
Bayesian Estimation of 3D Chromosomal Structure from Single

Cell Hi-C Data

Michael Rosenthal1,†, Darshan Bryner1,†, Fred Huffer2, Shane Evans3, Anuj Srivastava2,*,
and Nicola Neretti4,*

1Naval Surface Warfare Center, Panama City, FL
2Department of Statistics, Florida State University, Tallahassee, FL

3Center for Computational Molecular Biology, Brown University, Providence, RI
4Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University,

Providence, RI
†Contributed equally

*Correspondence: anuj@stat.fsu.edu, nicola neretti@brown.edu

May 7, 2018

Abstract

The problem of 3D chromosome structure inference from Hi-C datasets is important and
challenging. While bulk Hi-C datasets contain contact information derived from millions of
cells, and can capture major structural features shared by the majority of cells in the sample,
they do not provide information about local variability between cells. Single cell Hi-C can
overcome this problem, but contact matrices are generally very sparse, making structural
inference more problematic. We have developed a Bayesian multiscale approach, named
SIMBA3D, to infer 3D structures of chromosomes from single cell Hi-C while including the
bulk Hi-C data and some regularization terms as a prior. We study the landscape of solutions
for each single-cell Hi-C dataset as a function of prior strength and demonstrate clustering
of solutions using data from the same cell.

Keywords: Chromosome structure, Hi-C, single cell genomics, Bayesian inference

1 Introduction

The use of whole genome conformation capture techniques (3C) such as Hi-C [10] has revealed
that the 3-dimensional (3D) organization of the genome plays a key role in regulating funda-
mental cellular processes such as transcriptional regulation, cell cycle progression, and cellular
differentiation [10, 14, 5]. These studies generate contact maps describing the probability of
observing interactions between any two regions of the genome, which can be associated with
distance matrices between pairs of genomic loci. Methods developed to infer the 3D structure of
chromosomes from these contacts maps typically rely either on optimization-based strategies to
minimize the difference between the inferred structure and the distance matrix [21, 8, 28, 32, 17],
or on probabilistic modeling to find the most likely structure(s) given the observed contact prob-
abilities [2, 31, 9, 25, 1, 20, 27].

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

While Hi-C is typically collected on bulk samples containing millions of cells, it is not clear
how much the organizational features present in these population datasets reflect the 3D orga-
nization of chromosomes in individual cells. For example, it is not guaranteed that all observed
long-range contacts appear simultaneously in each cell [26]. Thanks to recent advances in Hi-C
technology we can now study long-range interactions at the single cell level [12, 22, 19, 13, 6].
Single cell Hi-C has confirmed many organizational principles described in bulk experiments, but
their interpretation is not straightforward. For example, it is not yet clear whether topologically
associated domains (TADs) are 3D structural units in individual cells or a population feature
that emerges when many cells are aggregated in bulk Hi-C experiments [12, 6], although recent
work in Drosophila points to the former [24].

The primary difficulty in inferring 3D chromosome structures from single-cell Hi-C data is
the sparseness of the contact maps. Currently available methods rely on inference of missing
data [18] or on polymer models optimization based on Markov chain Monte Carlo (MCMC) [4]
or simulated annealing techniques [12, 22, 13]. However, recovery of potentially missing long
range interactions in the contact matrix relies exclusively on the information contained within
individual single-cell matrices.

Here we present a solution using Structural Inference via Multiscale Bayesian Approach
(SIMBA3D), which utilizes bulk Hi-C to aid in recovering the contribution of interactions po-
tentially missed in single cell Hi-C contact maps. Our strategy is similar in principle to the
one used in [26] where bulk Hi-C is decomposed into an ensemble of single cell 3D structures.
We build a generalized Bayesian framework which utilizes penalties associated with folding con-
straints and a prior derived from bulk Hi-C samples to infer 3D chromosomes structure in single
cells.

2 Method

The primary goal of the inference is to efficiently explore a vast space of potential chromoso-
mal structures and seek optimal solutions using contact matrices and other contextual data.
This requires constructing objective functions with desirable properties and developing scal-
able algorithms to reach interpretable conformations in times that are practical for large scale
computations.

As stated above, the problem of estimating chromosomal structure from single cell data is
challenging because this data is very sparse and noisy. In order to reach more realistic solutions,
we implement a Bayesian approach that supplements the single cell data with the bulk data.
This technique helps fill the missing parts with structures corresponding to the population of
cells and additionally imposes certain penalties to improve the quality of estimated structures.
The penalties are designed in particular to favor uniform placement of points on the estimated
curve and to force the curve itself to be smoother.

Estimation Using Energy Minimization
We define a posterior energy function E on the space of potential curves, X = Rn×3 – each
curve containing n points (or nodes) in R3 – and use a gradient-based approach to solve for an
optimal solution

X̂ = arg inf
X∈X

E(X|C,C ′, λ, a, b),

where C = (cij) and C ′ = (c′ij) are the single-cell and bulk contact matrices, respectively, and λ
is a vector of weights. Let M =

∑
j>i cij and M ′ =

∑
j>i c

′
ij , respectively. The energy function

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

E has several terms, each contributing to a certain aspect of the estimated curve:

E(X|C,C ′, λ, a, b) =
1

M
g(C|X, a, b) +

λ3
M ′

g(C ′|X, a, b) + λ1h1(X) + λ2h2(X) .

