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Summary 
In Drosophila, 50 classes of olfactory receptor neurons (ORNs) connect to 50 class-
specific and uniquely positioned glomeruli in the antennal lobe. Despite the identification 
of cell surface receptors regulating axon guidance, how ORN axons sort to form 50 
stereotypical glomeruli remains unclear. Here we show that the heterophilic cell 
adhesion proteins, DIPs and Dprs, are expressed in ORNs during glomerular formation. 
Each ORN class expresses a unique combination of DIPs/dprs, with neurons of the 
same class expressing interacting partners, suggesting a role in class-specific self-
adhesion ORN axons. Analysis of DIP/Dpr expression revealed that ORNS that target 
neighboring glomeruli have different combinations, and ORNs with very similar DIP/Dpr 
combinations can project to distant glomeruli in the antennal lobe. Perturbations 
of DIP/dpr gene function result in local projection defects of ORN axons and glomerular 
positioning, without altering correct matching of ORNs with their target neurons. Our 
results suggest that context-dependent differential adhesion through DIP/Dpr 
combinations regulate self-adhesion and sort ORN axons into uniquely positioned 
glomeruli.  
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Introduction 

One of the most complex biological systems in nature is the human brain, which 

contains an estimated 86 billion neurons wired to make approximately 100 trillion 

synaptic connections (1). Our ability to experience the world, solve complex problems, 

create, and behave, all depends on the molecular, morphological, and functional 

diversity among the billions of neurons, and their wiring patterns established during 

development. Once neurons are born, they extend their axons long distances until they 

reach a target site where neurons in different circuits sort into specific structures and 

select target neurons or muscle cells with which to make synaptic connections (2,3). 

The expression of genes, particularly those encoding cell surface receptors (CSRs), 

relay attractive or repulsive cues to regulate each step of this wiring program. Mutations 

affecting these programs are associated with numerous neurodevelopmental and 

neuropsychiatric disorders, as well as many known brain cancers (4–7). It is currently 

thought that CSRs and their ligands act in combinations, as well as different 

concentration gradients to regulate different steps of circuit assembly during 

development (2). While individual examples of CSRs directing axon guidance and 

connectivity are well known and evolutionarily conserved, how they act in combinations 

to coordinate large scale organizational patterns among a diverse set of neurons within 

a circuit remains poorly understood.   

The Drosophila olfactory system provides an excellent system to identify these 

determinants, where neurons belonging to 50 different olfactory receptor neuron (ORN) 

classes sort out and synapse with their target projection neurons within 50 unique 

glomeruli in the antennal lobe (8). Each ORN class is defined by the exclusive 
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expression of typically a single olfactory receptor gene from approximately 80 

possibilities in the genome (9,10). ORNs of the same class converge their axons into a 

distinctly positioned and class-specific glomerulus in the antennal lobe, generating 50 

unique glomeruli targeted by the 50 different classes of ORNs (11–13). The molecular 

parameters that establish glomerular organization are not known.  

The organizational logic of the peripheral olfactory system is conserved in many 

species including mammals. For example, mice have over a million ORNs grouped into 

~1000 classes based on the expression of a single OR gene from over 1000 

possibilities in the genome (14). ORNs of the same class converge their axons onto the 

same glomerulus in the olfactory bulb, where they synapse with 2nd order mitral/tufted 

cell dendrites (15). Mammalian olfactory receptors, through ligand-dependent and -

independent G-protein coupled signaling, were shown to differentially regulate the 

expression of CSRs to direct glomerular positioning of ORNs (16,17). Drosophila 

olfactory receptors however, are ligand gated cation channels and do not contribute to 

glomerular organization (18). Thus, how the Drosophila olfactory system coordinately 

positions 50 classes of ORNs into 50 distinct glomeruli requires further study. With its 

diverse yet workable amount of ORN classes, the availability of the wiring map, and 

reporters for all ORNs, the Drosophila olfactory system is a powerful model to gain a 

systems level understanding of how 50 ORN classes can coordinate highly stereotyped 

organizational patterns in the brain. 

Adult ORNs in Drosophila are born from the asymmetric division of precursors 

located in the larval antennal disc, which, during pupal metamorphosis, becomes the 

adult antenna (19,20). ORN axons reach the future antennal lobe by 16-18 hours after 
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puparium formation (APF) (21,22). No glomeruli can be seen at these stages (22). Most 

glomeruli are clearly detectable by antibodies against N-Cadherin, around 40 hours 

APF, and fully separate into distinct structures by 48-50 hrs APF (22). Several genes 

have been shown to regulate each step of ORN axon guidance, such as 

Semaphorins/Plexins (axonal tract selection, interclass repulsion, (23,24)), Dscam and 

Robos (axon targeting, (25,26)), N-Cadherin (intraclass attraction, (27,28)), and 

Teneurins and Tolls (ORN-PN matching, (29–31)). The vast majority of these proteins 

however, work very broadly and are required for the proper targeting of most or all ORN 

classes (20,32). It is therefore still unclear how axons of 50 different ORN classes 

organize themselves to form 50 uniquely positioned and structured glomeruli. This is 

likely due to the complex and combinatorial nature of the molecular interactions 

underlying ORN wiring patterns, which includes programs for axon-axon 

sorting/positioning and target specificity in the antennal lobe.  

Here we identify the Defective proboscis response (Dpr) family proteins and their 

heterophilic binding partners Dpr Interacting Proteins (DIPs) as novel regulators of 

glomerular positioning and structure in the Drosophila olfactory system. Each ORN 

class expresses a unique combination of DIP/Dprs starting at stages dedicated to 

glomerular formation. Interestingly, interacting DIP/Dpr partners are generally, but not 

exclusively, found in the same ORN class, likely aiding self-adhesion among axons of 

the same ORN class, while also sorting from others. Mathematical analysis of class-

specific DIP/Dpr expression showed that ORNs with very similar DIP/Dpr combinations, 

can end up in distant glomeruli in the antennal lobe, and ORNs targeting neighboring 

glomeruli can have very different combinations. DIPs/Dprs control the class-specific 
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positioning of ORN axon terminals and their glomerular morphology. Perturbations to 

DIP/Dpr combinations are associated with context-dependent, and local disruptions of 

glomerular morphology and positioning and in some cases, invasions of neighboring 

glomeruli, without changing ORN-PN matching. These results suggest that differential 

adhesion among local ORN axons, mediated by DIPs/Dprs, determines the position and 

morphology of each glomerulus. Our results demonstrate how combinatorial action of 

many interacting CSRs can generate differential adhesive forces as a strategy to 

coordinately organize axons of all circuits within a neural system.  

 

Results 

To identify candidate genes that may be involved in the establishment of 50 class 

specific glomeruli, we analyzed our previously reported antennal transcriptome data 

from four stages of development: 3rd instar larval antennal discs (3L), 8 hrs after 

puparium formation (APF) antennal discs (p8), 40 hrs APF antennae (p40) and adult 

antennae (Adult) (33,34). Axon guidance, glomerular sorting, and ORN-PN matching 

are inherently temporal processes that occur in a specific developmental order (8). We 

therefore mined this dataset to identify novel regulators of wiring specificity of ORNs, 

whose expression overlapped with the timing of glomerular formation. We queried ~250 

Flybase annotated cell surface receptors (CSRs) and analyzed their developmental 

expression patterns using hierarchical clustering to group genes based upon their 

developmental expression patterns (Fig 1A, Table S1). We found 8 clusters of CSRs 

with distinct expression patterns (Fig 1A, B). Two broad patterns emerged from this 

analysis, genes that are expressed at constant levels throughout (Clusters 3, 5, 6, and 
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8, Fig 1A, B), such as Sema-1a/b and Dscam1, and genes that are weakly expressed 

early in development and increase in later stages (Cluster 1 and 2, Fig 1A, B), such as 

Robo3 (Table S1). Cluster 7 contained many genes that were highly expressed at the 

first three stages of development but decreased at the adult stage, and Cluster 4 

contained genes whose expression peaked at 40 hrs APF (p40). Known regulators of 

ORN wiring grouped into Clusters 7 and 8 as well as Cluster 1, meaning that they were 

expressed highly throughout development or lowly expressed early and increased their 

expression at the later stages (Fig 1A-C) consistent with their roles in ORN axon 

guidance, which begins very early in olfactory system development. 

 

DIP and Dprs are expressed in late stages of ORN wiring 

Most ORN axons surround both antennal lobes, begin and complete glomerular 

formation by 30 hrs, 40 hrs, and 48 hrs APF, respectively (32,34). We therefore 

hypothesized that genes that were highly expressed at the two later stages of 

development (p40 and Adult) particularly p40, but lowly expressed at the two early 

stages (3L and p8) were more likely to be involved in class-specific glomerular 

formation. Our analysis of CSR expression profiles identified that the majority of Dpr 

family of CSR proteins and their binding partner DIP proteins were expressed at p40 

and in adult antennae but showed low or no expression during earlier stages of 

antennal development (Fig 1D, E). These results pointed to a possible role for DIP/Dpr 

family members in glomerular formation.  

 

DIPs and Dprs are expressed in a combinatorial code in ORNs 
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Dprs and their binding partners DIPs are members of the Ig superfamily of 

proteins and each contain 2-3 Ig extracellular domains (35). Members of the Ig 

superfamily of proteins, such as Dscam, and Kirrels, are well established to control axon 

guidance and sorting in other systems (17,36). DIPs/Dprs themselves have recently 

been shown to direct synaptic target matching in the Drosophila eye (35,37). In addition, 

the relatively large number of DIP/dpr genes (9 and 21 respectively) make them good 

candidates to contribute to a combinatorial code of CSRs that direct wiring specificity for 

each class of ORNs. 

Although our RNA-seq data establish temporal patterns of DIP/dpr expression in 

the developing olfactory system, it does not inform us of the ORN class-specific 

expression of each DIP/dpr gene. To investigate which ORN classes express each 

DIP/dpr, we used MIMIC insertion derived GAL4 lines for each DIP and dpr to drive 

UAS>STOP>GFP with eyeless driven flippase to express GFP specifically in ORNs 

(35,37,38). Because the glomerular positions for all ORN classes have been mapped, 

we were able to determine the ORN classes that express each DIP/dpr gene, based on 

GFP expression in the antennal lobe (Fig 2, S1A-L). These analyses showed that each 

ORN class has a unique DIP/dpr expression profile (Fig 3A). Some DIPs/dprs are 

expressed very broadly across ORN classes (DIP-η, Fig 2H), and others that are 

expressed in fewer ORN classes (DIP-β Fig 2E). These results suggest that the unique 

combination of DIPs and Dprs in each ORN class might direct ORN class specific 

glomerular formation. 

