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Abstract 
Toxoplasma gondii is a common zoonotic infection of humans and estimates indicate 

that 1-2 billion people are chronically infected.  Although largely asymptomatic, chronic 

infection poses risk of serious disease due to reactivation should immunity decline.  

Current therapies for toxoplasmosis only control acute infection caused by actively 

proliferating tachyzoites but do not eradicate the chronic tissue cyst stages.  As well, 

there are considerable adverse side effects of the most commonly used therapy of 

combined sulfadiazine and pyrimethamine.  Targeting the folate pathway is also an 

effective treatment for malaria, caused by the related parasites Plasmodium spp., 

suggesting common agents might be used to treat both infections.  Here we evaluated 

currently approved and newly emerging medicines for malaria to determine if such 

compounds might also prove useful for treating toxoplasmosis.  Surprisingly, the 

majority of anti-malarial compounds being used currently or in development for 

treatment of malaria were only modestly effective at inhibiting in vitro growth of T. gondii 

tachyzoites.  These findings suggest that many essential processes in P. falciparum that 

are targeted by anti-malarial compounds are either divergent, or non-essential in T. 

gondii, thus limiting options for repurposing of current antimalarial medicines for 

toxoplasmosis. 

 
Introduction 
Toxoplasma gondii is a common parasite of animals that causes zoonotic infections in 

humans.  It has diverged from its closest relatives by adopting a broad host range re-

enforced by flexible modes of transmission (1).  Toxoplasma gondii is transmitted by 

cats, where sexual reproduction in the intestine results in shedding of highly resistant 

oocysts into the environment (2, 3).  Ingestion of oocysts by rodents, and many other 

intermediate hosts, results in acute infection that is characterized by initial expansion of 

a fast growing tachyzoite form that disseminates widely throughout the body.  Following 

a vigorous immune response the parasite differentiates into a slow growing, semi-

dormant form called the bradyzoite, which inhabits tissue cysts in the muscle and brain 

(4-6).  Human infections are acquired by ingestion of oocysts that contaminate food or 

water, or by eating undercooked meat that harbors tissue cysts.  Toxoplasma gondii is a 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 8, 2018. ; https://doi.org/10.1101/316455doi: bioRxiv preprint 

https://doi.org/10.1101/316455
http://creativecommons.org/licenses/by/4.0/


	 3	

significant cause of serious food borne infection in the USA (7), and it has also been 

associated with waterborne outbreaks in North and South America (8).  Global 

serological studies indicate that ~25% of humans are chronically infected, although 

prevalence rates vary widely in different locations (7).  Most human infections with T. 

gondii are relatively benign, although they are persistent, as the chronic stages of 

infection (i.e. bradyzoites within tissue cysts) are not eliminated by the immune 

response.  Additionally, toxoplasmosis can cause serious disease due to congenital 

infection (9) and in immuncompromised patients (10, 11).  Additionally, even healthy 

adults are at risk due to highly pathogenic strain types that are found some regions such 

as South America (12, 13).  
 Toxoplasma is a member of the phylum Apicomplexa, a group of more than 10,000 

known species, most of which are parasitic (14).  Other apicomplexan parasites of 

medical importance include Plasmodium spp., the causative agent of malaria (15), and 

Cryptosporidium spp., a frequent cause of severe diarrheal disease in young children in 

developing countries (16).  Apicomplexans are most closely related to ciliates and 

dinoflagellates, but only distantly related to humans, hence they share many key 

differences from their hosts (17).  Although members of the phylum Apicomplexa span 

400 mya of evolution (18), they contain many orthologous genes and much of their 

biology is conserved (19).  Among their similar features, Plasmodium and Toxoplasma 

contain intact pathways for pyrimidine biosynthesis, while they are purine auxotrophs, 

and these pathways have been the focus of development of inhibitors to combat both 

infections (20).   