In the first term g(C|X, a, b) is the negative log-likelihood of the contact matrix C given a curve
X. This term follows a Poisson model (see Varoquaux [28]) with a, b being pre-determined
model parameters. The remaining terms can be viewed as imposing a prior distribution on the
curve. The second term involves the negative log-likelihood of the bulk contact matrix C ′ and
represents the prior belief that the curve X will bear some resemblance to those found in the
population. The third and fourth terms represent the prior belief that the curve displays some
regularity. The third term penalizes variation in the distances between adjacent points on the
estimated curves (the function h1(X) is minimized when the points on X are equally spaced),
and the fourth term penalizes deviations from straightness (h2(X) is minimized when X is a
straight line). Since the weights λ1 and λ2, are typically small, these terms essentially discourage
excessive variation in the distances between points and excessive bending of the curve. Together,
these terms drive the solution towards a smoother, more interpretable curve that conforms to
both single-cell and bulk data. The fact that the gradient of E with respect to X is available in
closed form helps accelerate the search for optimal curves.

Notice that if we let C̃ = C + λ3M
M ′ C

′ and b̃ = (1 + λ3M
M ′)b, then the Poisson likelihood-based

terms g(X|C, a, b)/M + λ3g(C ′|X, a, b)/M ′ merge to become g(X|C̃, a, b̃)/M . Therefore, the
effect of the bulk prior essentially adds a scalar multiple of C ′ to the data C and perturbs the
parameter b.

Multiscale Optimization for Improved Inference
The biggest challenge in solving this optimization comes from a non-convex energy function
and an extremely high-dimensional search space, which brings about multiple local optima and
a tremendous computational cost. While the presence of the bulk and penalty terms helps to
mitigate these issues by steering the search towards more realistic solutions, the computational
complexity still remains a major hurdle. In order to reduce the computation time to allow
for a practical full genome reconstruction, we implement a multiscale optimization technique.
Compared to a standard approach that computes the full resolution optimization using a random
initialization, the multiscale approach reduces computation time and limits the local solutions
obtained. As shown in Fig. 3B, this leads to solutions with smaller energies.

The multiscale optimization technique used in SIMBA3D is as follows. First, from a given
full resolution contact matrix, we generate a series of new matrices decreasing in resolution,
i.e. decreasing in size, by recursively combining adjacent pairwise interaction counts to reflect
a merging of adjacent genomic bins. One iteration of this process cuts the dimension of the
contact matrix roughly in half. For each matrix generated in the series, we ignore the diagonal
elements as we would in the original full contact matrix. Once we generate the multiscale series of
matrices, we execute the series of optimizations in the reverse order, beginning with the smallest
matrix and ending with the full matrix. We initialize the smallest optimization randomly from
a standard multivariate normal distribution, obtain a solution, and then upsample this solution
(i.e. interpolate between the solution nodes) to initialize the next larger optimization problem in
the series. We continue this iterative process of solving successively larger optimizations, using
an upsampled version of the current solution as an initialization to the next higher resolution
problem, until we finish with the full solution. SIMBA3D implements this multiscale technique
in Python, whereby at each scale the optimization is solved using the BFGS method [7, 16] with
analytical gradient (see Supplemental Text for the gradient expression).

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

Although we solve several optimization problems in the above multiscale approach compared
to just one in a standard approach, the computation time is significantly reduced. Since the
smaller optimizations are relatively fast compared to the full resolution version, the multiscale
approach is essentially a systematic way of cheaply providing a good initialization to the full
problem. The combined cost of producing this initialization and executing the full resolution
optimization is less than the cost of executing the full resolution optimization with a full resolu-
tion random initialization. Moreover, our experimental results show that we achieve on average
a lower energy, i.e. better quality, solution using the multiscale approach compared to that of the
standard approach of random full resolution initialization. An additional consequence of using
the multiscale approach is that by design, the space of obtainable full resolution local solutions
is limited by the initial smallest resolution. In extreme cases the very small resolution problems
may only have one solution; therefore, if one wishes to explore the local solution space of the full
resolution by using different random initializations while still enjoying the benefits of reduced
computation time, one must strike a reasonable compromise in initial scale size.

3 Results

Here we present some representative results from SIMBA3D applied to the reconstruction of
chromosome structures using the mESC dataset [22], with a more extensive presentation of
results left for the supplementary material. A complete estimation solution for a simulated
configuration, intended as an illustration of the estimation process, is presented in Figure S1 of
the supplementary material. To highlight the influence of parameter selection on the results,
Figure 1 illustrates the effect of the relative values of the three weights — λ1, λ2, and λ3
— on the resulting estimated structures. As expected, higher values of these weights lead to
increases in the respective properties they emphasize. For instance, an increase in λ3 leads to
the chromosome structure bearing more resemblance to the structure estimated from the bulk
data alone. Figure S2 in the supplementary material provides a much more extensive listing of
such results for several single cells under a broad range of parameter values.

Figure 2 studies the nature of solutions resulting from different initializations on the same
data. Due to the vast search space in which the structure estimation is performed as well as
the non-convexity of the objective function, the optimization procedure in SIMBA3D cannot
ensure convergence to a unique global solution. Instead, the output structure represents one of
many different local optima that can be reached depending on the initialization. Despite the
existence of several local optima, multiple configurations resulting from the same cells do in fact
cluster together in the shape space, as illustrated using a pairwise RMS distance matrix and
dendrogram in this figure. The clustering observed here lends further validity to the inferred
structures.

The use of the multiscale optimization technique is beneficial for several reasons. It first esti-
mates broader, coarser structures and then adds smaller details, thereby avoiding the abundance
of local traps present at the highest resolution. In addition to reaching a lower energy solution
on average, it also speeds the algorithm significantly due to low-dimensional searches in the early
stages. Figure 3 quantifies gains in computational cost and final energies due to this multiscale
approach. Finally, Figure S3 in the supplemental material displays estimated configurations for
all 20 chromosomes in all 8 cells present in this mouse dataset using the multiscale approach
and fixed penalty weights.

An illustration of this method can be seen in the supplemental movie MovieS1.