Next, we analyzed expression of DIPs/dprs in the antenna to confirm the 

expression patterns we observed in the antennal lobe corresponded to expression in 
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ORN cell bodies. To do this we used DIP/dpr-GAL4s to drive the expression of UAS-

CD8GFP (Fig S1M-W). Consistent with our RNA-seq analysis, most of the genes we 

analyzed showed expression in ORNs consistent with glomerular expression patterns 

(Fig S1M-W). A small number of genes did not show expression in the antenna (Fig 

S1M-W), which suggests that they are instead expressed in local interneurons. We 

conclude that the majority of DIPs/dprs are robustly expressed in ORNs but a few are 

expressed in local interneurons.  

Glomeruli in the antennal lobe finalize their positioning and morphology between 

40-50 hrs APF (22). After this time, glomeruli enlarge prior to eclosion, but do not 

otherwise alter their shape (22). Thus, we predicted that the expression of DIPs/dprs at 

this time would reveal how they contribute to shaping glomerular morphology and 

positioning. We analyzed the expression pattern of some DIPs/dprs specifically in ORNs 

and found that many were expressed in a developmentally dynamic manner. For 

example, DIP-η, which is expressed in all ORNs except Gr21a neurons in the adult, is 

missing from some classes at 50 hours APF (Fig S2). In addition, dprs 9, 10, and 11 

were expressed in a smaller number of classes as compared to their adult expression 

patterns (Fig S2E-G). Other DIPs/dprs displayed similar or identical  expression 

patterns to their adult expression, particularly those that had sparse expression patterns 

at both stages, such as dpr16 and DIP-γ (Fig S2I, K). Together, our results suggest that 

DIPs and dprs are expressed at the final stages of glomerular formation and may play 

multiple roles in glomerular positioning and formation based upon their dynamic 

expression patterns. 
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Previous studies have shown that the expression of dprs in photoreceptor cells 

and their interacting DIPs in the target lamina neurons contribute to synaptic partner 

matching in the Drosophila visual system (35,37). In order to ask whether DIPs/Dprs 

play a similar role in synaptic partner matching between ORNs and their target PNs we 

next analyzed the expression patterns of each DIP/dpr in PNs (Fig S3). We drove UAS-

DenMark-RFP using DIP/dpr-GAL4s, which specifically labels postsynaptic dendrites 

(39), thereby labeling postsynaptic processes of PNs in the antennal lobe. Similar to 

ORNs and in agreement with recent single cell RNAseq studies, some of the genes 

were expressed in specific subsets of PNs (DIP-η and DIP-γ, Fig S3), while others were 

expressed much more broadly (dpr10, Fig S3E) (40). Several however, were not 

expressed in PNs at all (dpr12, Fig S3F). Unlike in previous reports, we did not observe 

any obvious pattern of DIPs/Dprs indicative of pre- and post-synaptic target matching 

between ORNs and their corresponding PNs. Taken together, our expression data 

suggest that DIPs/Dprs may be involved in ORN-ORN axon interactions. 

 

Mathematical analysis based on DIP/Dpr profiles of ORNs cluster ORN classes 

that target distant glomeruli 

Analysis of DIP/Dpr patterns in each ORN class, showed that interacting DIP-Dpr 

pairs are expressed in the same ORN classes (Fig 2I, 3D). DIPs and Dprs 

heterophilically interact in a combinatorial code that has been previously described (Fig 

S4) (37). We also found some ORN classes additionally express dpr ligands without 

their DIP receptors, which might regulate interactions with DIP receptors on neighboring 

ORN axons during development (Fig 2I, 3D, see discussion). To determine which ORN 
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classes are most similar based upon their DIP/Dpr gene signatures from the GAL4 

expression patterns we applied hierarchical biclustering to the data (Fig 2I). This 

analysis clustered specific classes of ORNs together (Fig 2I). Typically, ORN classes 

that target neighboring glomeruli did not cluster together in this analysis. An exception 

to this are Or47b, Or65a, and Or88a ORNs, which reside in the same sensillum and 

target neighboring glomeruli. Instead, ORNs targeting distant glomeruli expressed 

similar DIP-Dpr profiles. (Fig 2I). 

  
Given our results, we predicted that class-specific axon sorting may be dictated 

by DIP/Dpr combinations and might regulate glomerular positioning and formation. To 

test whether the unique DIP/Dpr relationships among ORN classes can describe their 

relative glomerular positions in the antennal lobe, we performed multidimensional 

scaling (MDS) on the expression pattern data set (Fig 3A). We used the expression of 

DIP/dpr genes in each ORN class as the input variables. The genes and gene 

combinations defining each ORN class were used to create a matrix of “distances” 

between ORN classes. We predicted that this statistical analysis would group similar 

combinations of DIP/Dpr profiles for each ORN class, and sort them to distinct 

coordinates with respect to one another. Once the MDS results were plotted, we used k-

means clustering to determine clustered ORN classes, and color coded them on the 

MDS plot (Fig 3B). We next color coded antennal lobe glomeruli based upon the 

clusters derived from the k-means analysis (Fig 3C). Plotting ORN classes using this 

method revealed that ORNs with very similar DIP/Dpr combinations, tended to target 

distant glomeruli within the antennal lobe. In addition, neighboring glomeruli have 

different combinations of DIP/Dprs. These results suggest that these differences can 
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drive ORN class-specific adhesion, consequently sorting them from the axon terminals 

of other ORN classes, which themselves have to self-adhere (Fig 3B, C).  

The DIP-Dpr profiles of each ORN might arise as a result of developmental 

programs assigning each ORN its sensilla type and subtype identity, as well as a result 

of Notch signaling that assigns sensory and wiring identities (19,41). Thus, we re-

examined the MDS analysis to visualize how sensilla types and Notch state are 

represented on the MDS plot. We first examined sensilla types, basiconics (large, thin, 

small, and palp), trichoids, coeloconics, and intermediates (Fig S5A). When we 

removed basiconics from the plot however, we observed that DIP/Dpr profiles of 

coeloconic and trichoid sensilla occupied unique positions on the MDS plot (Fig S5B), 

suggesting DIP/Dpr combinations of ORNs within either sensilla type are more similar 

among the ORNs of the same sensilla type compared to the others (Fig 3B). This 

pattern is consistent with the observation that trichoid ORN classes target more dorsal 

and anterior regions of the antennal lobe, whereas coeloconic classes target more 

ventral and medial regions (42). Basiconic sensilla ORNs did not show such clear 

segregation patterns in this MDS plot (Fig S5C) (42). These results suggest that 

DIP/Dpr profiles can be regulated by programs of sensilla type identity for trichoid and 

coeloconic ORNs, but not for basiconic ORNs. 

Next, we analyzed whether the Notch states segregate DIP/Dpr profiles of ORN 

classes in the MDS analysis. Within each sensilla, sensory and glomerular targeting 

fates of ORN pairs are segregated using Notch signaling, where each fate is associated 

with a coordinated Notch ON or Notch OFF state (19,43). Labeling classes as Notch-

ON or Notch-OFF on the plot did not reveal any noticeable patterns within sensilla types 
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(Fig S5D, E). These data suggest that the expression of DIPs/dprs are likely not under 

the control of Notch-Delta signaling.  

Even though this plot reveals that ORNs with different DIP/Dpr combinations 

project to neighboring glomeruli, it is not complete, and contains overlaps with some 

ORNs with identical DIP/Dpr profiles. Further refinement of the plot will require 

identification and analysis of the entire CSR profiles of ORN classes, their modes of 

interaction, and function. Regardless, our analysis highlights the relative relationships 

among particular classes of ORNs based upon their DIP/dpr expression profiles, and 

supports the hypothesis that DIPs/Dprs can regulate class-specific sorting of ORN 

axons into distinctly positioned glomeruli. 

 

Perturbations to DIP/dpr code are associated with local ORN axon terminal 

positioning defects.  

 Based on the class specific expression patterns of DIPs/dprs, we suspected that 

knocking down individual genes would cause disruptions to class-specific sorting of 

ORN axons and glomerular formation. To investigate whether DIPs/Dprs are required 

for appropriate ORN axon projections in the antennal lobe, we used RNAi-mediated 

knock down against a panel of DIPs/dprs using the peb-GAL4, which is expressed in all 

ORNs beginning early in olfactory system development. Analysis Or47a, Or47b, and 

Gr21a axon terminals in the antennal lobe did not reveal any significant changes in 

glomerular projection patterns (Fig S6). We predicted that this is likely due to the 

combinatorial, redundant, and context-dependent function of the DIP/Dpr proteins 

expressed in specific ORNs or their glomerular neighbors.  
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To simplify our analysis and better understand the combinatorial function of 

DIPs/Dprs we chose to focus our experiments on a group of four neighboring glomeruli, 

VA1v (Or47b), VA1d (Or88a), VL2a (Ir84a), and DC3 (Or83c) . We initially focused on 

these neighboring glomeruli because DIPs/Dprs are membrane bound proteins with 

short-range, heterophilic interactions (35,37). Among these four classes, Or47b and 

Or88a ORNs have very similar DIP/Dpr profiles that also clustered in the MDS plots, 

and only differ in a few Dprs (Fig 4B-D). Thus, we reasoned that ORN projections into 

these two glomeruli may be particularly sensitive to genetic manipulation. For example, 

Or47b ORNs are positive for DIP-η, DIP-θ, DIP-δ, dpr2, dpr3, dpr8, dpr9, dpr10, dpr11, 

and dpr12, whereas Or88a ORNs express the same genes plus dpr5 (Fig 2I, 3D). Ir84a 

and Or83c ORNs on the other hand express DIP-η, DIP-θ, DIP-δ, dpr5, dpr6, dpr8, 

dpr9, dpr10, dpr11, dpr12 and dpr16; and DIP-η, DIP-θ, DIP-δ, DIP-ε, dpr3, dpr6, dpr8, 

dpr9, dpr10, dpr11, and dpr12, respectively (Fig 2I, 3D). This code differentiates each 

class of ORN axons from each other and provides candidate genes to manipulate singly 

or in combination to investigate the role of DIPs/Dprs in controlling ORN axon projection 

patterns in the antennal lobes.  

