, we assumed that different states corresponding for249

instance to the same stimulus would be fully aliased. We tested four alternative hypotheses250

by calculating the likelihood that the observed sequences of states were generated by (a)251

replay of states containing the stimulus on the current trial (‘stimulus model’, Fig. 5A), (b)252

replay of states containing only information about the currently attended category (‘category253

model’, Fig. 5B), (c) replay of states containing information about the attended category on254

the current and previous trial (‘category memory model’, Fig. 5C), and (d) backward replay255

of full states, in the opposite order as they were experienced (‘backward model’, Fig. 5D),256

and comparing these to the likelihood of the data being generated by forward transitions257

between full states (the one-step version of our original hypothesis; ‘full state model’, Fig.258

5E). Model comparison using the same mixed effects models as above showed that the 1-step259

transitions assuming full state representation (Fig. 5E) led to a better model fit compared260

to all four alternative models (AIC: 20808, 20808, 20806, 20796, for the 4 alternative models,261

respectively; AIC of true model: 20782, see Fig. 5F).262

Similar to our above analyses investigating the theoretical possibility of decoding fast263

replay states from fMRI data, we also test whether the observed sequenceness in hippocampal264

fMRI data could have been caused by fast sequences of neural events in principle. For this265
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Figure 5: Alternative state transition matrices do not explain hippocampal state sequences during rest. (A-E)
Alternative state transition matrices. Rows indicate origin states and columns indicate receiving states for a given transition,
see text. Color shading indicates log likelihood of the corresponding 1-step transition under each alternative hypothesis, see
legend and Methods. Empty (white) cells indicate that a transition is not possible. ’Reduced model’ panels in A-C show the
transition matrix when aliased states are collapsed. (E) Corresponds to the one-step transitions for our original hypothesis
(compare to Fig. 3E). (F) Akaike information criterion (AIC) when data from the TASK rest condition were modelled using
the transition matrices shown in A-E. The full state model explained the data best (lower AIC scores indicate a better model
fit).

we simulated fMRI signals generated by sequences of hypothetical neural events occurring266

at different speeds, and asked at which speed the above analyses can uncover the underlying267

sequential structure. In these simulations, each neural event triggered a hemodynamic268

response in a distributed pattern of voxels (see SI; Fig. S3). When the signal-to-noise ratio269

was adjusted to yield state-decoding levels that were matched to our data (12.1% accuracy270

in simulations, vs. 11.6% in the data), significant correlations between the consecutively271

decoded state pair frequencies T and the corresponding distances D were found even at272

replay speeds of about 14 items per second (i.e. inter-event intervals of 60-80ms, r = −0.018,273

permutation test: r = −0.003, t-test of sequence vs permutation results t199 = −4.42,274

p < .001, corrected for multiple comparisons; corresponding test for events separated by275

faster events at 40-60 ms: p = .18; p < .05 for all slower sequences; Fig. S5 and S6). This276

supports our conclusion that our findings in the resting-state data may reflect fast sequential277

replay in the human hippocampus.278
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In combination, these analyses show that sequences of hippocampal fMRI activity pat-279

terns during rest were systematically related to previous task experience. Interestingly, we280

found no such effect when we included backward distances between states instead of the281

forward distance in the model. This indicates that the sequences of hippocampal activity282

patterns became directionally structured in correspondence to participants’ task experience,283

and suggests that the hippocampus was engaged in forward replay in the post-task rest284

period.285

Finally, we investigated the functional significance of hippocampal replay of abstract286

task states. One idea is that replay helps to form, or further solidify, a representation of the287

transitions between states of the task23–25. We therefore tested for a relationship between288

sequential state reactivation during rest and better representation of states during the task,289

as measured through cross-validated state decoding accuracy in fMRI data recorded during290

task performance. We did not find any evidence of a relationship between hippocampal291

sequenceness at rest and decoding of states during task performance (r = −.05, p > .05).292