 Current therapies for treatment of toxoplasmosis rely primarily on inhibition of the 

folate pathway in the parasite, although antibiotics developed for treating bacterial 

infections have also been used with some success (21, 22).  The most commonly used 

treatment is a combination of sulfa drugs with pyrimethamine (i.e. sulfadiazine and 

pyrimethamine or trimethoprim with sulfamethoxazole).  This combination is highly 

synergistic as the sulfa drug inhibits dihydropteroate synthase (DHPS) while 

pyrimethamine inhibits dihydrofolate reductase (DHFR), together disrupting 

tetrahydrofolate levels and blocking DNA synthesis.  The combination of pyrimethamine 

and sulfa drugs is highly effective in blocking replication of tachyzoites but has no 
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activity on bradyzoites within tissue cysts and therefore does not eliminate chronic 

infection (23).  As well, there are significant adverse effects of this treatment regime due 

to intolerance or allergic reaction to the sulfa component and bone marrow suppression 

that requires co-administration of leucovorin (24, 25).  Additionally, due to potential for 

inducing developmental defects, this combination is contraindicated during the first two 

trimesters of pregnancy, but can be effective in reducing clinical severity when given in 

the third trimester (26).  Although alternative therapies such as clindamycin, 

azithromycin, and other antibiotics, have also been used to treat acute toxoplasmosis, 

they also do not clear chronic infection (21). 

 There have been several efforts to identify new drugs for toxoplasmosis based on 

FDA-approved drugs.  Screening of FDA approved drugs has revealed several 

inhibitors of tachyzoite growth in vitro, most of which were initially developed to treat 

inflammation (27).  Guanabenz, which targets alpha-2 adrenergic receptors and is used 

for hypertension, additionally shows efficacy in mouse models of toxoplasmosis (28, 

29).  Finally, treatment of infected cells with tamoxifen, an inhibitor of the estrogen 

receptor, leads to parasite clearance due to an autophagy-related process (30).  

Although such compounds provide promising leads, they do not allow selective 

inhibition of the parasite since they were originally optimized to modulate host 

processes.  Hence, there is a need for new treatments that are more selective, less 

toxic, and effective at eliminating chronic infection by T. gondii. 

 One potential source for new drugs to treat toxoplasmosis would be repurposing of 

medicines that have been developed for malaria, a concept that is based on their 

shared ancestry and similar biology.  One example is the use of pyrimethamine-sulfa 

drug combinations to treat toxoplasmosis.  Similarly, Fansidar (sulfadoxine and 

pyrimethamine) was historically effective against P. falciparum.  However, due to the 

global spread of anti-folate (31) and chloroquine resistance (32), the first line of 

treatment for malaria has shifted to the natural product artemisinin, which is a 

sequiterpene lactone that contains an endoperoxide bridge that is key to its activity (33).  

A number of semi-synthetic variants have been produced including artesunate, 

artemether, and artemisone, which are more soluble prodrug forms that are rapidly 

converted to dihydroartemisinin in plasma (31).  Artemisinin derivatives also inhibit 
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replication of T. gondii in vitro (34-36) and are partially effective in murine infection 

models, although they do not eliminate chronic infection (37, 38).   

 Considerable effort has been expended to develop new generation anti-malarials 

based on large-scale phenotypic high throughout screens (HTS) for inhibition of asexual 

blood stage forms of P. falciparum (39).  A number of the resulting hits were prioritized 

by the Medicines for Malaria Venture (MMV) based on chemical properties as well as 

activity to define a core set of compounds for inclusion in the Malaria Box and Pathogen 

Box projects (https://www.pathogenbox.org/ ).  Combined with genomic analyses of 

evolved resistant mutants, these screening efforts have led to identification of new leads 

that target essential steps in the parasite (39).  One of the first new active malarial 

compounds to be identified by a screening/genomics approach was the class of 

compounds known as spiroindolones (40), including the analog KAE609 that proved 

effective in curing mice of P. berghei infection with a single oral dose (41).  Whole 

genome sequencing of resistant mutants, and subsequent genetic confirmation, 

indicated that spiroindolones target the cation transporter PfATP4 (42), thereby 

disrupting sodium transport in the parasite (43).  A similar strategy of whole genome 

sequencing of resistant mutants has led to the identification of several tRNA synthases 

as targets of potent antimalarial candidate compounds and mutations in the PfCarl 

(cyclic amine resistance locus) gene that medicates resistance to potent 

imidazolopiperizines (39).    