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

Figure 1: Effect of model parameters on 3D reconstruction quality. We compute the
3D reconstruction as a function of parameter values using the Hi-C data matrix associated with
chromosome 19 in cell 1 of the mESC dataset from [22]. The top row of structures from left
to right shows the effect of an increased weight λ1 on the parameterization penalty h1. We
vary λ1 = 0.01, 0.1, 1, 10 and fix λ2 = λ3 = 0 to obtain four solution curves with exponentially
increasing penalty weight. The center row of structures from left to right shows the effect of
an increasing weight λ2 on the smoothing penalty h2. Here, we vary λ2 = 0.01, 0.1, 1, 10 and
fix λ1 = 0.5 and λ3 = 0 to obtain these four solution curves. Finally to show the effect of
incorporating the bulk data – the mESC chromosome 19 population matrix – in the analysis,
we vary λ3 = 0.01, 0.1, 1, 10 and fix λ1 = 0.5, λ2 = 1 to obtain the four structures on the bottom
row. We computed all structures using the multiscale approach with n = 73, 146, 292, 584.

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

Figure 2: Similarity between ensembles of solutions across cells. Here we show twenty
local solutions obtained for chromosome 19 in each of three cells – cell 1, cell 2, and cell 5
– in the mESC dataset using fixed λ = (0.5, 1, 0.1). We computed all structures using the
multiscale approach with n = 73, 146, 292, 584, and for each cell we used the same twenty
random initializations at the smallest scale. All displayed solutions are rotationally aligned. For
each cell we show the twenty obtained solutions separately, and additionally, to help visualize
the variability inherent to the local solutions within cells, we plot the three groups of solutions
on top of each other in three respective windows. We then show the clustering of all 60 solutions
in shape space via a 60× 60 pairwise RMS distance matrix and associated dendrogram plot.

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

Figure 3: Improvement in computation time and final energy with multiscale opti-
mization. Comparison of results with and without the multiscale approach executed on all 20
chromosomes in each of the 8 cells available in the mESC dataset. (a) The log scale computa-
tion time is plotted over log scale number of nodes with regression lines fitted. (b) Boxplot of
the difference in final energies obtained for each of the 8 cells. The difference is computed by
subtracting the energy obtained via the multiscale approach from the energy obtained without
the multiscale approach. That is, a positive number here indicates that the multiscale approach
yielded a lower energy solution.

4 Discussion

SIMBA3D is a Bayesian framework for estimating 3D chromosome structures from single-cell
Hi-C data, using penalties for regularization of the estimated structures and using additional
information from the bulk Hi-C data. Using multiscale optimization tools and a BFGS routine, it
generates computationally efficient inferences and compares these across different initializations
and different data (cells). Clustering of solutions in the shape space from the same cell data
supports the validity of these solutions.

URL

The SIMBA3D software is available at https://github.com/nerettilab/SIMBA3D

Acknowledgments

This work was supported by the NIH Common Fund Program, grant U01CA200147, as a Trans-
formative Collaborative Project Award (TCPA) to TCPA-2017-NERETTI to NN and AS. Ad-
ditionally, we acknowledge the support of Dr. Frank Crosby at the Naval Surface Warfare Center
Panama City Division for funding MR and DB through the In-House Laboratory Independent
Research (ILIR) program.

5 Authors’ contributions

Conceived the study: NN and AS. Developed the methodology: NN, AS, FH, DB, and MR.
Performed the computational analysis: DB, MR, SE. Contributed to the supervision: NN, AS,

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

and FH. Wrote the manuscript: NN, AS, FH, DB, and MR.

6 Competing interests

The authors declare no competing financial interests.

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

SUPPLEMENTAL TEXT

1 Details of Methodology

Suppose that the genome is partitioned into n equally sized, disjoint segments, or bins. Let C
be the n × n data matrix obtained from a Hi-C experiment. The ij’th entry of C, call it cij ,
represents the number of observed interactions between segments i and j, and thus, C is naturally
a symmetric matrix. Let xi ∈ R3 be the center of mass of the ith segment, and let X ∈ Rn×p
be the collection of all such xi’s. The problem at hand is twofold: (1) to estimate the structure
X from the Hi-C data matrix, and (2) to compare the shapes of multiple structures obtained
either from the same or different data matrices. In both the estimation and analysis stages, we
consider a structure X to be equivalent modulo scale, translation, and rigid rotation/reflection.

1.1 Structure Estimation

Varoquaux et al [28] link the ij’th interaction count with the ij’th pairwise distance via the
following probability model:

Cij ∼ Poisson(b‖xi − xj‖a) (1)

for j > i, with ‖ · ‖ being the standard Euclidean norm, and for scalars a < 0 and b > 0.
Since a < 0, the expected number of interactions between segments i and j is larger when the
segments are located closer together in space, and this expected number behaves according to a
power law with power a. Varoquaux et al [28] derive the theoretically optimal value of a = −3
from principles of polymer physics. Furthermore, the parameter b acts as a scaling parameter.

The probability mass function for the Poisson random variable given in Eq. 1 is given by

P (Cij = cij |X, a, b) =
(b‖xi − xj‖a)cije−b‖xi−xj‖

a

cij !
.

Thus, given a Hi-C matrix with independent entries, the log-likelihood function is written as

`(X, a, b|C) = log

n−1∏
i=1

n∏
j=i+1

P (Cij = cij |X, a, b)


=

n−1∑
i=1

n∑
j=i+1

(cij log(b) + acij log(‖xi − xj‖)− b‖xi − xj‖a − log(cij !)) . (2)

From the log-likelihood function above, one can see that for a given value of a, the parameter b
is non-identifiable because `(X, a, γab|C) = `(γX, a, b|C) for any scalar γ > 0. That is, changing
b is equivalent to changing the scale of X, and since X is considered equivalent modulo scale, the
choice of b is arbitrary. Define the function g as the negative log-likelihood function, dropping
terms that are constant with respect to X, i.e.,

g(X|C, a, b) = −
n−1∑
i=1

n∑
j=i+1

(acij log(‖xi − xj‖)− b‖xi − xj‖a) . (3)