Interestingly, each ORN class, generally expresses interacting DIP/Dpr partners, 

suggesting that not only can DIP/Dprs contribute to sorting glomeruli, but also 

heterophilic interactions among ORN axons of the same class can lead to self-

adhesion.  We hypothesized that manipulating the DIP/Dpr code in these specific ORN 

classes would cause local projection defects, such as expansion and splits in glomeruli, 

as wells as defects in glomerular positioning, within this cluster. To test this hypothesis, 

we drove RNAi against single DIPs/Dprs in specific classes or against combinations in 
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all ORNs. DIP-η is expressed in all four ORN classes projecting into these glomeruli, 

and its knock down in all ORNs does not result in any defects (Fig S6D). Based upon 

the specific expression of dpr3, a DIP-η interaction partner, at 40-50 hrs APF (Fig S2A), 

we reasoned that perturbation of DIP-η in these ORNs specifically would cause 

glomerular defects. Thus, we began by knocking down DIP-η in only Or47b neurons 

using the Or47b-GAL4. We found that knockdown of DIP-η specifically disrupted the 

positioning and morphology of the VA1v glomerulus causing it to dramatically expand 

dorsally (Fig 4A, B). This phenotype was extremely penetrant, with 85% of individuals 

displaying expansion of the VA1v in one or both antennal lobes, (n=12) but wildtype 

individuals never displayed any invasions (n=10, Fig S7C). We observed that the 

expansion of the Or47b glomerulus was not random, and always appeared to overtake 

the VA1d glomerulus, which is dorsally adjacent to the VA1v glomerulus (12). Co-

labeling of Or47b and Or88a ORN axons revealed that Or47b ORN axons indeed 

expand towards the VA1d glomerulus, but this does not disrupt the ability of Or88a ORN 

axons to form a glomerulus (Fig 4C-E’). Instead, the Or88a axons occupy one part of 

the now enlarged VA1v glomerulus (Fig 4C’-E’).  

Previous reports of Or47b axon invasion of the VA1d glomerulus has been 

caused by disruptions to ORN specification programs within at4 sensillum (44). To test 

whether ORN specification is altered in DIP-η knock down, we labeled Or47b and 

Or88a ORN cell bodies with RFP and GFP, respectively (Fig S7D, E). Comparison of 

Or47b ORN numbers in the antennae showed no significant difference between 

wildtype and DIP-η knock down antennae (56.7 vs 57.8, p=0.64, Fig S7F), suggesting 

that the expansion of VA1v glomerulus in DIP-η knock down flies is not due to an 
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increase Or47b ORNs. We also counted the number of Or88a ORNs in Or47b specific 

DIP-η RNAi knock down (Fig S7D, E). We found a significant reduction in the number of 

Or88a neurons (46.8 vs 18.2, p<0.001, Fig S7F). This result was unexpected as we 

drove RNAi against DIP-η in Or47b neurons and RNAi expression begins well after the 

birth of both Or47b and Or88a neurons. This effect is unlikely to alter wiring patterns 

however, as it has been previously reported that ablation of ORNs does not affect the 

connectivity of ORNs that target neighboring glomeruli (45). We therefore conclude that 

DIP-η is required cell-autonomously, after the onset of olfactory receptor expression, to 

organize Or47b ORN axon projections and position them with respect to Or88a ORN 

axons to form two distinct glomeruli. DIP-η may also non-autonomously affect the 

survival of Or88a neurons. 

Because the expansion of Or47b ORN axon terminals towards the VA1d 

glomerulus could be due to a defect in ORN-PN matching, we next investigated the 

behavior of VA1d PNs using the MZ19 reporter that labels DA1, DC3, and VA1d PNs in 

Or47b specific knock down of DIP-η (Fig 4F, F’). We expected that a defect in ORN-PN 

matching would cause VA1d or DC3 PNs to invade reciprocally into the VA1v 

glomerulus. Co-labeling of Or47b axons and MZ19 PNs shows that while VA1d PNs are 

occasionally mis-located relative to the VA1v glomerulus, they maintain glomerular 

integrity and do not invade into the VA1v glomerulus (n=14, Fig 4F’). Thus, we conclude 

that loss of DIP-η function does not lead to ectopic matching in Or47b ORNs with VA1d 

PNs. These results suggest that the projection defects in Or47b specific DIP-η knock 

down are likely due to disrupted axon-axon interactions between Or47b and Or88a (and 

possibly Or83c and Ir84a) ORNs, but not ORN-PN matching. 
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To investigate when the DIP-η knock down phenotype arises, we conducted a 

time series analysis beginning at 45 hrs APF just after the onset of Or47b expression in 

the antenna (34). At 45 and 50 hrs APF, we observed that the VA1v glomerulus failed to 

properly orient in relation to the VA1d glomerulus (n=5 80% penetrant and n=7 57% 

penetrant respectively Fig 4H-I’, Fig S6G). This included splitting of the VA1v 

glomerulus. By 55 hrs APF however, we observed a more complete expansion of the 

VA1v glomerulus to overtake the VA1d glomerulus (n=12 75% penetrance, Fig 5J’, Fig 

S6G). We therefore conclude that the expansion of the VA1v glomerulus during knock 

down of DIP-η is likely due to a defect in the development of glomerular morphology 

and positioning, rather than their maintenance. 

We next tested whether differences in the levels of DIP-η would alter the severity 

and penetrance of the DIP-η knock down phenotype. We raised flies at 18 and 22 °C to 

reduce the level of RNAi knock down of DIP-η. Since RNAi expression relies on the 

yeast GAL4-UAS system, decreasing the temperature can generate different levels of 

RNAi expression and knock down of DIP-η. Surprisingly, flies raised at 22 °C displayed 

splitting of the VA1v glomerulus, in contrast with flies raised at 28 °C, which displayed 

an expansion of the VA1v glomerulus dorsally (n=17 65% penetrance, Fig S7I). Flies 

raised at 18 °C also occasionally presented split VA1v glomeruli, although at a much 

reduced penetrance, but mostly displayed wildtype VA1v morphology (n=14 29% 

penetrance, Fig S7H). These results suggest that different levels of DIP-η knock down 

is associated with qualitative differences in the position of ectopic Or47b ORN 

projections, which is in agreement with a model involving differential adhesion as a 

strategy to sort out ORN axons into distinctly positioned glomeruli. 
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Or47b and Or88a ORNs share all of the DIP/Dpr combinations, except for dpr5, 

which is only expressed in Or88a ORNs. We therefore hypothesized that loss of DIP-η 

in Or88a ORNs could disrupt the morphology of the VA1d glomerulus. Initially, we drove 

RNAi against DIP-η using the Or88a-GAL4 but did not observe any significant changes 

to the VA1d glomerulus (Fig S7K, L). Or88a expression begins late in development 

however, and therefore knock down of DIP-η may begin too late in this condition to 

disrupt glomerular morphology. In order to knock down expression of DIP-η in Or88a 

neurons earlier in development, we used the Bar-GAL4 to drive RNAi against DIP-η. 

Bar expression begins in the antennal disc and by 40 hrs APF is expressed in Or88a, 

Ir84a, and Ir75d ORNs, continuing into adulthood (33). In this condition, we observed 

deformations of the VA1d glomerulus, characterized by aberrant ventral projections of 

Or88a axon terminals (n=10 60% penetrance, Fig 4K, K’). These deformations were 

similar to the behavior of the VA1d glomerulus when the VA1v glomerulus splits. At this 

time, we cannot determine whether the disruption to the VA1d glomerulus is due to the 

knock down of DIP-η in multiple classes of ORNs or to the knock down beginning early 

in development. Nonetheless, we conclude that knock down of DIP-η in multiple classes 

of ORNs beginning early in development is sufficient to disrupt the glomerular 

morphology and positioning of the VA1d glomerulus. 

Interestingly, dpr5, a ligand for DIP-η and θ, is the only gene that we assayed 

that is expressed in Or88a neurons but not Or47b ORNs. Knock down of dpr5 with the 

peb-GAL4 did not produce any changes to VA1v glomerular morphology (Fig S6H). This 

is likely due to redundancy of interactions between DIP-η/θ and Dpr2/3 or other as of 

yet unidentified CSRs that are also involved in controlling glomerular morphology.  
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DIP/Dpr family members interact genetically and combinatorially to organize ORN 

axon terminals and glomerular position. 

Lack of wiring defects in single DIP/dpr knock downs might be due to the 

combinatorial and functionally redundant nature of DIP/Dpr family members. One 

approach to circumvent this problem is to knock down DIPs/dprs in different 

combinations. To investigate this, we next analyzed double knock down of DIP-η and 

DIP-δ. Knock down of DIP-η alone produces no observable defects when driven in all 

ORNs (Fig S6B, C). DIP-δ, as well as its interaction partner dpr12 are expressed in all 

four glomeruli. No RNAi line currently exists for DIP-δ, so we instead used the 

deGradFP system to reduce GFP tagged DIP-δ protein in ORNs. The deGradFP 

construct can be driven using the GAL4-UAS system and specifically targets GFP 

tagged proteins for degradation by the proteasome (46). The deGradFP system utilizes 

a single antibody domain fragment called VhhGFP4, which binds to GFP, Venus, YFP 

and EYFP, fused to an E3 ubiquitin ligase. This protein, when expressed, ubiquitinates 

proteins tagged with GFP, targeting them for degradation (46). We combined the peb-

GAL4 mediated RNAi knock down of DIP-η expression with UAS-deGradFP expression 

to reduce DIP-δ protein levels in all ORNs. Analysis of Or47b, Or47a, and Gr21a axon 

terminals using promoter fusion constructs showed very specific and localized defects in 

the VA1v glomerulus (Fig 5A, B). Most noticeably, Or47b ORN axon terminals extended 

radially towards the DC3 and VL2a glomeruli, targeted by Or83c and Ir84a ORNs, 

respectively, splitting the glomerulus in two (Fig 5B). 50% of individuals displayed 

defects in one or both antennal lobes (n=10, Fig 5C). In this circumstance, disruption of 

intra-class attraction among Or47b ORN axons, and Ir84a and Or83c ORN axons due 
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to loss of DIP-η and DIP-δ, is accompanied by the decrease in the diversity of DIP/Dpr 

combinations. This likely causes both classes of axons to not only reduce self-adhesion, 

exemplified by VA1v glomerular splits, but also might decrease diversity among ORN 

axons of different types. Such a split could be due to greater relative attraction of Or47b 

axons to axons of other classes, while retaining some self-adhesion, creating effectively 

two VA1v glomeruli. We therefore conclude that DIP-η and DIP-δ are required for the 

sorting of Or47b axons in a combinatorial, context-dependent, and non-cell autonomous 

fashion. 