 The availability of the Malaria and Pathogen Box (https://www.pathogenbox.org/ ) 

collections has made it possible to expand the analysis of these compounds to other 

pathogens (44).  Analysis of compounds in the Malaria Box for inhibition of in vitro 

growth of T. gondii identified seven compounds with EC50 ≤ 5 µM including a piperazine 

acetamide with an EC50 < 0.19 uM (45).  The hit rate of ~ 2% observed in this study is 

higher than typically seen in typical HTS; however, it might be considered low based on 

the premise that T. gondii and P. falciparum are members of the same phylum and 

share much of their underlying biology.  Several of the active compounds contain a 

quinolone moiety, suggesting they may be active due to their resemblance to endochin-

like quinolones (46) and atovaquone (47), which act on the bc1 complex and that are 

active against T. gondii.  A second study that also employed the Malaria Box reported a 
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much higher hit rate, with 49 compounds out of ~400 showing EC50 values ≤ 1 µM when 

tested for inhibition of tachyzoite growth in vitro (48); the difference in hit rate being 

attributed to methodology.  Although a number of these compounds were also inhibitors 

of P. falciparum, the overall correlation in potency between these two parasites was low 

(48).  A similar screen for tachyzoite in vitro growth inhibition by compounds in the 

Pathogen Box identified four compounds with EC50 values ≤ 1.0 µM and selectivity 

indices of > 4 (49).  Among the more potent compounds identified was buparvaquone, 

which is a naphthoquinone that also inhibits mitochondrial electron transport.  This study 

also reported that many compounds active against Plasmodium did not show 

appreciable inhibition of T. gondii. 

To complement previous efforts that have focused on the early preclinical leads 

found in the Malaria and Pathogen Box collections, we focused here on approved 

medicines for malaria, new anti-malarial candidates or emerging leads that are in the 

global malaria portfolio, many of which with Medicines for Malaria Venture (MMV) (39, 

50).  Many of these compounds show excellent potential for treatment of malaria, and 

have advanced through a number of preclinical safety checks and in some cases 

clinical studies, and include a number of currently used medicines.  The rationale for 

this project was that if active compounds were found among this set, they might be 

readily repurposed for treatment of toxoplasmosis or give information on biological 

pathways to target in T. gondii.   

 

Results and Discussion 
We tested 81 compounds including a number of current medicines used for treatment of 

malaria and candidates that are in late preclinical development or undergoing current 

clinical trials.  Although some individual compounds had been tested on T. gondii 

previously, many are new compounds and this represents the first time this set of 

compounds has been compared side by side in the same assay.  We tested them in 

parallel using a multi-well plate assay that monitors in vitro growth of T. gondii 

tachyzoites based on firefly luciferase expression.  Initially, we evaluated each of the 

compounds at a single concentration (10 µM) in triplicate assays to define those that 

showed > 50 % growth inhibition.  Based on this cutoff, 52 compounds were chosen for 
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further analysis based on duplicate 10-point dilution series that were used to define the 

EC50 values for growth inhibition.  Results of the screen are summarized in Table 1 and 

Figure 1, where compounds are ranked by relative potency.   

 Among the set of 52 compounds, 18 of them showed EC50 values of < 1 µM, 

including pyrimethamine (Figure 1, red dot), consistent with previously reported values 

for the activity of this DHFR inhibitor on growth of T. gondii in vitro (51, 52).  Other 

inhibitors of DHFR were considerably less potent, including methotrexate (53, 54) and 

cycloguanil (55, 56), consistent with previous reports (Table 1).  As expected, sulfa 

drugs were also less potent including sulfadiazine, sulfamethoxoazole, and dapsone 

(Table 1), consistent with previous reports of their in vitro activity (52, 57, 58). The low 

activity of these molecules vitro may reflect high levels of p-araminobenzoic acid in 

culture medium, as this metabolite acts competitively with these inhibitors of DHPS.  