In structure estimation, we consider the parameters a and b to be fixed and known values; thus,
we include them with the data C as given when writing the function g. The maximum likelihood
estimate (MLE) of X is computed as the minimizer of g; that is,

X̂ = argminX∈Rn×p{g(X|C, a, b)} . (4)

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

In situations when the data matrix C is sparse or noisy, the standard MLE in Eq. 4 can be
biologically unrealistic or even fail to converge. Thus, we design several additive penalty terms
to regulate the maximum likelihood solution, which leads us to the following penalized likelihood-
based objective function:

f(X|C, a, b, λ) =
1

M
g(X|C, a, b) + λ1h1(X) + λ2h2(X) + . . . , (5)

where M =
∑

j>i cij is the sum of the upper triangular entries of C, hi(X) is the ith penalty
function, and λ = (λ1, λ2, . . .) is the vector of penalty weights with λi ≥ 0. We normalize
the function g by M so that the effects of the data and the penalty terms are in the same
proportion for different datasets. We estimate the structure X by performing an unconstrained
minimization of Eq. 5; that is,

X̂ = argminX∈Rn×pf(X|C, a, b, λ) . (6)

The choice of the penalty weights λ is left to the user and can influence the solution greatly.

1.2 Penalty Terms

1. First Penalty: Define the first penalty as

h1(X) = (n− 1)

∑n−1
i=1 ‖xi+1 − xi‖2(∑n−1
i=1 ‖xi+1 − xi‖

)2 − 1. (7)

The interpretation of h1 is the following. Define L(X) =
∑n−1

i=1 ‖xi+1−xi‖ as the length of
X, and let ui = n−1

L(X)‖xi+1−xi‖ be the distance between the ith pair of adjacent points in

X, when X has been rescaled to have length n− 1. Then, one can show that h1(X) = σ2u,
where σ2u is the variance of the ui’s, and therefore, the effect of the penalty h1 is to reduce
the variability of the distances between adjacent points of X. The configuration which
minimizes h1(X) is such that all the ui’s are equal to 1, i.e. adjacent points in X are
all the same distance apart. The minimum value of h1 is 0 regardless of the value of n.
Furthermore, notice that since h1(γX) = h1(X) for any γ > 0, h1(X + y) = h1(X) for
any y ∈ Rp, and h1(XR) = h1(X) for any p × p orthogonal matrix R, the penalty h1 is
invariant to scale, translation, and rotation/reflection.

2. Second Penalty: Define the second penalty as

h2(X) =
1

n− 2

n−1∑
i=2

(xi−1 − xi) · (xi+1 − xi)
‖xi−1 − xi‖‖xi+1 − xi‖

. (8)

The interpretation of h2 is the following. If θi is the angle created by the triplet of
points (xi−1, xi, xi+1), and yi = cos(θi), then h2(X) = ȳ, the sample mean of all the yi’s.
Therefore, the minimizer of h2 is such that cos(θi) = −1 for all i = 2, . . . , n − 1. This
occurs when X is a straight line with all θi = π; hence, the effect of the penalty h2 is to
enforce a level of smoothness to X. The penalty h2 has a minimum value of −1 regardless
of the value of n and is invariant to scale, translation, and rotation/reflection.

3. Bulk Prior: Suppose further that another data matrix C ′ is available to us and represents
the collective results of prior Hi-C experiments. For example, in the case of a single cell

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

Hi-C matrix C, we could also have available to us bulk Hi-C data from the same type
of cell, or, alternatively, C ′ could be equal to the sum of several other single cell Hi-C
matrices. Define the bulk penalty h3 as the function g evaluated using C ′ and normalized
by M ′ =

∑
j>i c

′
ij . That is, let

h3(X) =
1

M ′
g(X|C ′, a, b). (9)

Notice that if we let C̃ = C + λ3M
M ′ C

′ and b̃ = (1 + λ3M
M ′)b, then the term g(X|C, a, b)/M +

λ3h3(X) is equal to g(X|C̃, a, b̃)/M . Therefore, the effect of h3 is essentially to add a
scalar multiple of C ′ to the data C and perturb the parameter b. If λ3 is chosen to be
small enough, then this penalty term will only slightly alter C and not overwhelm the
original data with the bulk data. If C is sparse and C ′ is not, then the addition of this
penalty term with a small enough λ3 eliminates the sparseness of C by replacing many
of the 0 entries with small numbers that are biologically more meaningful than random
noise.

2 Details of Optimization Procedure

There are many possibilities for penalty terms, and thus we write the objective function in Eq.
5 in generality to include any number of penalty terms. However, for practical implementation
of the optimization problem in Eq. 6, we use only the penalties h1, h2, and h3 defined in Eqs.
7, 8, and 9 for three reasons. First, each penalty term has a straightforward and biologically
meaningful interpretation. Second, the formula for each term is relatively simple and inexpensive
to compute – in particular, since h3 becomes absorbed into the function g, the addition of this
penalty requires an essentially zero increase in overall computation time. Third, along with the
function g, we can write an analytical expression for the gradient of each penalty term, and
therefore, we can write a gradient expression for f . By inputting the expression of ∇f to a
numerical solver, we can maintain computational tractability on a personal computer for the
large values of n typically seen in real data sets. Using these three penalty functions, f can be
written as

f(X|C, a, b, λ) =
1

M
g(X|C̃, a, b̃) + λ1h1(X) + λ2h2(X) , (10)

where C̃ and b̃ are defined in the text following Eq. 9, and we consider this objective function
for the remainder of this work.