However, we did find a significant correlation between hippocampal sequenceness at rest293

and state representations in the orbitofrontal cortex during the task (r = −.47, p = .005).294

Notably, in previous work we have shown that improved state decoding in the orbitofrontal295

cortex is associated with better decision making in this task, see16. Indeed, in the current296

dataset we also found a relationship between the change in orbitofrontal decoding accuracy297

during the task and improvements in task performance. That is, runwise decoding within298

the first session was correlated with runwise error rates (χ2
1 = 9.1, p = .003, using the299

same decoding measure as used before, see ref. 16). This was not the case for on-task300

decoding in the hippocampus (p = .87, interaction with ROI: χ2
1 = 5.2, p = .023). This301

finding therefore suggests a role for hippocampal replay in supporting the integrity of task-302

relevant orbitofrontal state representations during decision making. We also tested for a303

direct relationship between hippocampal replay at rest and behavioral measures of task304

performance, but did not find any evidence for a relationship between sequenceness and305

reaction times, error rates, or the change in these measures across runs (all ps > .10).306

Together, these results suggests that hippocampal replay supports the offline formation or307

maintenance of a ‘cognitive map’ of the task, while the orbitofrontal cortex is deployed to308

represent such a map during decision making16,26.309
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Discussion310

Our findings demonstrate that fMRI patterns recorded from the human hippocampus dur-311

ing rest reflect sequential replay of non-spatial task states previously experienced in a312

decision-making task. Previous studies have relied on sustained elevated fMRI activity in313

the hippocampus or sensory cortex as evidence for replay18–20,27, investigated wholebrain314

MEG signals28, or studied EEG sleep spindles and memory improvements that are thought315

to index replay activity29–33, but were not able to directly demonstrate sequential replay in316

the human hippocampus. Our study represents an important extension of these findings by317

providing evidence of sequential offline reactivation of non-spatial decision-making states in318

the human hippocampus.319

Evidence of sequentiality and localization of replay in the human hippocampus is in320

direct correspondence with animal studies in which replay has been shown to be sequential321

and specific to hippocampal place cells, e.g.34. Importantly, unlike the majority of previous322

investigations in animals, the here reported sequences of activation patterns signify the323

replay of non-spatial, abstract task states. Our results therefore add to a growing literature324

proposing a significant role for ‘cognitive maps’ in the hippocampus in non-spatial decision325

making3,8,26,35.326

Our findings are in line with the idea that the human hippocampus samples previous327

task experiences in order to improve the current decision-making policy, a mechanism that328

has been shown to have unique computational benefits for achieving fast and yet flexible329

decision making23–25. Dating back to Tolman36, this idea requires a neural mechanism that330

elaborates on and updates abstract state representations of the current task, regardless of the331

task modality. Several studies have suggested that the hippocampus and adjacent structures332

support a broad range of relational cognitive maps35, as evidenced by hippocampal encoding333

of not only spatial relations but also temporal37,38, social7, conceptual6 or general contingency334

relations39. Here, we showed that the human hippocampus not only represents these abstract335

task states, but also performs sequential offline replay of these states during rest.336

Our results imply a relationship between hippocampal replay and the representation of337

decision-relevant task states that are thought to reside in the orbitofrontal cortex16,22,40–42.338

The relationship between ‘offline’ hippocampal sequenceness and the fidelity of ‘online’339

orbitofrontal task-state representations raises the possibility that the hippocampus supports340

the maintenance and consolidation of state transitions that characterize the task and are341

employed during decision making38. Given our findings—and recent evidence implicating342

hippocampal place and entorhinal grid cells in signaling non-spatial task-relevant stimulus343
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properties6,8—a crucial question for future studies will be to further specify how flexible, task344

specific representations in the hippocampus interact with task representations in other brain345

regions26. Of particular interest will be investigations asking whether neural populations in346

the hippocampus and entorhinal cortex share a common neural code for abstract task states347

with orbitofrontal16 and medial prefrontal regions43, as indicated by recent studies6,44,45.348

