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Abstract

Optical Coherence Tomography (OCT) imaging of the retina is in widespread clinical
use to diagnose a wide range of retinal pathologies and several previous studies have used
deep learning to create systems that can accurately classify retinal OCT as indicative of
one of these pathologies. However, patients often exhibit multiple pathologies concurrently.
Here, we designed a novel neural network algorithm that performs multiclass and multil-
abel classification of retinal images from OCT images in four common retinal pathologies:
epiretinal membrane, diabetic macular edema, dry age-related macular degeneration and
neovascular age-related macular degeneration. Furthermore, clinicians often also use ad-
ditional information about the patient for diagnosis. Second contribution of this study
is improvement of multiclass, multilabel classification augmented with information about
the patient: age, visual acuity and gender. We compared two training strategies: a net-
work pre-trained with ImageNet was used for transfer learning, or the network was trained
from randomly initialized weights. Transfer learning does not perform better in this case,
because many of the low-level filters are tuned to colors, and the OCT images are mono-
chromatic. Finally, we provide a transparent and interpretable diagnosis by highlighting
the regions recognized by the neural network.

1. Introduction

Convolutional Neural Networks (CNNs) and other deep neural networks have enabled un-
precedented breakthroughs in developing artificial intelligence systems to perform computer-
assisted diagnosis based on clinical data and several recent studies demonstrate the ability
of these algorithms to leverage large clinical datasets to learb how to classify images as
exhibiting a pathology Lee et al. (2016); Choi (2017); Esteva (2017); Kermany et al. (2018).
However, most of these studies classify the presence or absence of a single pathology Lee
et al. (2016). Even when multiple classes are present in the data, comparisons are usually
binary between two different classes of pathologies Esteva (2017) or classify multiple classes
of pathology, without accounting for the presence of more than one pathology in the same
patient Choi (2017). These classification tasks belie the complexity of clinical data analy-
sis: patients in a clinical population may exhibit several pathologies at the same time or
none at all. For example, in the present study, we examined an extraction of 36,150 unique
examination with Optical Coherence Tomography (OCT) images from the Electronic Med-
ical Records (EMR) of the Ophthalmology clinic at University of Washington. We found
that 24% of patients with any pathology displayed multiple pathologies. OCT uses light to
capture in-vivo high resolution optical cross sections of retinal tissue. It has become one of
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the most commonly performed medical imaging procedures, with approximately 30 million
OCT scans performed each year world-wide Swanson and Fujimoto (2017). OCT is critical
in delineating retinal and choroidal pathologies, and has been shown to be more sensitive in
detecting retinal disease than other modalities such as color fundus photography. (PMID:
22347793, 19079147, 26719967). Despite the high-quality information provided by OCT,
clinicians often use additional information about the patient like age and visual acuity, along
with the OCT scans to aid diagnosis.

Advances in deep learning LeCun et al. (2015) have allowed for significant gains in
the ability to classify images and detect objects. This technique typically requires a large
dataset, with millions of samples. Transfer learning is among the techniques often used
to address the lack of data in a given domain by leveraging data from another domain
Bengio and Others (2012). However, a recent study Rokem (2017) demonstrates that we
do not need large data corpus to train deep neural networks if the image data is relatively
homogeneous, as is the case with OCT images. Most transfer learning is performed on
models trained on 1000 class data from ImageNet. ImageNet images are 3 channel (RGB)
images and the OCT images are single channel (grayscale). We find this leads to transfer
learning not be an effective tool for OCT images. Visualization of the convolution kernels
Krizhevsky et al. (2012) show lower level kernels detecting colors in addition to edges and
contours. Since the lower layer weights are frozen in transfer learning, these filters result in
’dead’ features for grayscale OCT images. This can be seen in plateaued learning rates for
transfer learning in our experiments.

We train a deep neural network for multilabel multiclass classification. We use patient
information like age, gender and visual acuity as features in addition to the pixel data from
OCT images. Our model perform 14.37% better on accuracy overall and 113.37% better on
exact match compared to a transfer learning model trained on ImageNet data. The addition
of age and visual acuity attributes to the model demonstrates the most improvement in
accuracy and F1 scores. The addition of gender results in no improvements in three out of
four pathologies and decreases the F1 score in case of NVAMD diagnosis.

2. Cohort

Our study cohort consisted of an extraction of 2.6 million OCT images linked to clinical
datapoints from EMR. Automated extraction of an OCT imaging database was performed
and linked to clinical endpoints from the EMR. OCT macula scans were obtained by Hei-
delberg Spectralis, and each OCT scan was linked to EMR clinical labels extracted from
EPIC. Labels from the EMR were then linked to the OCT macular images, and the data
was stripped of all protected health identifiers.