2.1 Gradient Expressions

In order to decrease the computation time when evaluating Eq. 6, it is often helpful to provide
the analytical expression for ∇f to a numerical optimizer, where the objective function f is
defined in Eq. 10. The gradient of f at X is written as

∇f(X|C, a, b, λ) =
1

M
∇g(X|C̃, a, b̃) + λ1∇h1(X) + λ2∇h2(X) ; (11)

therefore, in order to build the expression for ∇f , we need to compute the expressions for ∇g,
∇h1, and ∇h2, where g, h1, and h2 are defined in Eqs. 3, 7, and 8, respectively.

For each term in f , we compute the expression for the partial derivative at xi ∈ Rp for each
i = 1, . . . , n. The ith partial derivative evaluated at X is a vector in Rp, and thus, the full

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

gradient evaluated at X is a member of Rn×p. The ith partial derivative of g is given by

∂

∂xi
g(X|C, a, b) = −a

∑
j 6=i

xi − xj
‖xi − xj‖2

(cij − b‖xi − xj‖a) . (12)

Before computing the partial derivatives of h1 and h2 it is useful to define di = xi+1 − xi and
wi = ‖di‖ for i = 1, . . . , n − 1. Also, let L =

∑n−1
i=1 wi and S =

∑n−1
i=1 w

2
i . Now, the ith partial

of h1 for i = 2, . . . , n− 1 can be written as

∂h1
∂xi

= di−1

(
2

L2
− 2S

L3wi−1

)
− di

(
2

L2
− 2S

L3wi

)
. (13)

The remaining endpoint partial derivatives for h1 are given as

∂

∂x1
h1(X) = −d1

(
2

L2
− 2S

L3w1

)
∂

∂xn
h1(X) = dn−1

(
2

L2
− 2S

L3wn−1

)
, (14)

The ith partial derivative for h2 is a bit trickier to compute than that of g and h1 since it
requires multiple applications of the chain rule, product rule, and quotient rule; nevertheless,
the resulting expressions are still manageable. For i = 3, . . . , n− 2, we compute the ith partial
as

∂

∂xi
h2(X) =

1

n− 2

[
−di−2

(
1

wi−2wi−1

)
+ di−1

(
di−2 · di−1
wi−2w3

i−1
+

1

wi−1wi
+
di−1 · di
w3
i−1wi

)
− di

(
1

wi−1wi
+
di−1 · di
wi−1w3

i

+
di · di+1

w3
iwi+1

)
+ di+1

(
1

wiwi+1

)]
. (15)

The remaining four endpoint partial derivatives are as follows:

∂

∂x1
h2(X) =

1

n− 2

[
−d1

(
d1 · d2
w3
1w2

)
+ d2

(
1

w1w2

)]
∂

∂x2
h2(X) =

1

n− 2

[
d1

(
1

w1w2
+
d1 · d2
w3
1w2

)
− d2

(
1

w1w2
+
d1 · d2
w1w3

2

+
d2 · d3
w3
2w3

)
+ d3

(
1

w2w3

)]
∂

∂xn−1
h2(X) =

1

n− 2

[
−dn−3

(
1

wn−3wn−2

)
+ dn−2

(
dn−3 · dn−2
wn−3w3

n−2
+

1

wn−2wn−1
+
dn−2 · dn−1
w3
n−2wn−1

)
− dn−1

(
1

wn−2wn−1
+
dn−2 · dn−1
wn−2w3

n−1

)]
∂

∂xn
h2(X) =

1

n− 2

[
−dn−2

(
1

wn−2wn−1

)
+ dn−1

(
dn−2 · dn−1
wn−2w3

n−1

)]
. (16)

Now, using Eqs. 12, 13, 14, 15, and 16, we can write the ith partial of f as

∂

∂xi
f(X|C, a, b, λ) =

1

M

∂

∂xi
g(X|C̃, a, b̃) + λ1

∂

∂xi
h1(X) + λ2

∂

∂xi
h2(X) (17)

and thus, using Eq. 17, we write the gradient of f in Eq. 11:

∇f(X) =


∂f
∂x1
...
∂f
∂xn

 . (18)

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

2.2 Software Implementation and Optimization Techniques

Although most scientific computing platforms provide several built-in unconstrained optimiza-
tion algorithms to solve such problems, we have selected Python as the programming language
for SIMBA3D due to its ease of use across a broad scientific community. It is becoming widely
adopted in the field because it is open source and does not require a proprietary license to run.
Also, specifically addressing the problem at hand, Python’s “scipy” package has a wealth of
mature built-in scientific computing functions that are necessary for solving this type of opti-
mization problem. In particular, the “scipy.optimize” module offers several popular options for
unconstrained optimization algorithms, including Nelder-Mead, Powell’s method, BFGS, Con-
jugate Gradient, etc. Python thus gives us the most flexibility and usability for the SIMBA3D
code package.

After testing Python’s built-in algorithms on various simulated and real datasets, we found
the quasi-Newton methods BFGS and L-BFGS using our analytical gradient to yield the best
performance in terms of numerical stability, computational efficiency, and solution quality when
optimizing Eq. 6. With BFGS, the inverse Hessian operation is approximated recursively for
each iteration, and for high dimensional optimizations (like for 3D chromosomal reconstruction)
this procedure can become memory intensive. With the limited memory version L-BFGS, the
approximated inverse Hessian operation depends on values stored from a fixed number of previ-
ous iterations. For details see [11, 3, 16, 7]. In our experience with applying these quasi-Newton
methods specifically to genome architecture reconstruction, we found that BFGS more reliably
finds solutions with slightly smaller energies, i.e. better quality solutions in terms of our ob-
jective function, than the L-BFGS. However, the reduction in computation time and memory
offered by the the limited memory version makes it a competitive alternative.