Although sulfa drugs are not effective when used alone, as part of the current 

combination therapy they are highly synergistic with pyrimethamine (52, 59).  Among 

the potent compounds that have not been reported previously was methylene blue, a 

phenothiazin dye that is being evaluated as a transmission blocking compound for 

malaria (50).  Also included among the most actives were several antibiotics that target 

prokaryotic protein synthesis by disrupting ribosomes including the lincosamides 

clindamycin and mirincamycin, and the macrolide azithromycin (Table 1).  Interesting, 

although doxycycline was active in inhibiting T. gondii growth, tetracycline showed 

almost no activity, consistent with a previous report (60).  A number of antibiotics have 

previously been shown to be active on T. gondii (59, 61-64) and their mechanism of 

action is likely due to inhibition of protein synthesis in the apicoplast (65).  The main 

limitation to use of broad-spectrum antibiotics for treatment of toxoplasmosis is their 

potent activity on the endogenous bacterial flora in the microbiome leading to disbiosis 

and gastrointestinal distress, thus increasing the risk of C. difficile infection (66).  The 

use of such agents that target bacteria also increases the risk of unwanted emergence 

of resistance among other classes of pathogens. 

 Other potent inhibitors include the endochin-like quinolone ELQ-300 that targets the 

Qi site in the cytochrome bc1 complex (67) and atovaquone that targets the Qo site (68) 

in the cytochrome bc1 complex of the mitochondrial respiratory chain (Table 1).  
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Previous studies have shown that atovaquone is effective in blocking T. gondii 

replication in vitro and in reducing cyst numbers in chronically infected mice (52, 62), as 

well as suppressing reactivation of chronic infection in an immunocomprmised mouse 

model (69).  However, prior experience with atovoquone in humans with toxoplasmosis 

includes several examples of therapeutic failure (47, 70), possibly due to resistance 

arising, although the mechanism was not confirmed at the molecular level.  Similar to 

atovoquone, ELQ-300 is potent in inhibiting parasite growth in vitro and in reducing cyst 

numbers in the brains of chronically infected mice (46).  The main issue with ELQ-300 

(46), and related quinolone compounds (71), is their low solubility that reduces oral 

bioavailability.  Consequently, efficacy trials in murine models of toxoplasmosis have 

relied on parenteral administration of the compounds.  This limitation has been partially 

mitigated by production of esterified pro-drugs that get activated in vitro, allowing for 

oral treatment that was protective in a mouse model for P. yoelli (72).  Given that 

multiple quinolone containing compounds that affect mitochondrial electron transport 

are active against T. gondii, including against bradyzoites in tissue cysts, this pathway 

remains an important target for further investigation. 

 Drugs that have traditionally been used to treat malaria were much less potent in 

inhibiting T. gondii including both 4-amino and 8-amino quinolines (Table 1).  

Chloroquine and a variety of related 4-aminoquniolines are active against asexual 

parasite stages of Plasmodium that replicate in red blood cells, where these compounds 

are thought to inhibit hemozoin formation within the parasite’s digestive food vacuole 

(73).  Among this class of compounds, bisquinoline and benzylquine were the most 

active with EC50 values of less than 1 µM, while other derivatives were less potent 

against T. gondii (Table 1).  These compounds are thought to target hemozoin 

formation during hemoglobin degradation in Plasmodium (73), and the lack of an 

analogous digestive pathway in T. gondii may explain the lack of potency of most 

members of this class.  However, the fact that several 4-amino quinolones and 4-anilino 

compounds (i.e. pyronaridine, amodiaquine) showed modest potency in inhibiting T. 

gondii, suggests that they target another important process (Table 1). 

 A number of 8-aminoquinolones are also effective for treatment of malaria, although 

their mechanism of action remains uncertain.  Primaquine has traditionally been used to 
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treat the dormant hypnozoite stage of P. vivax and it is also effective against P. 

falciparum gametocytes.  The main deficiency of this compound is its toxicity in patients 

with G6PD deficiency.  A number of 8-aminoquinoline derivatives, such as tafenoquine, 

lack some of the undesirable effects of primaquine and are also being advanced for 

preventing relapse of P. vivax (74).  Unfortunately, the 8-aminoquinolines as a class 

were largely inactive against T. gondii tachyzoites (Table 1).  However, given their 

differential activity on semi-dormant stages of Plasmodium development (i.e. 

gametocytes and hypnozoites) it would be interesting to test these compounds on 

bradyzoites of T. gondii.  