 
Combinatorial and differential overexpression of DIP proteins causes local axon 

sorting defects 

So far, we have shown that DIPs/Dprs help sort Or47b, Or88a, Or83c, and Ir84a 

ORN axon terminals into 4 glomerular units in combinatorial, and context-dependent 

fashion. Because loss of DIPs/Dprs can lead to sorting defects, we hypothesized that 

addition of new factors to the code would also disrupt the wiring of these glomeruli. We 

expected that over expression should cause ORN axons from different classes to 

converge because their code of expression has become more similar or interactive. To 

test this hypothesis, using the Or47b-GAL4 driver we overexpressed DIP-δ and DIP-γ, a 

DIP which is not expressed in any of the 4 ORNs, but that interacts with Dpr11 found in 

all 4 (Fig 5D-F). 

Overexpression of either DIP-δ or DIP-γ in Or47b neurons produced no 

discernable changes in the VA1v glomerulus (n=10 and n=6 respectively, Fig 5D-F). 

Broad overexpression of either gene with the peb-GAL4 also produced no change in the 

VA1v glomerulus or in the DM3 and V glomeruli (Fig 5G-I). We reasoned that 
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overexpression in all ORNs or in a single class might not generate enough of a 

contextual change in ORN-specific combinations to show a phenotype. To generate a 

combinatorial and a contextual overexpression, we chose to overexpress each gene in 

a subset of ORNs targeting distant sites in the antennal lobe. We first overexpressed 

DIP-δ with the Gr21a, Or47a, Or23a, and Or47b-GAL4s (Fig 5J-M). In this condition, we 

found that VA1v glomerulus became deformed and split apart (Fig 5K). We observed a 

large group of axons closer to the VL2a glomerulus than normal, with a smaller but 

connected group on the opposite side of the VA1d glomerulus near the DC3 glomerulus 

(Fig 5K). 80% of individuals had a disrupted VA1v glomerulus in one or both antennal 

lobes (n=14, Fig S7A).  

Like knock down of DIP-η, overexpression of DIP-γ, in Gr21a, Or23a, Or47a and 

Or47b neurons, caused Or47b ORN axons to invade the VA1d glomerulus, although 

this invasion was partial (Fig 5L) and seen only in 50% of individuals (n=8, Fig S7A). We 

reasoned that because this phenotype only arose when DIP-γ is expressed in four 

classes of neurons, the DIP-γ now present on Or47a, Or23a, and Gr21a axons 

generates new interaction forces that pull Or47b axons towards the VA1d glomerulus. 

Or47b ORN projection defects in single overexpression of either DIP-δ or DIP-γ in 

Gr21a, Or23a, Or47a and Or47b neurons, suggest that cell non-autonomous effects 

exerted onto Or47b ORN axons by a subset of ORNs influences glomerular positioning 

and morphology.  

We next wanted to investigate how the axon sorting forces generated by 

simultaneous overexpression of DIP-δ and DIP-γ interact. We therefore expressed both 

DIP-δ and DIP-γ in Or47a, Or23a, Gr21a, and Or47b neurons. Surprisingly, this 
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condition rescued both phenotypes from DIP-δ and DIP-γ overexpression and restored 

the VA1v glomerulus to its wildtype shape (n=8, Fig 5M). This suggested to us that the 

differential forces generated by adding each of these factors individually were canceled 

out when they were overexpressed at the same time. We therefore conclude that 

context-dependent and combinatorial DIP/Dpr interactions generate differential forces 

within the antennal lobe among ORN axons to regulate glomerular formation and 

positioning. 

 

DIPs and Dprs mediate adhesive interactions between ORN axons 

Our previous experiments suggested that manipulation of DIP/Dprs causes two kinds of 

disruption of local axon sorting: splitting of glomeruli, or expansion and invasion of a 

neighboring glomerulus. It is still unclear however, whether these phenotypes arise 

because DIPs and Dprs mediate repulsive or adhesive interactions. To investigate 

whether DIP-Dpr interactions are adhesive or repulsive, we expressed dpr1 in ORNs. 

dpr1 is not expressed by any class of ORNs but interacts with both DIP-η and DIP-θ, 

which are broadly expressed in most classes. We are therefore introducing a novel 

interaction into the olfactory system which allows for better study of DIP-Dpr 

interactions. Initially, we expressed dpr1 using the Or47b-GAL4. We expected that if 

DIP-Dpr interactions were repulsive, that the VA1v glomerulus would be disrupted and 

that Or47b axons would diffuse beyond their glomerular boundary. In this condition, we 

observed no major changes to the VA1v glomerulus (n=14, Fig 6A, B). Because 

expression of dpr1 in all Or47b ORNs may have been insufficient to change the context 

of DIP-Dpr interactions, we next expressed dpr1 in a portion of Or47b neurons. Here we 
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labeled all Or47b ORNs using a Or47b promoter fusion transgene driving the 

expression of GFP while using MARCM (Fig 5C, D). In this manner, all Or47b neurons 

will be labeled by GFP, but a portion will express dpr1 and will be additionally labeled by 

CD2. If Dpr1-DIP-η/θ interactions are repulsive then the VA1v glomerulus should split 

apart or partition dpr1 expressing Or47b axons away from wildtype neurons. We 

observed no changes in the VA1v glomerulus in this condition (n=5, Fig 5D). We 

therefore conclude that it is unlikely that DIP-Dpr interactions cause repulsion between 

axons. 

 Our data suggest that DIPs and Dprs do not cause repulsive interactions 

between axons. We therefore suspected that DIPs and Dprs mediate adhesive 

interactions. So, we next expressed dpr1 using the peb-GAL4 driver to determine if DIP-

Dpr interactions mediate adhesion between axons. When we visualized Or47b, Or47a, 

and Gr21a ORN axons, we observed that the VA1v glomerulus split (Fig 6E, F, S8B). 

75% of individuals displayed a splitting of the VA1v glomerulus (n=8, Fig S8B). We also 

found a small and reproducible cluster of axon terminals in between the DA1 and VA1d 

glomeruli (Fig 6F). Labeling each ORN class individually revealed that this cluster 

belonged to ectopic Or47a ORN axons and was present in 50% of individuals (n=14, Fig 

6G-J, S8C). These axons may mis-project along Or47a ORN axon tracks to their target 

DM3 glomerulus due to attraction to other ORN axons that now express dpr1. These 

data suggest that DIP-Dpr interactions likely function in ORN axon-axon adhesion.  

To determine whether expression of dpr1 in a subset of ORN classes could also 

disrupt the wiring of Or47a and Or47b axons we used OR-GAL4 drivers to overexpress 

dpr1 in four classes of ORNs (Or47a, Or47b, Gr21a, and Or23a, Fig 6K, L). We did not 
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observe any change in the projection patterns of either Or47a or Or23a ORN axons. In 

contrast, both the V and VA1v glomeruli, targeted by Gr21a and Or47b ORNs, 

respectively, exhibited splitting phenotypes, stronger than ones observed in peb-GAL4 

driven overexpression (Fig 6K, S8E, F). 20% of individuals showed a split V glomerulus, 

and ectopic innervation of Gr21a ORN axons to a dorsal glomerulus into the antennal 

lobe (n=10, Fig S8D). The Gr21a ORN class is notably the only class of ORNs that does 

not express DIP-η (Fig 2H). It Is possible that these misprojected axons are attracted to 

dorsally neighboring axons that express DIP-η and therefore move dorsally towards 

them in the presence of Dpr1. The low penetrance and severity of the phenotype may 

be explained by the timing of expression of the Gr21a-GAL4 driver. Gr21a expression 

begins relatively late in development as compared with other ORs and therefore only a 

few axons may express dpr1 early enough to be affected. Splitting of the VA1v 

glomerulus caused some of the Or47b ORN axons to move radially and form a second 

glomerulus on the other side of the VA1d glomerulus (Fig 6K, L). This phenotype was 

observed in 40% of individuals (n=10, Fig S8B). Expression of Dpr1 in Or88a ORNs did 

not result in any projection defects (Fig S8G, H). These data suggest that the 

introduction of Dpr1 interferes with axon-axon interactions among ORNs likely through 

disrupting ongoing DIP/Dpr interactions. 

 

Dpr10 controls ORN axon guidance and axon sorting 

 So far, we have shown that DIPs/Dprs act primarily as adhesive molecules that 

regulate local ORN axon sorting. We suspected that DIPs/Dprs may regulate other 

aspects of ORN wiring, such as ORN-PN matching or targeting. We investigated dpr10 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316109doi: bioRxiv preprint 

https://doi.org/10.1101/316109
http://creativecommons.org/licenses/by-nc/4.0/


25 

 

because it is expressed broadly in the antennal lobe but labels the V glomerulus 

(Gr21a/Gr63a) most strongly. We therefore tested whether dpr10 controls the wiring of 

Gr21a ORNs as well as three other classes of ORNs that are weakly labeled by dpr10 

(Or47a, Or10a, and Or47b ORNs). We used the dpr10MI03557 allele which contains a 

MIMIC insertion, containing three premature stop codons, to analyze the loss of Dpr10 

protein (38). dpr10MI03557 homozygous flies die prior to eclosion, around 90hrs APF. We 

therefore dissected both mutant and wildtype flies at 80-90hrs APF when the antennal 

lobe is fully formed but prior to the death of dpr10 mutant flies. In homozygous mutant 

flies, both the DM3 (Or47a) and V glomeruli were dramatically disrupted (Fig 7A-D). 

These defects were associated with expansion of non-converged glomeruli to 

neighboring glomeruli, and defects in axon guidance to ectopic sites within the antennal 

lobe (Fig 7A-D, S9A, B). Specifically, we observed three phenotypes for Or47a ORN 

axons: splitting of the DM3 glomerulus, mistargeting of a subset of Or47a ORN axons, 

and mistargeting to ventromedial zones in the antennal lobe (Fig 7B, S9B). Or47a ORN 

mistargeting phenotypes were very penetrant with >70% (n=11) of individuals showing a 

split or mistargeting event in one or both antennal lobes (Fig S9B). The most common 

phenotype observed for Gr21a ORN axons (~39%, n=18) was a dorsal expansion of the 

V glomerulus (Fig 7D, S9A). In addition, we observed aberrant axons, as well as a 

complete splitting of the V glomerulus in a few rare cases (Fig S9A). We also analyzed 

Or10a axons, which are housed in the same sensillum as Gr21a neurons and target the 

DL1 glomerulus. Like Or47a axons, the Or10a glomerulus also exhibited splitting and 

dramatic mistargeting, with the most severe cases targeting to ventral positions on the 

opposite side of the antennal lobe, what appeared to be the VA5 glomerulus (Fig 7E, F, 
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S9C). Some individuals displayed Or10a axons that could not form a glomerulus at all, 

instead, the axons formed a fascicle in between other glomeruli, mistargeting as well as 

losing their ability to converge (Fig 7F, S9C). These data suggest that dpr10 not only 

regulates sorting of ORN axons, but also axon guidance of many ORN classes in the 

antennal lobe. 