In addition to Python’s built-in optimization routines, we also tested our own implementation
of Nesterov’s accelerated gradient method [15]. This method is a simple and elegant modification
of the standard gradient descent that uses an additional “momentum” term to achieve the
theoretically optimal convergence rate for a first order method. It has enjoyed a recent surge
in popularity due to the publication of a series of physics-based convergence proofs [29, 23, 30]
that are more widely relatable and understandable than Nesterov’s original proofs. In many
test cases we saw a significant computational speedup over the BFGS, and we see great promise
in this optimization method in the future. Unfortunately, since the method is not a relaxation
scheme, i.e. it does not necessarily decrease the objective function value after each iteration,
we found it difficult to devise an appropriate stopping criteria that would generalize to all data
sets. Another difficulty that arose in our implementation of this algorithm was an automatic
step size selection routine via backtracking, and thus achieving automated numerical stability
for a general data set proved to be a challenge. We believe we can overcome these challenges
to implementing this method, but in the interest of time and to remain within the scope of
this research, we feel that BFGS performs well enough to use for SIMBA3D, especially when
combined with the multiscale approach detailed in the main text.

3 Additional Results

Here we present a series of results that are not shown in the main text, which come from three
computational experiments. The first experiment is carried out on simulated data and shows how
the computation time increases as the number of nodes n increases. In the second experiment
we execute an exhaustive parameter search by running the optimization with various settings of
the penalty weights λ on Chromosome 19 of each of the eight single cells in the mESC data set.

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

Finally, in the third experiment we compare the performance of the BFGS and L-BFGS with
and without the multiscale approach in terms of computation times and final energies on all 20
chromosomes and all 8 cells in the data set. Fig. 3 in the main text summarizes the results of
this experiment, but here we present the results in their entirety.

Table S1 and Fig. S1 summarize the results from the simulated computation time experiment.
The ground truth curve is a unit length double spiral shape as seen in Fig. S1 (A). For each row
of Table S1, the number of nodes in the double spiral curve was doubled using upsampling via
spline interpolation, and a corresponding data matrix was generated from the upsampled curve.
Fig. S1 (B) shows an example data matrix that corresponds with the curve and number of nodes
presented in Fig. S1 (A). The entries of the upper triangular portion of each data matrix were
simulated using the independent Poisson random variables Cij ∼ Poisson(b‖xi − xj‖a) with
a = −3 and b set large enough to avoid simulating a sparse matrix. For each number of nodes n,
ten initializations to the optimization procedure were generated as random samples of size n from
the 3-dimensional standard multivariate normal distribution. Then for each number of nodes
and for each initialization, the optimization was run using the BFGS without the multiscale
approach, and the computation time and final energy were recorded in each case. However, in
the case with 2560 nodes, the experiment was stopped prematurely after the sixth initialization
due to an unreasonably long computation time. The penalty weight vector λ remained fixed
for all optimizations in the experiment, with λ3 = 0 due to the absence of simulated prior
data. Fig. S1 (C) shows the evolution of the energy, i.e. the objective function evaluated at
each iteration of the optimization algorithm, for one initialization and using the data given in
panel (B), and panel (D) shows the final estimated solution curve. Panel (E) is a scatter plot of
the log computation time using each of the ten initializations versus the log number of nodes,
including a fitted regression line.

Fig. S2 shows the results of an exhaustive grid search experiment over the penalty weight
vector λ for Chromosome 19 in each of the eight cells. The purpose of the experiment is to
explore how certain combinations of values for λ affect the solution properties, which offers
the user some guidance on selecting a reasonable value of λ. Here, every possible combination
of λi = 0, 0.001, 0.01, 0.1, 1 for i = 1, 2, 3 was set, totaling 53 = 125 different settings. Ten
random initializations were generated from the standard multivariate normal distribution for
use in each of the 125 cases; thus, 1250 solution curves were obtained for each cell for a total of
8× 1250 = 10000 solutions. The experiment was performed using the BFGS method with and
without the multiscale approach.

The results presented in Fig. 3 of the main text have been extended in Fig. S3 and Table S2
to include comparisons using BFGS and the limited memory version L-BFGS with and without
the multiscale approach. The experiment shows how computation time varies with respect to
the number of nodes by executing the optimization on all 20 chromosomes in each of the eight
single cells. It also shows that one can use SIMBA3D on a standard laptop to achieve a full
genome reconstruction within a practical time frame. Fig. S3 consists of four appropriately
named pdf files (subfigures) that show the final solution curves and energy evolution for each
chromosome in each single cell using either BFGS or L-BFGS with and without the multiscale
initialization. The penalty weight vector λ was fixed throughout the experiment and set to
have reasonable non-zero component values according to the results gathered from the previous
experiment. Table S2 lists and plots the final computation times and energies from these reports
along with other information describing the data.

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

Figure S1. Example of 3D shape reconstruction in simulated data. Computation time
experiment on simulated data. (A) Ground truth curve using 80 points. (B) Simulated matrix
using the Poisson model from Eq. 1. (C) Example of the energy evolution from a randomly
initialized curve. (D) Example of a reconstructed curve from the data matrix. (E) Log scale
computation time versus the log scale number of nodes plotted for each of the ten initializations.

Figure S2 (a,b). Model parameter sweep. This figure consists of two large pdf files that
present an exhaustive parameter search on chromosome 19 using the BFGS method with and
without the multiscale approach. Figure S2 (a) presents results that were obtained using the
multiscale approach, and Figure S2 (b) initializes at the full scale resolution. Each of the three
parameters λi, i = 1, 2, 3 varies from 0, 0.001, 0.01, 0.1, and 1.0 to create 5 tables with 5× 5 rows
and columns that list the 53 = 125 possible value combinations of λ that were tested. For each
parameter setting and for each of the eight cells, the algorithm was run with the same set of ten
random initializations; thus, this experiment contains a total of 5×5×5×10×8 = 10000 runs for
each of the two subfigures. In each panel the ten estimated curves for each setting are rotationally
aligned and plotted together, and the iterative energy evolution is plotted below the curves. For
the multiscale approach the sequential number of nodes were set as n = 74, 146, 292, 584, and
the initialized curve of 74 nodes was obtained by downsampling the previously used random full
scale initializations. In the energy evolution plots the increasing line thickness indicates the run
using n = 74, 146, 292, 584 nodes, respectively.