 Artemisinin derivatives have become the mainstay of combined therapy against 

severe and uncomplicated malaria (31).  Artemsinin is potent across the stages of 

intraerythrocytic development and this activity has been attributed to hemoglobin 

degradation and release of free heme, which is thought to activate the endoperoxide 

bridge, likely forming adducts with multiple targets (33).  More recent efforts have 

focused on completely synthetic endoperoxides, some of which show greater metabolic 

stability in vivo, and which could reduce reliance on the natural product produced from 

Artemesia cultivation (75).  Consistent with prior studies (35, 37), a number of 

artemisinin derivatives were modestly active in inhibiting T. gondii growth (Table 1, 

Figure 2).  Artemisone and artemether were among the most active derivatives, while 

deoxyartemesinin was inactive, indicating that activity is dependent on the 

endoperoxide moiety.  Unfortunately, more stable trioxolane synthetic peroxides such 

as OZ439 and OZ277 were much less active on T. gondii (Table 1, Figure 2).  Even the 

most potent artemisinin derivatives are several orders of magnitude less effective 

against T. gondii compared to P. falciparum, thus limiting their potential as therapeutic 

options for toxoplasmosis.  

 Several different chemical scaffolds have been shown to inhibit the P-type cation 

translocating ATPase in P. falciparum known as PfATP4, which resides in the parasite 

plasma membrane where it modulates cytosolic sodium levels by active extrusion of 

Na+ in exchange for H+ (76).  Among the most potent PfATP4 inhibitors are the 

spiroindolones that are currently in clinical trials for treatment of infection by P. 

falciparum (50).  The spiroindolone KAE609 (also known as NITD609), which is highly 
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active on P. falciparum (41-43), was among the more active molecules studied here for 

inhibition of T. gondii growth (EC50 ~ 0.25 µM) (Table 1, Figure 3).  KAE609 was 

substantially more potent than a second spiroindolone analog KAF246 (EC50 = 1.4 µM) 

(Table 1, Figure 3), although these two compounds differ only by substitution of Cl for F 

on the indole group (Figure 3).  KAE609 was previously reported to inhibit T. gondii 

growth in vitro with a 50% decrease in parasite growth at 1 µM (reported as MIC50) and 

in a mouse model for acute toxoplasmosis when the compound was administered at 

100 mg/kg (given orally on the day of infection and the day after infection) (77).  

Compound 21A092, which belongs to a different scaffold known as a pyrazoleamide, 

also targets PfATP4 and is highly active on P. falciparum (78), but was much less 

potent on T. gondii (Table 1).  Unfortunately, even potent spiroindoles like KAE609 

show much greater potency on P. falciparum (EC50 ~1 nM) (42) than T. gondii, despite 

the fact that the proposed binding site in PfATP4 is highly conserved, including sites 

that result in resistance when mutated (77).  Interestingly, the relative potency between 

the ATP4 inhibitors (highest to lowest) KAE609, PA92 and SJ733 on P. falciparum 

appears to match that in T. gondii.  A number of other chemical scaffolds have also 

been shown to affect PfATP4 in P. falciparum and a previous screen of the Malaria Box 

identified a number of compounds that likely target PfATP4 (76) as inhibitors of T. gondii 

(48).  As many analogs of the spiroindolones, and other scaffolds that act on PfATP4, 

are available, it may be worth further investigation of this target to identify more potent 

inhibitors of T. gondii. 

 Additionally, potent new antimalarial compounds that have been recently identified 

showed only modest activity against T. gondii with EC50 values that ranged from 1 – 5 

µM (Table 1).  Included in this group was KAF156, an imidazolopiperazine that showed 

promising results in a recent clinical trial of P. falciparum malaria (79).  Additionally, 

several inhibitors of phosphoinositol 4 kinase (PI4K) showed modest (i.e. UTC944), or 

no appreciable (i.e. KDU691), activity against T. gondii growth, despite having excellent 

potency against P. falciparum (80).  Similarly, cladosporin, which targets lysyl tRNA 

synthase in P. falciparum (81, 82), showed only modest activity against T. gondii (Table 

1).  The reasons for the much lower activities observed on T. gondii is uncertain but it 

may reflect differences in the molecular targets of these compounds or differences in 
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the extent with which these targets play essential roles in the biology of T. gondii vs. P. 

falciparum. Alternatively, these differences might arise from differences in the 

intracellular compartment that affect access of the compounds or from a greater number 

of efflux mechanisms in T. gondii.  Regardless of the precise reasons, these differences 

in sensitivity provide a rationale to explore a more diverse collection of compounds than 

studied here, with the potential that other analogs within these chemical scaffolds will be 

found to be more effective on T. gondii.  