None of the major wiring phenotypes found in Gr21a, Or47a and, Or10a ORN 

classes were present in the Or47b ORNs. Rather the VA1v glomerulus showed only 

minor disruptions of its normal shape and position (Fig 7G, H), which likely results from 

secondary effects of the general disorganization of the antennal lobe glomeruli in dpr10 

mutants.  

 Changes in the number of ORNs of a given class tends to change the size of that 

glomerulus (41). Thus we next wanted to confirm that the wiring phenotypes of Or47a, 

Or10a, and Gr21a ORNs were not due to a change in the number of ORNs in either 

class (33,41,44). We visualized Gr21a and Or47a ORNs in the antenna using UAS-

mCD8GFP reporters in wildtype and dpr10 mutants (Fig 7I-L). We observed a 

statistically significant reduction in the number Or47a neurons in dpr10 mutants (14.4 vs 

6.8, p<0.001, Figure 7K, L, O), suggesting that dpr10 may regulate the survival of Or47a 

ORNs. This reduction may explain the reduced size of the DM3 glomerulus we 

observed in the antennal lobe but is insufficient to explain the misprojections of Or47a 

ORNs. A slight reduction of Gr21a neurons was also detected (30.8 vs 26.1) although it 

was not statistically significant (p>0.05, Fig 7I, J, O). Given that we observed an 

expansion of the Gr21a glomerulus, any reduction in the number of Gr21a neurons 

likely does not cause the phenotypes observed in the antennal lobe. Finally, we 
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assayed a third class of ORNs to further investigate changes to ORN specification, 

Or88a (Fig 7M, N). We observed no significant change in the number of Or88a neurons 

in dpr10 mutants (p>0.05, Fig 7O). These data suggest that dpr10 mutation may 

partially affect the generation or survival of some classes of ORNs, in addition to its role 

in organizing ORN axon projections in the antennal lobe. 

 

Discussion  

Despite our understanding of axon guidance and synaptic specificity, how complex 

circuits coordinate their organization across many neuronal types from a limited genetic 

repertoire of CSRs remains unknown. In the Drosophila olfactory system, 50 classes of 

ORNs project their axons into the antennal lobe of the brain where they connect to their 

partner projection neurons and organize within 50 uniquely positioned and ORN class 

specific glomeruli (9,11,12). Here we show that the Dpr family of Ig-domain 

transmembrane proteins and their heterophilic binding partners DIPs are expressed in 

ORN specific combinations. Mathematical analysis of class-specific DIP/Dpr expression 

profiles suggest ORN classes with similar DIP/Dpr profiles, can target distant glomeruli, 

and neighboring glomeruli are targeted by ORNs with different DIP/Dpr combinations, 

suggesting a role in ORN intra-class adhesion and inter-class sorting. Our results in vivo 

are in agreement with this hypothesis, as loss of a single DIP/Dpr gene in a specific 

ORN class, or multiple genes in all ORNs, causes local disruptions of ORN terminal 

projections and glomerular positioning, without causing defects in ORN-PN matching. 

Misexpression of DIPs/dprs causes similar phenotypes, disrupting normal axon-axon 

interactions in both cell autonomous and non-autonomous ways. Overexpression of 
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DIPs/Dprs in multiple classes of ORNs can cause cell non-autonomous phenotypes in 

other classes of ORNs, even distant neighbors, suggesting axon-axon interactions can 

shift glomerular positioning. ORN projection phenotypes in different levels of single 

protein knock downs, and combinatorial knock down or overexpression of DIPs, 

suggests integration of differential adhesive forces by different DIP/Dpr combinations in 

ORNs contributes to glomerular structure and position. Some Dprs, Dpr10 specifically, 

also control additional processes during wiring, such as the fate or correct guidance of 

ORNs to appropriate glomerular regions, as seen in dpr10 mutants. Together, our data 

reveals that DIPs/Dprs are critical players in ORN axon sorting, as well as the 

positioning of 50 ORN class-specific glomeruli.   

Although this study provides a significant advance in understanding how axon 

terminals for 50 ORN classes segregate into uniquely positioned glomeruli, it is 

incomplete. First and foremost, we do not have expression data for several other 

DIP/Dpr family members (Dprs 4, 7, 14, 17, 18, 19, 20, 21, and DIPs-α and ι). Second, 

we focused our analysis on four glomeruli targeted by Or47b, Or88a, Or83c, and Ir84a 

ORNs, showing only a few examples of manipulations in other ORN classes. More 

sophisticated systems level genetic analyses of all DIP/Dpr manipulations, in addition to 

identification of CSR expression profiles in each ORN class and its target projection 

neuron will help refine our model, in the future. 

Another caveat to our analysis is that that the ORN class-specific DIP/Dpr 

profiles rely on MIMIC GAL4 driven reporter expression patterns in the antennal lobes. 

Even though these have been confirmed in the neurons of the visual system (37), it is 

possible that some do not reflect the endogenous gene expression. Thus, acquisition of 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316109doi: bioRxiv preprint 

https://doi.org/10.1101/316109
http://creativecommons.org/licenses/by-nc/4.0/


29 

 

ORN specific transcriptional profiles, together with targeted GAL4s knock-ins into 

individual DIP/Dpr loci will be needed in the future for a more detailed understanding of 

the ORN-specific DIP/Dpr combinatorial codes. 

 

Differential adhesion via combinatorial DIP-Dpr interactions regulate glomerular 

organization 

One key characteristic of the peripheral olfactory system is the sorting of approximately 

1500 ORN axon terminals into 50, uniquely positioned, and ORN class-specific 

glomerular units in the antennal lobe (9,11). Our data suggests that, in addition to 

guidance of ORN axons to the antennal lobe and synaptic ORN-PN matching within 

glomeruli, axon-axon interactions among ORNs also contribute to the glomerular 

organization and formation. Such axon-axon interaction among ORNs during 

development can function to attract and adhere ORN axon terminals of the same class, 

simultaneously sorting from the axon terminals of other ORN classes, which themselves 

must self-adhere. These interactions can also generate differential forces that also 

position the terminals of each ORN, and thus the position of each glomerulus with 

respect to others. The molecular mechanisms driving these different processes during 

glomerular positioning and formation are not known. The process of sorting subsets of 

ORN axons into different tracks successively, starts with Notch signaling and its 

regulation of semaphorins, as ORNs in the same sensillum are born from asymmetric 

divisions of the same precursor to acquire separate wiring identities (23). Each of the 

sibling ORNs take one of the two early axon tracks before glomeruli start to form based 

on their Notch state, which also determines whether or not they express Sema-2b. 
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Sema-1a signaling also contributes to repulsion of neighboring ORN axons of different 

classes, but again, effects are relatively general, causing sorting defect of many ORN 

classes (47). In addition to repulsive signals, examples of homophilic cell adhesion 

proteins, such as N-Cadherin, were previously shown to regulate glomerular formation 

as well, by interfering with axon-axon interactions among the same class of ORNs 

(27,48). The effect of Ncad mutants however, are seen in all glomeruli, which does not 

explain selective adhesion that occurs among each class (27,48). Here we show that 

ORN-specific combinations of DIP/Dpr pairs regulate glomerular morphology and 

positioning within the antennal lobe. Knock down and mis-expression experiments also 

indicate that ORN axons interact via their DIPs/Dpr combinations suggesting that they 

may distinguish themselves from other ORN axons nearby, and integrate these 

interactions to identify and converge with ORNs of the same class, positioning the 

glomeruli for other ORNs with similar or slightly compatible DIP/Dpr profiles forming 

glomerular neighborhoods. This is particularly apparent for trichoid and coeloconic 

ORNs, which have more similar DIP/Dpr profiles among ORNs within each sensilla type 

compared to others. Given the previously reported adhesive function of DIP/Dpr 

interactions (35,37), our work then supports a model of differential adhesion that 

emerges from ORN-specific combinatorial DIP/Dpr profiles as a strategy for class-

specific sorting of ORN axon terminals.  

The sorting defects observed in this study could, in theory, arise due to either 

defects in intra-class attraction or inter-class repulsion. Taken together, our data argue 

for a third option, where differential adhesive interactions among axons sort out 

glomeruli of different classes. In many cases ligand-receptor DIP-Dpr pairs are 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316109doi: bioRxiv preprint 

https://doi.org/10.1101/316109
http://creativecommons.org/licenses/by-nc/4.0/


31 

 

expressed in the same ORN class,which can interact heterophilically to mediate 

adhesion, albeit it is also possible that some DIP/Dprs interact homophilically. Yet, 

some ORN classes, especially ones with more complex combinatorial codes, 

additionally express only specific Dpr ligands, without their DIP receptors. In these 

cases, we sometimes find the receptors can rather be expressed in ORN classes that 

target neighboring glomeruli. It is therefore possible that differential axon-axon 

interactions during development can help position axons from different ORN classes 

based on its DIP/Dpr profile. Indeed, our results with dpr1, DIP-δ, and DIP-γ 

overexpression supports this model of interaction. When expressed in only Or47b 

neurons, these genes yield no significant changes to the Or47b ORN projections or the 

VA1v glomerulus. Yet only when they are expressed in other ORN classes Or47b 

projection defects appear. This suggests that during development Dpr1, DIP-δ, and 

DIP-γ in Or47b neurons and other ORN classes interact with the matching DIPs or Dprs 

on nearby axons of other ORN classes. These interactions likely generate forces that 

pull out Or47b axons to distinct directions. Additional support for differential adhesion 

comes from the titration levels of DIP-η knock down, where increasing the temperature 

and thus the strength of knock down is accompanied by increased severity of the Or47b 

ORN projection phenotype. This is likely due to differing levels of self-adhesion, where a 

slight decrease in self adhesion can lead to glomerular splits as opposed to a full 

expansion of VA1v glomerulus in stronger knock downs to fully overtake the VA1d 

glomerulus. This is also consistent with the developmental analysis of the phenotype, 

which reveals that glomerular splits and positional defects are apparent at 45-50hrs 

APF, before axons fully expand at 55hrs APF. Previous reports have observed that the 
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number of Or47b neurons that are positive for the GFP driven by the Or47b-GAL4 

increases over pupal development (34). This would suggest that the number of Or47b 

neurons that lack DIP-η expression at mid-pupal stages are relatively few, resulting in a 

modest reduction of DIP-η expression in the population as a whole. This reduction 

would increase as more neurons express the Or47b-GAL4 resulting in full invasion. 