Figure S3 (a-d). Reconstruction of all chromosomes in each single cell data matrix.
This figure consists of four large pdf files – one for each algorithmic combination of multiscale or
full scale, with BFGS or L-BFGS – each showing the result of the optimization executed on all
20 chromosomes for each of the 8 cells with λ = (0.5, 1, 0.1). For each chromosome and cell, a
single run is collected using a randomly initialized curve. The total computation times and the
final energies are displayed below the corresponding curve and energy plot. In displaying the
multiscale results, the energy plot contains four evolution curves corresponding to the different
multiscale optimizations. For each chromosome the full scale node resolution was roughly halved
a total of four times so that the solution was initialized using roughly 1/24 the number of nodes
in the full scale data, which is different for each chromosome. The thickest and bluest line in
the energy evolution plots shows the full resolution run, and the thinner blacker lines show the
optimizations using the smaller data matrices.

Table S1. Computation time summary statistics on simulated data The mean and
variance of the computation times for each number of nodes are computed after executing the
optimization using ten different initializations. An example of one run for this experiment is
shown in Fig. S1 for the case when there are 80 nodes.

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

Table S2. A Comparison of computation times and energies on the full chromosome
data. There are 8 sheets – one for each of the 8 cells – and on each sheet there are 20 rows
of data corresponding to the 20 chromosomes. The first 5 columns specify generic information
about the single cell data matrix. The following columns correspond to computation times and
final energies for single initialized runs using four different methods. A BFGS and L-BFGS label
respectively indicates the use of the quasi-Newton BFGS or its limited memory version. The
FS tag on the label indicates that the algorithm was initialized on the full scale space. For
example with Cell 1 Chromosome 1, the BFGS FS column indicates that BFGS was used and
the solution was initialized with a random sample of size 1923 from the standard multivariate
normal distribution in R3. The MS tag on the label indicates that the curve was estimated
using the multiscale approach detailed in the main text. In the multiscale approach the scale
was roughly halved a total of four times; thus, for each chromosome the number of nodes in the
initialization for the MS case is roughly 1/24 that of the FS case.

Movie S1. Time-course optimization for chromosome 19. This movie displays the
intermediate structures obtained during the optimization procedure. Rotating chromosome
structure (tope left). Stationary view of chromosome structure (top right). Energy as a function
of iteration step (bottom left). Single cell contact matrix at the current resolution (bottom
center). Bulk contact matrix at the current resolution (bottom right).

References

[1] Badri Adhikari, Tuan Trieu, and Jianlin Cheng. Chromosome3D: reconstructing three-
dimensional chromosomal structures from Hi-C interaction frequency data using distance
geometry simulated annealing. BMC Genomics, 17(1):886, dec 2016.

[2] Davide Baù and Marc A. Marti-Renom. Genome structure determination via 3C-based
data integration by the Integrative Modeling Platform. Methods, 58(3):300–306, 2012.

[3] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited-memory algorithm
for bound constrained optimization. SIAM JOURNAL ON SCIENTIFIC COMPUTING,
16:1190–1208, 1994.

[4] Simeon Carstens, Michael Nilges, and Michael Habeck. Inferential Structure Deter-
mination of Chromosomes from Single-Cell Hi-C Data. PLOS Computational Biology,
12(12):e1005292, dec 2016.

[5] Jesse R. Dixon, Inkyung Jung, Siddarth Selvaraj, Yin Shen, Jessica E. Antosiewicz-Bourget,
Ah Young Lee, Zhen Ye, Audrey Kim, Nisha Rajagopal, Wei Xie, Yarui Diao, Jing Liang,
Huimin Zhao, Victor V. Lobanenkov, Joseph R. Ecker, James A. Thomson, and Bing
Ren. Chromatin architecture reorganization during stem cell differentiation. Nature,
518(7539):331–336, feb 2015.

[6] Ilya M. Flyamer, Johanna Gassler, Maxim Imakaev, Hugo B. Brandão, Sergey V. Ulianov,
Nezar Abdennur, Sergey V. Razin, Leonid A. Mirny, and Kikuë Tachibana-Konwalski.
Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition.
Nature, 544(7648):110–114, mar 2017.

[7] P.E. Gill, W. Murray, and M.H. Wright. Practical optimization. Academic Press, 1981.

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

[8] Ming Hu, Ke Deng, Zhaohui Qin, Jesse Dixon, Siddarth Selvaraj, Jennifer Fang, Bing
Ren, and Jun S. Liu. Bayesian Inference of Spatial Organizations of Chromosomes. PLoS
Computational Biology, 9(1):e1002893, jan 2013.

[9] Annick Lesne, Julien Riposo, Paul Roger, Axel Cournac, and Julien Mozziconacci. 3D
genome reconstruction from chromosomal contacts. Nature Methods, 11(11):1141–1143,
2014.

[10] Erez Lieberman-Aiden, Nynke L van Berkum, Louise Williams, Maxim Imakaev, Tobias
Ragoczy, Agnes Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O Dorschner,
Richard Sandstrom, Bradley Bernstein, M A Bender, Mark Groudine, Andreas Gnirke, John
Stamatoyannopoulos, Leonid A Mirny, Eric S Lander, and Job Dekker. Comprehensive
mapping of long-range interactions reveals folding principles of the human genome. Science
(New York, N.Y.), 326(5950):289–93, oct 2009.

[11] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization.
Math. Program., 45(3):503–528, December 1989.

[12] Takashi Nagano, Yaniv Lubling, Tim J. Stevens, Stefan Schoenfelder, Eitan Yaffe, Wendy
Dean, Ernest D. Laue, Amos Tanay, and Peter Fraser. Single-cell Hi-C reveals cell-to-cell
variability in chromosome structure. Nature, 502(7469):59–64, oct 2013.