Together with our findings, this research promises to shed light on the neural representations349

and computations underlying memory and decision making.350

Experimental Procedures351

Participants352

Thirty nine participants were selected according to standard fMRI screening criteria (right353

handedness, 18–35 years of age, normal or corrected-to-normal vision and no contraindication354

for fMRI) from the Princeton University community, and were compensated with $20 per355

hour plus up to $5 performance-related bonus. Six participants were excluded from analysis356

due to either technical errors (3 participants), violation of performance criteria standards (2357

subjects with over 3 times the average error rate in the last two blocks of the experiment)358

or incomplete data (1 participant). The final sample consisted of 33 participants (22 female,359

mean age 23.4 years). All participants provided informed consent and the study was approved360

by Princeton University’s Institutional Review Board.361

Stimuli362

Stimuli consisted of spatially superimposed images of a face and a house (see16; face images363

from http://faces.mpdl.mpg.de/faces described in46, see Fig. 1). Faces and houses could364

be classified as either young or old, e.g. a stimulus could show an old face image blended365

with a contemporary (i.e., young) house image. Four classes of stimuli were possible: (1)366

two old or (2) two young face and house pictures, (3) a young face with an old house or (4)367

vice versa.368

Task369

The task was identical to Schuck et al. 2016 and will be described only briefly. Each trial370

began with the display of the mapping of a left and right key to a young and old response371

(changing randomly trialwise) below a fixation cross for 1.2s (range: 0.5–3.5s). Then, a372
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compound face-house stimulus was shown for 3.3s (range: 2.75-5s; Fig. 1) and participants373

had to make an age judgment about one of the two image categories. Participants knew374

which category of the stimulus they had to judge by applying the following rules: 1. before375

the first trial of each run, the category to judge was displayed on the screen; 2. Once the age376

of the relevant category changed (e.g., from young to old), the judged category changed on377

the next trial. 3. No age comparison was necessary on the first trial after a category change,378

i.e. each category was judged for at least two trials in a row before a switch. The average379

trial duration was 4.5s (range: 3.25-8.5s), all timings were randomly drawn from a truncated380

exponential distribution and the response deadline was 2.75s. The category instruction cue381

at the beginning of a run was displayed for 4s. Erroneous or time-out responses led to382

feedback (written above stimulus for 0.7s) and trial repetition. If an error trial involved an383

age change (and thus would require a category switch on the next trial), participants had to384

repeat the trial before the error as well as the error trial, giving them the chance to observe385

the age change. Otherwise, they had to repeat the trial on which they made the error.386

Design387

Participants underwent two fMRI sessions. The first session began with the display of388

written instructions while participants underwent a functional scan (group 1), or a 5 minute389

resting-state scan followed by instructions (group 2). The instructions explained the rules of390

the task and contained a training phase in which simple age judgments had to be made on391

(non-overlapping) face and house images. The images shown in this period were later used in392

the task, thus familiarizing participants with the age judgment aspect of the task as well as393

the stimuli. The instructions furthermore involved an annotated walk-through of four trials394

of the real task (i.e., with overlapping images and the requirement to switch attention after395

an age change). Following the instructions, participants performed 4 runs of the task (97396

trials per run, 388 total). Each run lasted about 7-10 minutes and participants were given397

the chance to rest briefly between runs. A 5 minute fieldmap scan was done between runs398

2 and 3, resulting in a longer break for participants. After run 4, participants underwent a399

resting state scan as well as a structural scan. Lights were turned off during resting-state400

scans and participants were instructed to stay awake for the entire duration of the scan (5401

minutes, 100 TRs). The second session was identical for all participants and involved the402

following scans: resting state, 2 task runs, fieldmap, 2 task runs, resting state and structural403

scan. Thus, overall, participants performed 8 task runs and 3 (group 1) or 4 (group 2)404

resting-state scans. In all other regards, the task design involved the same characteristics as405
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detailed in Schuck et al. (2016).406