2.1 Cohort Selection

Patients with Epiretinal membrane (ERM), Diabetic macular edema (DME), Dry age-
related macular degeneration (DryAMD) and Neovascular age-related macular degenera-
tion (NVAMD) were chosen; patients with other macular pathology by ICD-9 code were
excluded. No images were excluded due to image quality. Age, gender and visual acuity
fields were also extracted from the EMR. As most of the macular pathology is concentrated
in the foveal region, the decision was made a priori to select the central 11 images from each
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multilabel OCT classification

macular OCT set. Each image was then treated independently and labeled as either normal
or containing one of the pathologies enumerated above. The complete data set consists of
36148 unique examinations and 7929 unique patients. Based on the four chosen pathologies,
our data set has 11452 unique examinations over 2233 patients. Each examination consists
of 11 images, one per slice. Table:1 shows the distribution of the data set over pathologies.
7% of the images exhibit multiple pathologies. DryAMD and NVAMD are mutually exclu-
sive; therefore the patients with multiple pathologies may only exhibit one form of AMD.
The images are histogram equalized and center cropped to (299, 299) pixels.

Pathology Number of Images Number of Unique Examinations

Epiretinal membrane(ERM) 24,494 2,226
Dry AMD(DryAMD) 57,709 5,246
Neovascular AMD(NVAMD) 13,165 1,196
Diabetic macular edema(DME) 21,304 1,936
Multiple pathologies 9,306 846

Table 1: Pathology distribution over total number of images in dataset.

3. Methods

A modified version of the Inception Resnet V2 CNN (Szegedy, 2016) was used as the deep
learning model for classification fig. 11. To choose the model architecture we used accuracy
on a holdout set and the learning curve. While both Resnet and Inception models show
impressive performance on the data set Inception Resnet V2 consistently showed lower
training loss and better overall accuracy across classes on the holdout set. In addition,
modifications to the models were required for direct training on all the models above. The
modifications included changing model parameters to train on grayscale images instead of
the RGB images, as well as removing the last softmax layer. The softmax was replaced
by sigmoid for assigning labels. We used RMSprop, Tieleman and Hinton (2012) as the
optimizer and Multilabel Soft Margin Loss function (sometimes referred to as Sigmoid Cross-
entropy loss). This function creates a criterion that optimizes a multilabel one-versus-all
loss based on max-entropy, between input x and target y, where x represents k-hot encoding
of input image labels.

l(x, y) = −Σn
i (yilog(

exp(xi)

1 + exp(xi)
) + (1 − yi)log(

1

1 + exp(xi)
))

One of the objectives of this study was to compare transfer learning, to learning from a
randomly initialized network. Transfer learning experiments were performed on pre-trained
Inception Resnet V2 trained on ImageNet data. Pretrained weights were loaded and frozen
for the convolutional layers, and the final linear layer was trained to recognize the zero or
more of the four disease classes. We used the identical data set and loss function as in
training from randomly initialized weights, except that for transfer learning the OCT data
with only a single channel was replicated to three channels.

1. https://research.googleblog.com/2016/08/improving-inception-and-image.html
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Image data was augmented by applying two transformations. First transformation
randomly flipped the image on the horizontal axis, while the second transformation ran-
domly rotated the image between −15◦,+15◦. The data set was shuffled for every training
epoch(iterations through the entire data set). Each epoch consisted of 2,900 iterations. The
model was trained until the validation error stopped dropping after one drop of learning
rate. Test set was 12,581 images and training/validation set were 104,352/9,072 images
respectively. Test and validation sets were chosen to have the same ratio of samples per
pathology as the training set. To avoid memorization of individual patient characteristics
and overfitting to these characteristics, the test set and training set were seperated at the pa-
tient level, as opposed to the exam level. We trained our network utilizing (Pytorch (pyt))
framework on a single Nvidia Titan X GPU, which resulted in batch size being 35. We
started with a relatively small learning rate of 1e-5, which was further decreased every 20
epochs by a factor of 0.5. The model was initialized with random weights.

In addition to OCT images, age, gender and visual acuity, (logMAR) figures were ex-
tracted from EMR. Age and visual acuity values were retained as floating point numbers
while gender was converted to categorical variable (0:male, 1:female). These were then
added as additional features directly in the fully connected layer.

Figure 1: Inception Resnet V2 Architecture

4. Results

We performed two sets of experiments. The first set of experiments evaluated the utility of
transfer learning vs direct learning for multilabel multiclass classification of OCT images.
The second set of experiments evaluated the effectiveness of additional information like age,
gender and visual acuity on the classification results. All of the models were trained on the
same data with identical preprocessing and augmentation techniques.

4.1 Evaluation Metrics

Multilabel classification implies finding a model that maps inputs x to binary vectors y
(assigning a value of 0 or 1 for each element (label) in y). Evaluation metrics for multilabel
classification performance are inherently different from those used in multiclass (or binary)
classification, due to the differences in the classification problem. We use the following
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multilabel OCT classification

Figure 2: process flow chart

metrics to measure performance, if T denotes the true set of labels for a given sample and
P the predicted set of labels, then:

• Hamming loss: the ratio of the wrong labels to the total number of labels, i.e.

1

NL
ΣN
i=1Σ

L
j=1xor(xi,j , yi,j)

where yi,j is the target and xi,j is the prediction.

• Precision, Recall and F1 score: Precision is |T∩P |P , recall is |T∩P |T and F1 score is the
harmonic mean of precision and recall.