[13] Takashi Nagano, Yaniv Lubling, Csilla Várnai, Carmel Dudley, Wing Leung, Yael Baran,
Netta Mendelson Cohen, Steven Wingett, Peter Fraser, and Amos Tanay. Cell-cycle dy-
namics of chromosomal organization at single-cell resolution. Nature, 547(7661):61–67, jul
2017.

[14] Natalia Naumova, Maxim Imakaev, Geoffrey Fudenberg, Ye Zhan, Bryan R Lajoie,
Leonid A Mirny, and Job Dekker. Organization of the mitotic chromosome. Science (New
York, N.Y.), 342(6161):948–53, nov 2013.

[15] Y. Nesterov. A method for solving a convex programming problem with convergence rate
O(1/k2). Soviet Mathematics Doklady, 27:372–367, 1983.

[16] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Opera-
tions Research and Financial Engineering. Springer New York, second edition, 2006.

[17] Jincheol Park and Shili Lin. Impact of data resolution on three-dimensional structure
inference methods. BMC Bioinformatics, 17(1):1–13, 2016.

[18] Jonas Paulsen, Odin Gramstad, and Philippe Collas. Manifold Based Optimization for
Single-Cell 3D Genome Reconstruction. PLoS Computational Biology, 11(8):1–19, 2015.

[19] Vijay Ramani, Xinxian Deng, Ruolan Qiu, Kevin L Gunderson, Frank J Steemers, Chris-
tine M Disteche, William S Noble, Zhijun Duan, and Jay Shendure. Massively multiplex
single-cell Hi-C. Nature Methods, 14(3):263–266, mar 2017.

[20] Lila Rieber and Shaun Mahony. MiniMDS: 3D structural inference from high-resolution
Hi-C data. Bioinformatics, 33(14):i261–i266, 2017.

[21] Mathieu Rousseau, James Fraser, Maria A. Ferraiuolo, Josée Dostie, and Mathieu
Blanchette. Three-dimensional modeling of chromatin structure from interaction frequency
data using Markov chain Monte Carlo sampling. BMC Bioinformatics, 12(1):414, 2011.

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

[22] Tim J. Stevens, David Lando, Srinjan Basu, Liam P. Atkinson, Yang Cao, Steven F.
Lee, Martin Leeb, Kai J. Wohlfahrt, Wayne Boucher, Aoife O’Shaughnessy-Kirwan, Julie
Cramard, Andre J. Faure, Meryem Ralser, Enrique Blanco, Lluis Morey, Miriam Sansó,
Matthieu G. S. Palayret, Ben Lehner, Luciano Di Croce, Anton Wutz, Brian Hendrich,
Dave Klenerman, and Ernest D. Laue. 3D structures of individual mammalian genomes
studied by single-cell Hi-C. Nature, 544(7648):59–64, mar 2017.

[23] Weijie Su, Stephen Boyd, and Emmanuel J. Candes. A differential equation for modeling
nesterov’s accelerated gradient method: Theory and insights. 2015.

[24] Quentin Szabo, Daniel Jost, Jia-Ming Chang, Diego I. Cattoni, Giorgio L. Papadopoulos,
Boyan Bonev, Tom Sexton, Julian Gurgo, Caroline Jacquier, Marcelo Nollmann, Frédéric
Bantignies, and Giacomo Cavalli. TADs are 3D structural units of higher-order chromosome
organization in Drosophila. Science Advances, 4(2):eaar8082, feb 2018.

[25] Przemys law Sza laj, Zhonghui Tang, Paul Michalski, Michal J. Pietal, Oscar J. Luo, Micha l
Sadowski, Xingwang Li, Kamen Radew, Yijun Ruan, and Dariusz Plewczynski. An in-
tegrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial
genome organization. Genome Research, 26(12):1697–1709, dec 2016.

[26] Harianto Tjong, Wenyuan Li, Reza Kalhor, Chao Dai, Shengli Hao, Ke Gong, Yonggang
Zhou, Haochen Li, Xianghong Jasmine Zhou, Mark A. Le Gros, Carolyn A. Larabell, Lin
Chen, and Frank Alber. Population-based 3D genome structure analysis reveals driving
forces in spatial genome organization. Proceedings of the National Academy of Sciences,
113(12):E1663–E1672, 2016.

[27] Tuan Trieu and Jianlin Cheng. 3D genome structure modeling by Lorentzian objective
function. Nucleic Acids Research, 45(3):1049–1058, 2017.

[28] Nelle Varoquaux, Ferhat Ay, William Stafford Noble, and Jean Philippe Vert. A statistical
approach for inferring the 3D structure of the genome. Bioinformatics, 30(12):i26–i33, 2014.

[29] Andre Wibisono, Ashia C. Wilson, and Michael I. Jordan. A variational perspective on
accelerated methods in optimization. Proceedings of the National Academy of Sciences,
113(47):E7351–E7358, 2016.

[30] Ashia C. Wilson, Benjamin Recht, and Michael I. Jordan. A lyapunov analysis of momentum
methods in optimization. 2015.

[31] ZhiZhuo Zhang, Guoliang Li, Kim-Chuan Toh, and Wing-Kin Sung. 3D Chromosome Mod-
eling with Semi-Definite Programming and Hi-C Data. Journal of Computational Biology,
20(11):831–846, nov 2013.

[32] Chenchen Zou, Yuping Zhang, and Zhengqing Ouyang. HSA: Integrating multi-track Hi-C
data for genome-scale reconstruction of 3D chromatin structure. Genome Biology, 17(1):1–
14, 2016.

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316265doi: bioRxiv preprint

https://doi.org/10.1101/316265
http://creativecommons.org/licenses/by/4.0/