Behavioral Analyses407

Behavioral analyses were done using mixed effects models implemented in the package lme447408

in R48. The model included fixed effects for Block, Condition, Category and intercept.409

Participants were considered a random effect on the intercept and the slopes of all fixed410

effects. The reported p-values correspond to Wald chi-square (χ2) tests as implemented in411

R. Reaction time (RT) analyses were done on error-free trials only and reflect the median412

RT within each factor cell.413

fMRI Scanning Protocol414

Magnetic-resonance images were acquired using a 3-Tesla Siemens Prisma MRI scanner415

(Siemens, Erlangen, Germany) located at the at the Princeton Neuroscience Institute. A416

T2*- weighted echo-planar imaging (EPI) pulse sequence was used for functional imaging417

(2×2 mm in plane resolution, TR = 3000 ms, TE = 27 ms, slice thickness = 2 mm, 53 slices,418

96×96 matrix (FOV = 192 mm), iPAT factor: 3, flip angle = 80◦, A→P phase encoding419

direction). Slice orientation was tilted 30◦ backwards relative to the anterior – posterior420

commissure axis to improve acquisition of data from the orbitofrontal cortex49. Field maps421

for distortion correction were acquired using the same resolution (TE1 = 3.99ms) and a422

MPRAGE pulse sequence was used to acquire T1-weighted images (voxel size = 0.93 mm).423

The experiment began 20 seconds after acquisition of the first volume of each run to avoid424

partial saturation effects.425

fMRI Data Preprocessing426

FMRI data preprocessing was done using SPM8 (http://www.fil.ion.ucl.ac.uk/spm)427

and involved fieldmap correction, realignment, and co-registration to the segmented struc-428

tural images. The task data used to train the classifier were further submitted to a mass-429

univariate general linear model that involved run-wise regressors for each state (see below),430

nuisance regressors that reflected participant movement (6 regressors) and run-wise inter-431

cepts. The resulting voxelwise parameter estimates were z-scored and spatially smoothed (4432

mm FWHM). The resulting activation maps were used as the training set for a support-vector433

machine with a radial basis function (RBF) kernel that was trained to predict the task state434

from which a particular activation pattern came from LIBSVM50. Like the activation maps435
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used for classifier training, the resting-state data were z-scored and smoothed (4mm FWHM).436

Anatomical ROIs were created using SPM’s wfupick toolbox. The hippocampus (HC) was437

defined as the left and right hippocampus AAL labels. The orbitofrontal cortex was defined438

as in16. Behavioral analyses and computations within the assumed graphical model of state439

space (see below) were done using R48.440

fMRI Classification Analysis441

The support vector machines were trained on 8 maps of parameter estimates (“betas”) for442

each of the 16 states (one map for each state and run) restricted to the anatomical mask443

of the hippocampus (back-transformed into each subject’s individual brain space) or the444

orbitofrontal cortex. Classification accuracy was assessed with a leave-one-run-out cross-445

validation scheme in which data from 7 runs were used for training and the held-out run was446

used for testing (Fig. 2). The resting-state analysis used a classifier trained on all available447

task data (8 runs). This classifier was applied to each volume of the resting-state data448

and the most highly classified state was considered as the output of the classifier for that449

volume. The resulting sequence of predictions was the main focus of our analyses (see below).450

We obtained the distance to the hyperplane by dividing the decision value by the norm of451

the weight vector w, as specified in the libSVM webpage (http://www.csie.ntu.edu.tw/452