• Exact match: the most strict metric, indicating the percentage of samples that have
all their labels classified correctly.

We use average overall accuracy (1 - Hamming loss), exact match and F1 scores for each
class as evaluation metrics.

4.2 Transfer learning vs Direct learning

Transfer learning has proven to be a highly effective technique, particularly when faced
with domains with limited data (Donahue et al., 2014; Yosinski et al., 2014). However,
we find transfer learning to not be as effective when using a model trained on ImageNet
dataset to build a classifier for OCT data. We achieve much higher accuracy as well as F1
scores, Fig. 3 with the four pathologies on direct training. OCT images are single channel
(grayscale) images, while the ImageNet data are color images. The examination of low
level features for images with the transfer learning model reveals several dead features. The
learning curves for transfer learning vs direct learning show a marked difference. With
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the same learning rate and learning rate decay schedule for both methods, loss values for
transfer learning plateaus. Fig. 4 We tried tuning hyper parameters like learning rate and
learning rate decay, but the results for transfer learning did not change. Overall accuracy
and exact match for transfer learning was 74.5% and 30.14% compared to 85.23% and 64.3%
for direct learning.

Figure 3: Overall and exact match accuracy (left), F1 score for per pathology (right) using
image data for transfer and direct learning.

Figure 4: Top row shows learning curves and the bottom row shows the activations from
the first layer of the network. The first column is is transfer learning and second column is
direct learning. The completely dark patches show dead features.
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4.3 Classification with additional data

In this set of experiments we compare models trained on just image data with model trained
on image data and additional patient attributes like age, gender and visual acuity. Fig. 5
shows the effect of additional variables on overall accuracy per patient or exact matches,
and the F1 score for each pathology.

Figure 5: Overall and exact match accuracy (left), improvement in F1 score for per pathol-
ogy (right) with additional attributes.

4.4 Model visualization

We use gradient-weighted Class Activation Mapping (Grad-CAM) and guided Grad-CAM
(Selvaraju et al., 2016) to interpret what the models are learning. Grad-CAM uses the
class-specific gradient information flowing into the final convolutional layer of a CNN to
produce a coarse localization map of the important regions in the image. Guided Grad-
CAM fuses Guided Backpropagation (Springenberg et al., 2014) and Grad-CAM visualiza-
tions via pointwise multiplication to product visualization that are higher resolution and
class discriminative. We show Grad-CAM, guided Grad-CAM for a sample of images from
four classes in Fig. 6. The images highlight the regions that the neural network considers
important for the diagnosis. T

5. Discussion

In this study the data we used was scraped from EMR, all images with the relevant data
were included. No images were excluded because of image quality reasons. Additionally
the labels for training were also scraped from the ERM. There were 30 doctors responsible
for diagnosing and entering diagnosis related notes, which were used to create true labels.
There was no pre-selection done on the images other than selecting middle 11 slices per
examination. We did not perform any additional clinical studies to ensure that the diagnosis
were consistent. Despite no addition curation of the data we were able to achive overall
acurracy of 86% and exact match of 66.7% on the hold out test set of 12,581 images. Since
most of the other studies ether manually curated the training data and label Kermany et al.
(2018), or performed binary classification Lee et al. (2016) our results are encouraging. Class
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Figure 6: This figure shows what the DNN is learning. The top row is the original OCT
scan, central row is the gradient-weighted class activation map and the bottom row is the
guided back propagation image overlaid with gradient based class activation map. First
column has diagnosis of DME, second ERM and third DryAMD and the fourth NVAMD

activated maps and guided class activation maps techiniques were used to determine what
the network was learning. The resulting visualizations are consistent with what a clinician
would look at when making the diagnosis.

We added other relevant patient information which is often available to clinicians di-
agosing pathologies on OCT scan such as age, gender and visual acuity. We found that
augmenting the deep neural network (DNN) with these attributes was helpful in increasing
the F1 score of the pathology which was most often mis-diagnosed by the network. Specif-
ically, F1 score for NVAMD increased by over 100% when providing additional attributes
to the DNN. The addition of age and visual acuity was most helpful in boosting the F1
scores while addition of gender information did not result in deterioration of the scores.
The impact on the overall accuracy was not as high with this addition as test as well as
training samples had the fewest images exhibiting NVAMD. This result shows that aug-
mentation of DNNs with additional relevant attributes of patients when creating computer
aided diagnosis sytems can result in higher precision and recall.

We found that transfer learning did not perform well for OCT data in this case. Most
transfer learning is done on models pre-trained on three channel images (like ImageNet).
With the lower level weights frozen the filters detecting colors resulted in dead features
which resulted in loss values to plateau.This resulted in lower accuracy from these models.
The training of these model(s) was only done on images from a single academic center and
the external generalizability is unknown.
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6. Conclusion

In this work, we propose using multilabel multiclass classification for OCT retinal images
to diganose patients who may exhibit multiple pathologies. To our knowlegde this is the
first study on classifying OCT images wih multiple labels. We achieve overall acurracy of
86% and exact match of 66.7%. We show that augmentation of the model with additional
patient attributes results in higher F1 scores.
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