Combinatorial knock down and overexpression of DIPs also support a model in 

which DIP/Dprs mediate differential adhesion. Overexpression of either DIP-δ or DIP-γ 

on their own, misdirects axon terminals indifferent directions. This is likely due to 

different context dependent adhesive DIP/Dpr interactions among ORN axons within the 

antennal lobe glomeruli in each experimental condition. Interestingly, these effects are 

neutralized when both DIPs are expressed simultaneously, suggesting integration of 

different adhesive forces exerted on the ORN axon terminals for each class.  

Heterophilic adhesive interactions among DIPs/Dprs are consistent with their 

previously reported roles in the Drosophila eye in layer specific matching of 

photoreceptor cells with their targets in the medulla (35). Mutations in DIPs/dprs cause 

photoreceptors to overshoot their targets because they lack adhesion with their 

postsynaptic partners (35). In our study, we did not detect any ectopic synaptic 

matching of Or47b ORNs with other PNs, suggesting DIP/Dprs in ORNs might function 

in glomerular sorting and positioning, but not ORN-PN matching. However, these 

experiments are restricted to the analysis of MZ19 reporter, which labels DA1, DC3, and 

VA1d PNs. Thus even though it is possible that DIP/Dpr interactions might play a role in 

ORN-PN matching for other ORN classes, our data is in agreement with a model of 

differential adhesion as an efficient strategy to form and segregate 50 class specific 
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glomeruli in the antennal lobe. At each stage of the wiring program, axons can interact 

with their neighbors based on their DIP/Dpr profiles where highest adhesion occurs 

among the axons of the same ORN class, and perhaps determine the relative 

glomerular position of other ORN classes nearby. Superimposed onto other earlier 

regulators of wiring, such as Sema-1a, Sema-2a, and N-Cadherin, glomeruli can be 

sorted out from one another in a repeatable fashion (27,47). 

 

ORN wiring programs continue after the onset of OR expression 

Our results suggest that loss or addition of DIPs/Dprs generally act locally in a 

class-specific manner during the last stages of glomerular formation. In many instances, 

phenotypes can be generated by knocking down or overexpressing DIP/dpr genes 

using OR-GAL4 drivers, after the onset of olfactory receptor expression. This result is 

rather interesting given the current view of ORN circuit assembly. For many years, the 

consensus has been olfactory receptor genes are turned on after the glomerular 

formation is complete. Our results suggest that, at least for olfactory receptors that are 

turned on early in development, glomerular patterns are not entirely established by the 

onset of OR expression. The finding that class specific knock down and over expression 

experiments using Or47b-GAL4 drivers for many DIP genes leads to dramatic defects in 

the target VA1v glomerulus, indicates ongoing axonal decisions that require DIPs/Dprs 

after the onset of Or47b expression.  

In addition, developmental analysis of knock down of DIP-η in Or47b ORNs 

shows that glomerular deformation can be detected as early 45 hrs APF during the 

finalization of glomerular formation. This suggests that DIPs and Dprs play some role in 
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the development of glomerular morphology and positioning, while others may be more 

critical for the maintenance of proper glomerular shape. This conclusion is bolstered by 

the observation that some DIPs and Dprs have developmentally dynamic expression 

patterns, with distinct expression patterns at 40-50 hrs APF, while others show little to 

no expression at this developmental stage. It is likely that different DIPs and Dprs play 

different roles in ORN wiring depending on their expression pattern and timing. 

It should also be noted that some phenotypes arise when other Or-GAL4s, that 

turn on later, are used in conjunction with the Or47b-GAL4. This suggests that while 

glomeruli obtain they final shape by 48hrs APF, this morphology is not set and can be 

altered later in development by the mis-expression or knock down of CSRs.  

When a specific DIP/dpr gene, or gene combination, is lost or ectopically 

expressed in ORNs, axons invade the glomerulus targeted by a class of ORNs with the 

most compatible DIP/Dpr code, and/or which also now has new adhesive properties due 

to the perturbed genetic state. This role is akin to Dscam, a fellow Ig superfamily 

protein, involved in controlling dendritic self-avoidance, where combinatorial expression 

of thousands of Dscam splice isoforms regulate recognition of self vs non-self-dendritic 

processes to produce distinct dendritic zones for each neuron (36). In the case of 

DIPs/Dprs in the olfactory system, combinatorial expression of DIP/Dprs regulates 

sorting of ORN axon terminals that belong to the same class (self) from axon terminals 

of other ORN classes (non-self) which target neighboring glomeruli in the antennal lobe. 

 

Regulation of DIP/Dpr Expression 

How do the class specific patterns of DIP/Dpr expression arise? It seems likely that 
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similar mechanisms that lead to the singular expression of a particular olfactory receptor 

in each neuron would also control the expression of DIPs/Dprs. There are three major 

modes of regulation of OR selection: 1-prepatterning of the antennal disc by 

transcription factor networks that determine sensilla precursor identity, 2-regulation of 

neuronal fates by Notch-Delta signaling during asymmetric precursor cell divisions, and 

3-terminal selector transcription factors regulating olfactory receptor gene expression 

and possibly other ORN identifiers (19,33,49). Each mode of regulation clearly controls 

ORN wiring as prepatterning network mutants change ORN connectivity to converted 

fates (33,41), Notch pathway mutants behave similarly (19,43), and factors like Pdm3 

regulate glomerular shape as well OR expression (50). It is likely that each mode of 

regulation, layered on top of each other, work in concert to control DIP/Dpr expression. 

This would lead to class-specific differences in their DIP/Dpr profiles, which would be 

generated by the developmental programs mediating terminal differentiation of each 

ORN class, increasing the complexity of the DIP/Dpr code for each ORN class. There 

might be some DIP/Dprs, like DIP-η and dpr12, that are expressed earlier and more 

abundantly in future ORNs, perhaps starting at precursor stages to coarsely sort early 

axons. Some DIPs/Dprs are indeed expressed in our RNA-seq analysis at 8 hrs APF 

although at much lower levels when compared to 40 hrs APF and adult antennae. 

DIP/Dprs expressed in only few classes of ORNs, might be superimposed onto existing 

DIP/Dpr profiles in later stages of development, as individual ORN identities are defined 

by the onset of OR expression. Deeper understanding of exactly which transcription 

factors control DIP/Dpr expression and how they relate to larger programs of neuronal 

specification is needed.  
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Convergent molecular logic for glomerular organization 

The mammalian olfactory bulb is organizationally very similar to the Drosophila antennal 

lobe. In both organisms, the ORNs that express the same receptor converge their axons 

onto a single class-specific glomerulus (9,51). Mammalian olfactory receptors are G-

protein coupled receptors and differentially regulate the expression of adhesive and 

repulsive CSRs to position and sort ORN specific glomeruli using both ligand dependent 

and independent signaling (16,17). Differential, ligand-independent cAMP signaling from 

each mammalian olfactory receptor gene regulates graded expression of Semaphorin 

and Neuropilin in different ORN classes, and control the positioning of each glomerulus 

(16,17). In addition, olfactory receptor neuron activity refines glomerular convergence 

through differential expression of homophilic adhesion Ig-domain proteins Kirrel2/3, and 

repulsive transmembrane signaling proteins EphA and EphrinA, which regulate intra-

class attraction and inter-class repulsion respectively (16,17).  

In contrast to mammalian olfactory receptors, Drosophila olfactory receptors are 

ligand gated cation channels, and do not contribute to ORN wiring (18). Interestingly, 

DIPs and Dprs share homology with Kirrels and seem to operate with a similar logic. 

Differential and graded expression of adhesion proteins, Kirrels in mammals and a 

combination of DIPs/Dprs in flies, mediates class-specific glomerular convergence. 

They do this by regulating adhesion among the axons from the same ORN class, by 

creating differential adhesion forces locally in the olfactory bulb based on ORN-specific 

cell surface receptor profiles. Thus, even though olfactory receptors in mammals and 

Drosophila are functionally and structurally diverse, our point to a possible evolutionarily 
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convergent downstream molecular strategies that sort ORN axon terminals into distinct 

glomeruli in a class specific manner.    

 

 

Materials and Methods 

Fly Genetics 

OR-CD8 GFP, OR-Syt GFP, OR-GAL4, IR-GAL4, GR-GAL4 lines were from Leslie 

Vosshall, Barry Dickson, Richard Benton and John Carlson, respectively. Dpr-GAL4 and 

DIP-GAL4 lines were from Larry Zipursky. UAS-CD8 GFP, UAS>STOP>GFP, UAS-

SytGFP, ey-FLP, MZ19-CD8 GFP, UAS-RFP, UAS-dpr1, UAS-DIPγ, UAS-DIPδ, 

dpr10MI03557 and UAS-RNAi lines were all from Bloomington Stock Center. 

Fly Genotypes 

Figure 1A, C, D, E. w1118 

Figure 2A. dpr-GAL4/UAS-sytGFP 

Figure 2B and S2B. eyFLP/+; UAS>STOP>GFP /+; dpr5-GAL4/+ 

Figure 2C and S2F. eyFLP/+; UAS>STOP>GFP /+; dpr10-GAL4/+ 

Figure 2D and S2G. eyFLP/+; UAS>STOP>GFP/+; dpr11-GAL4/+ 

Figure 2E and S2J. DIP-β-GAL4/eyFLP;; UAS>STOP>GFP/+ 

Figure 2F and S2K. eyFLP/+; UAS>STOP>GFP/+; DIP-γ-GAL4/+ 

Figure 2G and S2M. eyFLP/+; DIP-ε-GAL4/UAS>STOP>GFP  

Figure 2H and S2O. eyFLP/+; DIP-η-GAL4/UAS>STOP>GFP  

Figure S1A. eyFLP/+; dpr2-GAL4 UAS-CD8GFP/CyO; FRT82 GAL80/FRT82 

Figure S1B and S2A. eyFLP/+; dpr3-GAL4/UAS>STOP>GFP  
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Figure S1C and S2C. eyFLP/+; UAS>STOP>GFP/+; dpr6-GAL4/+ 