~cjlin/libsvm/faq.html#f4151). For each volume, we then calculated the average of the453

distances of all pairwise comparisons of the predicted class against all other classes, to obtain454

a proxy of how certain the classifier is in its prediction. Student t tests pertaining to decoding455

results were one-tailed, given the a priori expectation of larger-than-chance decoding in the456

hippocampus.457

Sequenceness Analysis458

The main question of the sequenceness analysis was whether the state transitions decoded459

from resting state scans, T , were related to the distance between states experienced during460

the task,D. To this end, we analyzed the neural state transitions T with logistic mixed-effects461

models, using the lme447 package in R48. Because the slow hemodynamic response function462

leads to encoding of sequential structure in activity patterns (i.e., there is high similarity463

between temporally adjacent patterns), a classifier trained on sequential task data can be464

biased to decode states in a similar sequence to the training data, even if the test data are465

random (i.e., the ‘sequenceness’ identified in the test data comes from the training data,466
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not the test data). We therefore applied the trained classifier to matched fMRI noise (see467

below) and used the resulting spurious ‘state transitions,’ T (ε), as a covariate that would468

account of the spurious base rate of transitions that is due to the classifier rather than the469

data. Applying these models to control conditions consistently yielded non-significant effects470

of sequenceness, showing that this analysis appropriately controls for the above mentioned471

spurious structure that is observable for instance in the significant correlations between D472

and T in the noise data (Fig. 3F). Specifically, our model included the following fixed effects:473

(1) the distance between states, D, which was the regressor of interest, and as regressors of474

no interest (2) the transition probabilities obtained in the above mentioned noise simulations,475

T (ε), (3) an orthogonal quadratic polynomial of T (ε) that was included in order to account476

for as much noise-related variance as possible, and (4) an intercept. Models of change477

in sequenceness across PRE, INSTR and TASK conditions (Fig. 4) additionally involved478

interaction terms of condition with the distance D and condition with the noise transitions479

T (ε). Participant identity was included as a random factor to account for between subject480

variability. To capture state-related variability (state frequency effects affect the distribution481

of state transitions), state identity sj of a transition from state i to state j was used as an482

additional random effect nested within subject. Participant and state were random grouping483

factors for all fixed effects with exception of the quadratic expansion of T (ε), where including484

these random factors caused problems in fitting the logistic regression models.485

Formally, the model followed the general assumption that the number of transitions Y is
drawn from a binomial distribution of n draws and probability T :

Yijk ∼ B(nk, Tijk)

where nk corresponds to the number of measurements for subject k, and i and j index486

the outgoing and incoming states of a given transition. The logit transformed probabilities487

T (shown in Fig. 2D; logit is the canonical link function for binomial models) were then488

modeled in a mixed effects regression model with the above mentioned fixed and random489

effects structure:490

logit(Tijk) = β0 +Dijβ1 + T (ε)ijβ2 + T (ε)2
ijβ3 +

γ0k +Dijγ1k + T (ε)ijγ2k +

ζ0kj +Dijζ1kj + T (ε)ijζ2kj + εijk

In the text, we describe the fixed effect of D, β1 in the models, as ‘sequenceness,’ and the491

fixed effect of T (ε), β2, as ‘randomness’ (Fig. 4B,C). The subject-specific random effects of492
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D, γ1k, were used as individual sequenceness indicators in the correlations in Fig. 4F,G. The493

state- and subject-specific random effects are indicated by ζ. Correlations between random494

effects were estimated. Model comparisons were conducted using likelihood-ratio tests by495

comparing models that included the noise transitions T (ε) with versus without the fixed496

effect regressor of distance (sequenceness), or without the condition interaction terms to the497

full models that included these terms. The random effects structure was kept constant across498

these comparisons.499

T-tests pertaining to sequenceness results (number of steps, etc.) are one-tailed, given500

our a priori expectation of larger sequenceness in the hippocampus compared to the various501

controls.502

Alternative Task Transition Matrices503

As mentioned in the main text, for reasons of model comparability we used the 1-step504

transitions of the task as a basis to test alternative replay models. The 1-step transition505

matrix simply reflects from which state one could proceed to which other states in one trial.506

The alternative task transition matrices were based on the assumption that the hippocampus507

has access to only partial state information, and hence correspond to transition matrices508

defined over subsets of states.509

For instance, to compute the transition matrix of the “stimulus model” we defined SstimFy

as the subset of states in which Fy was the stimulus:

SstimFy = {(Fy)Fy, (Fo)Fy, (Hy)Fy, (Ho)Fy}.

SstimFo , SstimHy , SstimHo were the corresponding subsets of states in which Fo, Hy and Ho were510

the stimuli, respectively. The 1-step distance matrix was then computed such that every511

transition between two states si and sj in the complete task state diagram was converted512

into four transitions from si to all four states that are part of the same subset as sj, that is513

Sstimj . All resulting transitions are summed, and normalized so that all exiting transitions514

from a state would sum to 1. The new transition between SstimFy and SstimFo would therefore515

count within it (Fy)Fy → (Fy)Fo, (Ho)Fy → (Fy)Fo and (Hy)Fy → (Fy)Fo, whereas516

the new transition between SstimFy and SstimHo would only count within it (Fo)Fy → (Fy)Ho.517

After normalization, these would be 3/8 and 1/8, respectively.518

For the other alternative models, we defined subsets of states that have the same current519

attended category, and subsets of states that have the same current and previous attended520

categories, and then computed the transition matrices as described above. The 1-step521
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transition matrices of these alternative models are shown in Figure 5A-C. The reverse replay522

transition matrix was simply the transpose of the full task 1-step transition matrix.523

Synthetic fMRI Data and Noise Simulations524

In order to estimate to what extend training the classifiers on sequential data influenced525

the sequenceness of their predictions, we simulated, for each participant, individually spatio-526

temporally matched fMRI noise, and applied the classifiers to these data. For each partici-527

pant and resting state session, we first extracted fMRI data from the hippocampus and the528

orbitofrontal cortex. As in the classification analyses, we applied linear detrending to each529

voxel. We then estimated the average standard deviation of the voxels within these regions, as530

well as the average autocorrelation using an AR(1) model in R. Next, we used the neuRosim531

toolbox in R51 to simulate fMRI noise with the same standard deviation and temporal532

autocorrelation as the real data. Finally, we used AFNI’s 3dFWHMx and 3dBlurToFWHM533

functions to first estimate the spatial smoothness of the real data, and then smooth the534

simulated noise until it has the same effective smoothness. For each existing resting-state535

run, matched noise data with the same number of TRs and voxels were generated. Figure536

S1 (SI) shows the temporal and spatial smoothness of the real and simulated data separately537

for each run. In all cases, the properties of the simulated data did not differ from the real538

data, paired t-tests, all ps > .05.539

Finally, we applied each participant’s classifier to the matched noise data. The classifier540

was identical to the classifier that was used in estimating the sequences of states from541

the real data. The resulting sequence of predicted states reflects the bias of the classifier542

to make sequential predictions because of pattern overlap in the training set, even when543

applied to noise, as well as any tendency of the classifier to decode certain states more544

often than others. We therefore used the sequence of states from this analysis to construct545

the nuisance covariate for the mixed effects models, i.e. the noise ‘transition matrix,’ T (ε),546

and to perform the appropriate comparisons in the correlation analysis. These comparisons547

between sequenceness in real data versus simulated noise in the correlation and mixed effect548

analyses indicated that the noise sequenceness T (ε) indeed explained a significant amount549

of sequential variability of the decoded states (see Figs. 3F,G, 4B, D), and thus served as a550

powerful control. Together with the permutation tests (Fig. 3B-D, 3F,G), the comparisons551

across brain regions (Fig. 4E) and the within-participant comparisons between the PRE,552

INSTR and TASK conditions (3B-D, H and 4A-D), our approach represents a stringent553

control of potential biases.554
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Data Avalability555

All raw fMRI data, and the sequence of decoded states used to generate results in Figures556

2-5 will be made publicly available upon publication.557
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All code used to generate results in Figures 2-5 will be made publicly available upon publi-559

cation.560
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