Figure S1D and S2D. dpr8-GAL4/eyFLP;; UAS>STOP>GFP/+ 

Figure S1E and S2E. eyFLP/+; UAS>STOP>GFP/+; dpr9-GAL4/+ 

Figure S1F. eyFLP/+; dpr12-GAL4/UAS-sytGFP; FRT82 GAL80/FRT82 

Figure S1G. dpr13-GAL4/UAS-sytGFP 

Figure S1H and S2H. eyFLP/+; UAS>STOP>GFP/+; dpr15-GAL4/+ 

Figure S1I and S2I. eyFLP/+; UAS>STOP>GFP/+; dpr16-GAL4/+ 

Figure S1J and S2L. eyFLP/+; UAS>STOP>GFP/+; DIP-δ-GAL4/+ 

Figure S1K and S2N. eyFLP;/+ DIP-ζ-GAL4/UAS>STOP>GFP 

Figure S1L and S2P. eyFLP/+; DIP-θ-GAL4/UAS>STOP>GFP 

Figure S1M. dpr2-GAL4/UAS-CD8GFP 

Figure S1N. dpr3-GAL4/UAS-CD8GFP 

Figure S1O. UAS-CD8GFP/+; dpr5-GAL4/+ 

Figure S1P. UAS-CD8GFP/+; dpr10-GAL4/+ 

Figure S1Q. UAS-CD8GFP/+; dpr11-GAL4/+ 

Figure S1R. dpr12-GAL4/UAS-CD8GFP 

Figure S1S. DIP-β-GAL4/+; UAS-CD8GFP/+ 

Figure S1T. UAS-CD8GFP/+; DIP-γ-GAL4/+ 

Figure S1U. UAS-CD8GFP/+; DIP-δ-GAL4/+ 

Figure S1V. DIP-ε-GAL4/UAS-CD8GFP 

Figure S1W. DIP-η-GAL4/UAS-CD8GFP 

Figure S3A. dpr-GAL4/UAS-DenMark 

Figure S3B. dpr2-GAL4/UAS-DenMark 
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Figure S3C. dpr3-GAL4/UAS-DenMark 

Figure S3D. UAS-DenMark/+; dpr6-GAL4/+ 

Figure S3E. UAS-DenMark/+; dpr10-GAL4/+ 

Figure S3F. dpr12-GAL4/UAS-DenMark 

Figure S3G. dpr8-GAL4/+; UAS-DenMark/+ 

Figure S3H. DIP-α-GAL4/+; UAS-DenMark/+ 

Figure S3I. UAS-DenMark/+; DIP-γ-GAL4/+ 

Figure S3J. DIP-η-GAL4/UAS-DenMark 

Figure S3K. dpr13-GAL4/UAS-DenMark 

Figure S3L. DIP-ζ-GAL4/UAS-DenMark 

Figure S6A. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/+ 

Figure S6B. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/UAS-DIP-α 

RNAi 

Figure S6C. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/+; UAS-dpr12 

RNAi/+ 

Figure S6D. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/UAS-DIP-η 

RNAi 

Figure S6E. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/+; UAS-dpr8 

RNAi/+ 

Figure S6F. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/+; UAS-DIP-θ 

RNAi/+ 

Figure S6G. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/+; UAS-dpr20 

RNAi/+ 
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Figure S6H. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/+; UAS-dpr5 

RNAi/+ 

Figure S6I. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/+; UAS-dpr9 

RNAi/+ 

Figure S6J. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/+; UAS-dpr10 

RNAi/+ 

Figure 4A. Or47b-GAL4 UAS-sytGFP/CyO 

Figure 4B. Or47b-GAL4 UAS-sytGFP/UAS-DIP-η RNAi 

Figure 4C-D. Or47b-GAL4 UAS-RFP/CyO; Or88a-mCD8GFP/+ 

Figure 4C-E’. Or47b-GAL4 UAS-RFP/UAS-DIP-η RNAi; Or88a-mCD8GFP/+ 

Figure 4F. Or47b-GAL4 UAS-RFP MZ19-mCD8GFP/CyO 

Figure 4F’. Or47b-GAL4 UAS-RFP MZ19-mCD8GFP/UAS-DIP-η RNAi 

Figure 4H-J. Or47b-GAL4 UAS-RFP/CyO 

Figure 4H’-J’. Or47b-GAL4 UAS-RFP/UAS-DIP-η RNAi 

Figure 4K. Bar-GAL4/+; UAS-mCD8GFP/+ 

Figure 4K’. Bar-GAL4/+; UAS-mCD8GFP/UAS-DIP-η RNAi 

Figure S7A. Or47b-GAL4 Or47a-GAL4 Or23a-GAL4 Gr21a-GAL4 UAS-sytGFP/CyO; 

TM2/TM6B 

Figure S7B. Or47b-GAL4 Or47a-GAL4 Or23a-GAL4 Gr21a-GAL4 UAS-sytGFP/ UAS-

DIP-η RNAi; TM2/TM6B 

Figure S7D. Or47b-GAL4 UAS-RFP/CyO; Or88a-mCD8GFP/+ 

Figure S7E. Or47b-GAL4 UAS-RFP/UAS-DIP-η RNAi; Or88a-mCD8GFP/+ 

Figure S7H and I. Or47b-GAL4 UAS-RFP/UAS-DIP-η RNAi; Or88a-mCD8GFP/+ 
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Figure S7K. Or88a-GAL4 UAS-CD8GFP/CyO 

Figure S7L. Or88a-GAL4 UAS-CD8GFP/UAS-DIP-η RNAi 

Figure 5A. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/+ 

Figure 5B. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/UAS-DIP-η 

RNAi; DIP-δ-GFP/UAS-deGradFP 

Figure 5D. Or47b-GAL4 UAS-SytGFP/CyO; TM2/TM6B 

Figure 5F. Or47b-GAL4 UAS-SytGFP/+; UAS-DIP-δ/TM6B 

Figure 5E. Or47b-GAL4 UAS-SytGFP/+; UAS-DIP-γ/TM6B 

Figure 5G. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/+ 

Figure 5H. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/+; UAS-DIP-δ/+ 

Figure 5I. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/+; UAS-DIP-γ/+ 

Figure 5J. Or47b-GAL4 Or47a-GAL4 Or23a-GAL4 Gr21a-GAL4 UAS-sytGFP/CyO; 

TM2/TM6B 

Figure 5K. Or47b-GAL4 Or47a-GAL4 Or23a-GAL4 Gr21a-GAL4 UAS-sytGFP/+; UAS-

DIP-δ/TM6B 

Figure 5L. Or47b-GAL4 Or47a-GAL4 Or23a-GAL4 Gr21a-GAL4 UAS-sytGFP/+; UAS-

DIP-γ/TM6B 

Figure 5M. Or47b-GAL4 Or47a-GAL4 Or23a-GAL4 Gr21a-GAL4 UAS-sytGFP/+; UAS-

DIP-γ/UAS-DIP-δ  

Figure 6A. Or47b-GAL4 UAS-sytGFP/CyO 

Figure 6B. Or47b-GAL4 UAS-sytGFP/UAS-Dpr1 

Figure 6C. eyFLP/+; Or47b-GAL4 UAS-CD2 Or47b-mCD8GFP/CyO; FRT82 

GAL80/FRT82 
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Figure 6D. eyFLP/+; Or47b-GAL4 UAS-CD2 Or47b-mCD8GFP/UAS-dpr1; FRT82 

GAL80/FRT82 

Figure 6E. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/CyO 

Figure 6F. peb-GAL4/+; Or47b-sytGFP, Or47a-sytGFP, Gr21a-sytGFP/UAS-dpr1 

Figure 6E. peb-GAL4/+; Or47b-sytGFP/CyO 

Figure 6F. peb-GAL4/+; Or47b-sytGFP/UAS-dpr1 

Figure 6E. peb-GAL4/+; Or47a-sytGFP/CyO 

Figure 6F. peb-GAL4/+; Or47a-sytGFP/UAS-dpr1 

Figure 6K and S7E. Or47b-GAL4 Or47a-GAL4 Or23a-GAL4 Gr21a-GAL4 UAS-

sytGFP/CyO 

Figure 6L and S7F. Or47b-GAL4 Or47a-GAL4 Or23a-GAL4 Gr21a-GAL4 UAS-

sytGFP/UAS-Dpr1 

Figure S8G. Or88a-GAL4 UAS-CD8GFP 

Figure S8H. Or88a-GAL4 UASCD8GFP/UAS-Dpr1 

Figure 7A. Or47a-sytGFP; dpr10MI03557/TM6B 

Figure 7B. Or47a-sytGFP; dpr10MI03557 

Figure 7C. Gr21a-GAL4 UAS-sytGFP; dpr10MI03557/TM6B 

Figure 7D. Gr21a-GAL4 UAS-sytGFP; dpr10MI03557 

Figure 7E. Or10a-GAL4 UAS-CD8GFP; dpr10MI03557/TM6B 

Figure 7F. Or10a-GAL4 UAS-CD8GFP; dpr10MI03557 

Figure 7G. Or47b-sytGFP; dpr10MI03557/TM6B 

Figure 7H. Or47b-sytGFP; dpr10MI03557 

Figure 7I. Or47a-GAL4 UAS-sytGFP/UASCD8GFP; dpr10MI03557/TM6B 
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Figure 7J. Or47a-GAL4 UAS-sytGFP/UASCD8GFP; dpr10MI03557 

Figure 7K. Gr21a-GAL4 UAS-CD8GFP; dpr10MI03557/TM6B 

Figure 7L. Gr21a-GAL4 UAS-CD8GFP; dpr10MI03557 

Figure 7M. Or88a-GAL4 UAS-CD8GFP; dpr10MI03557/TM6B 

Figure 7N. Or88a-GAL4 UAS-CD8GFP; dpr10MI03557 

 

RNA-seq 

RNAseq was performed as described before. Wandering third instar larval antennal 

discs (~70 for each genotype), 8hr APF pupal antennae (~50 for each genotype), 40hr 

APF pupal antennae (~50 for each genotype), and adult antennae (150 males and 150 

females) from w1118 flies were dissected. We extracted RNA only from the antennal 

portion of the larval eye-antennal discs in order to remove contamination by transcripts 

from the developing eye. RNA sequencing libraries were prepared with TruSeq 

Stranded mRNA Sample Prep Kit (Illumina) following the manufacturer's instructions. 

For the RNA fragmentation step, 94˚C, 2min was used with the intention to obtain a 

median size ~185bp. PCR amplification was done with 15 cycles. A total of 24 

multiplexed libraries (barcoded) were accessed for quality and mixed altogether before 

separating to two identical pooled libraries, which are subject to cluster generation 

followed by Illumina 50bp paired-end sequencing by UNC High-Throughput Sequencing 

Facility (HTSF), as described in (33). 

 

Analysis of RNAseq data 
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Following Li et al., The Drosophila melanogaster transcriptome (r5.57) was downloaded 

from Flybase.org and an indexed was created with bwa-0.7.8 (52). Each sequencing file 

was aligned to the transcriptome, and .sam files for each sample were generated. At 

least 80% of the total reads were able to align to the reference sequence. Count tables 

were then made for each sample using featureCount and a customized python script, 

and further consolidated into a matrix containing transcript ID and read counts from all 

genotypes for each stage with a Ruby script (53). These matrices were used as inputs 

for differential expression analysis using customized DESeq2 R script (54). 

 

Immunohistochemistry 

Samples were fixed with 4% paraformaldehyde, washed with phosphate buffer with 

0.2% Triton X-100, and staining as previously described. Primary antibodies were used 

in the following dilutions: rabbit α-GFP 1:1000 (Invitrogen), rat α-Ncad 1:20 

(Developmental Studies Hybridoma Bank), mouse α-Bruchpilot 1:50 (Developmental 

Studies Hybridoma Bank), mouse α-rat CD2 1:200 (Serotec), rabbit α-RFP 1:200 (), 

chicken α-GFP 1:700 (). The following secondary antibodies were used: Alexa 488 goat 

α-rabbit 1:1000, goat α-mouse-Cy3 1:100, Alexa 568 goat α-mouse IgG highly cross-

adsorbed 1:300, Alexa 647 goat α-rat 1:200, Alexa 633 goat α-mouse 1:200, goat α-

rabbit Cy3 1:200, Alexa 488 goat α-rat 1:200, Alexa 488 goat α-chicken 1:700, goat α-

rat Cy3 1:200. Confocal images were taken by an Olympus Fluoview FV1000 or Zeiss 

LSM 510 (Light Microscopy Core Facility). 

 

Statistical analysis of ORN class specific DIP/Dpr profiles 
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Biclustering analysis was performed using existing "biclust" package in R to 

hierarchically cluster both DIP/Dpr expression profile in each ORN class, and the ORNs 

that express each DIP or Dpr gene. Multidimensional scaling (MDS) was performed in R 

on a matrix for each ORN class and their DIP/Dpr profiles in a binary fashion (0, 1), 

where value 1 represents presence of a given DIP or Dpr in a given ORN class. The 

results were plotted in two dimensions. 

k-means clustering in R was used to identify the 10 clusters below, which were later 

used to color code each cluster on the MDS plot. Same color coding was used on the 

antennal lobe scheme to highlight actual glomerular positions for each ORN class. 

Clusters are: 

1- Ir75abc2, Or85d, Or49a85f, Or67a, Or10a, 

2- Ir92a76a, Or35a, Ir84a, Ir76ab, Or67b, Or67c, Gr21a, Or2a,  

3- Or42a, Or49b, Or85b, Or7a, Or47a33b, Or83c, Or43a,  

4- UNKNOWN1, Or42b, Or85a,  

5- Ir75d, Or43b, Or56a33a, Or22ab, Or67d,  

6- Ir64a, Ir75abc, Or46a, Ir31a, Ir75a, Ir41a, Or98a,  

7- UNKNOWN2, Or59c, Or71a, Or82a, Or9a, Or59b, Or23a,  

8- Or33c, Or13a, Or69ab, Or92a, Or47b, Or65abc, Or88a, Or19a 
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Figure Legends 
 
Figure 1: Transcriptional profiles of CSR genes in the developing Drosophila 
olfactory system. Heatmaps representing normalized log2 expression values for CSRs. 
Highly expressed genes are represented in darker colors, and genes with lower 
expression levels are represented with lighter colors. A) Hierarchical clustering of the 
developmental expression patterns of in the olfactory system groups genes into 
clusters. Known regulators of ORN wiring and members of the dpr family are 
highlighted. B) Schematic showing expression profile of genes in each cluster at the 4 
developmental stages. C) Hierarchical clustering of the developmental expression 
patterns of known regulators of ORN wiring reveals two major expression patterns: high 
expression at all stages, and low expression at early stages followed by high expression 
at later stages. Expression patterns of dpr (D) and DIP (E) genes ordered from highest 
expression across all stages to lowest. Most DIP/dpr genes are expressed primarily at 
later developmental stages (p40 and Adult). 
 
Figure 2: Combinatorial and ORN class specific expression patterns of DIP and 
dpr genes. DIP and dpr-GAL4s were used to drive UAS>STOP>GFP in ORNs with 
eyFLP (green, A-H) to visualize ORN axons with staining for the neuropil (magenta). 
Each gene is expressed in a unique set of glomeruli and ORN classes. A map of the 
expression pattern of gene in the antennal lobe is provided in the right panel (A-H). 
Results for all genes are summarized in Supplemental Figure 1. (I) Hierarchical bi-
clustering of DIP/Dpr expression patterns by ORN class reveals that each class of 
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neurons expresses a unique combination of DIPs/Dprs. ORN classes highlighted in red 
neighbor each other in the antennal lobe and are further analyzed in subsequent 
figures. 
 
Figure 3: Multidimensional scaling clusters ORN classes by DIP/Dpr expression 
pattern, which groups classes targeting distant glomeruli. (A) Multidimensional 
scaling analysis clusters ORN classes based upon DIP/Dpr expression and glomerular 
distances. (B) K-means clustering was used to determine which ORN classes shared 
the most similar DIP/Dpr expression profiles in the MDS analysis. Classes that were 
clustered together were assigned the same color. (C) ORN classes clustered in B tend 
to target distant glomeruli. Coloring of glomeruli matches clusters in B. (D) Schematic of 
four glomeruli (Or47b, Or88a, Or83c, and Ir84a) that will be analyzed in subsequent 
figures. The expression code for each glomerulus is highlighted with each receptor-
ligand pair displayed in matching colors. 
 
Figure 4: Cell-autonomous knock down of DIP-η in Or47b ORNs disrupts sorting 
of Or47b axons from Or88a glomerulus. (A, B) Knock down of DIP-η with the Or47b-
GAL4 driver, also used to drive UAS-synaptotagmin-GFP (green), causes Or47b axons 
to expand and invade a neighboring glomerulus. (C-E’) Simultaneous labeling of Or47b 
(red) and Or88a (green) axons reveals that knock down of DIP-η causes Or47b ORN 
axons to invade the Or88a ORN target glomerulus, while Or88a ORN axons retain their 
ability to coalesce into a glomerulus despite intermingling with Or47b axons. (F-F’) Co-
labeling of Or47b axons (red) and MZ19 expressing PNs (green). During knock down of 
DIP-η, MZ19 expressing PNs do not invade the VA1v glomerulus. (G) Schematic of 
axon sorting phenotypes in DIP-η knock down. When DIP-η is specifically ablated from 
Or47b ORNs (black X), Or47b ORN axons (red) invade the Or88a ORN target 
glomerulus (white arrows) and intermingle with Or88a ORN axons (red/green striping). 
(H-J’) Developmental analysis of DIP-η RNAi phenotype with Or47b axons labeled in 
green and N-Cadherin in magenta, at 45-47 hrs APF (H-H’), 50-52 hrs APF (I-I’), and 
55-57 hrs APF (J-J’). Disruptions to VA1v glomerular morphology (arrowheads) can be 
detected as early as 45-47 hrs APF (H’) and larger expansions, as seen in the adult, 
can be observed by 55-57 hrs APF (J’). (K-K’) Knock down of DIP-η using the Bar-
GAL4, which expresses in Or88a, Ir84a, and Ir75d ORNs (33). Anterior sections of the 
antennal lobe are shown, and disruption to the VA1d glomerulus can be observed (K’). 
 
Figure 5: Combinatorial knock down and overexpression of DIPs causes cell non-
autonomous defects in VA1v glomerular organization. (A, B) Knockdown of DIP-η 
and depletion of DIP-δ protein using the DeGradFP system causes the splitting of 
specifically the Or47b glomerulus, but not the Gr21a or Or47a glomeruli, when driven 
with the peb-GAL4. (C) Penetrance of the DIP-η/DIP-δ knockdown phenotype. 50% of 
individuals displayed a split of the Or47b glomerulus in one or both antennal lobes. (D-
F) Overexpression of DIP-δ (E) and DIP-γ (F) in Or47b ORNs (green). Overexpression 
of either gene does not disrupt the VA1v glomerulus. (G-I) When DIP-δ and DIP-γ were 
over expressed in all ORNs using the peb-GAL4 driver, no disruptions were observed in 
the target glomeruli for Or47b, Or47a or Gr21a ORNs (green). (J-M) OR-GAL4s were 
used to drive expression of UAS-DIP-δ (K), UAS-DIP-γ (L) and UAS-syt-GFP (green), 
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and both UAS-DIP-δ and UAS-DIP-γ simultaneously (M). Mis-expression of DIP-δ in 
Or47b ORNs caused the target glomerulus to deform and split (K), while other ORNs 
mis-expressing DIP-δ were unaffected. Over expression of DIP-γ in Or47b ORNs 
caused their axons to partially invade the Or88a target glomerulus (L), like knock down 
of DIP-η (Figure 4). In contrast, other glomeruli that over expressed DIP-γ were 
unaffected. Surprisingly, overexpression of both DIP-δ and DIP-γ returned the shape of 
the VA1v glomerulus to its wildtype morphology (M). 
 
Figure 6: dpr1 overexpression leads to changes in glomerular organization via 
adhesive interactions. (A, B) Overexpression of dpr1 was in Or47b ORNs (green) did 
not perturb the VA1v glomerulus. (C, D) A subset of Or47b neurons (red) intermingle 
with all Or47b axons (green) in wildtype (C) and dpr1 overexpressing flies (D). (E-J) 
Overexpression of dpr1 with the peb-GAL4 caused a split of the VA1v glomerulus (E-H). 
Overexpression of dpr1 with this driver also caused mistargeting/splitting of some Or47a 
ORN axons (E-F, I-J), creating a highly reproducible, ectopic glomerulus. (K, L) 
Overexpression of dpr1 in four classes of ORNs with Or-GAL4 drivers caused a split 
Or47b glomerulus. 
 
Figure 7: Dpr10 controls ORN wiring in the antennal lobe. Mutation of dpr10 causes 
disruption of DM3 (A, B), V (C, D) and DL1 (E, F) glomeruli but not the VA1v (G, H) 
glomerulus as visualized with OR reporters diving synaptotagmin-GFP (green). 
Disruptions to these glomeruli included splitting of the glomerulus (B, D), mistargeting (B 
and F, arrow) and expansion (D, arrow). Penetrance and full summary of these 
phenotypes are described in Supplemental Figure 5. (G-J) ORN cell bodies were 
visualized in heterozygous and mutant flies for both Gr21a Or47a and Or88a ORNs 
using Or-GAL4 driven UAS-CD8GFP. A statistically significant decrease was observed 
for Or47a ORNs (p<0.001, K) but not for Gr21a or Or88a ORNs (p>0.05, K).  
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