 Targeting conserved and essential pathways may thus offer greater advantage for 

finding compounds with a broader spectrum of activity.  One potential example is 

pyrimidine biosynthesis that is conserved in both T. gondii and P. falciparum.  In 

particular, Plasmodium lacks pyrimidine salvage enzymes and thus is reliant on 

biosynthesis for RNA and DNA synthesis.  Targeted screens have advanced new 

triazolopyrimidine compounds as inhibitors of P. falciparum dihydroorotate 

dehydrogenase (DHODH), thus blocking pyrimidine biosynthesis (83).  One such analog 

DSM265 is active against both liver and blood stages of P. falciparum, shows excellent 

pharmacokinetic and safety properties, and has advanced to clinical trials for P. 

falciparum malaria (84).  DHODH is also essential in for pyrimidine biosynthesis in T. 

gondii, as well as performing another essential function in mitochondria (85).  However, 

DSM265 was not effective at inhibiting T. gondii growth in vitro (Table 1).  This 

difference may reflect that fact that DSM265 has been carefully selected for potency on 

P. falciparum hence this may reflect a difference in the molecular target, suggesting that 

other analogs may be more effective.  Alternatively this result that may be due to the 

capacity of T. gondii to salvage uracil (86).  Hence, even apparently conserved 

pathways present challenges for identification of potent inhibitors both due to potential 

molecular differences in the target and/or alternative metabolic routes in these two 

parasites. 

  
Conclusions 
We evaluated 80 compounds that are used as current therapy for malaria, or which are 

in late stage development, for their ability to inhibit the growth of the related 

apicomplexan parasite T. gondii.  The most active compounds identified were previously 
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known agents including lincosamide and macrolide antibiotics that target the apicoplast 

and quinolones that target the bc1 complex in the mitochondria.  Consistent with this 

pattern, artemisinin and related analogs, were modestly potent, while several new 

generation trioxanes showed very little activity.  Moreover, traditional drugs used 

against malaria including 4-amino and 8-aminoquinolines showed very little activity 

against T. gondii.  Similarly, a number of newly identified compound classes that target 

novel pathways in Plasmodium showed limited activity against T. gondii including 

spiroindolones, which inhibit PfATP4, as well as compounds that target PI4K, lysyl tRNA 

synthase, and others.  These findings may suggest that current malaria drugs target 

pathways that are not conserved in these two parasites, or alternatively that differences 

in the molecular target will require different analogs to effectively target each of these 

parasites.  Hence, identifying new treatments for toxoplasmosis will require a concerted 

effort to identify potent inhibitors of essential targets in this organism. 

 

Materials and Methods 
Cell culture and parasite propagation 
Tachyzoites of ME49 strain encoding a transgenic copy of firefly luciferase (type II, 

ME49-FLuc) (87) were continually passaged in confluent monolayers of human foreskin 

fibroblasts (HFF) cultured in DMEM supplemented with 10% fetal bovine serum (FBS), 

glutamine (10 mM) and gentamycin (10 µg/mL).  To isolate parasites, heavily infected 

cultures of late-stage vacuoles containing replicating tachyzoites were scraped, force 

lysed through a 23g needle and residual host cell material removed using a 

polycarbonate filter (3 micron pore).  The parasites were then counted, diluted in fresh 

culture medium and added to 96-well plates as described below.  All HFF and parasite 

cultures were grown in a 37°C incubator supplemented with 5% CO2 and were verified 

to be mycoplasma free using the e-Myco Plus kit (Intron Biotechnology).  

Luciferase based growth inhibition assays 
HFF cells were plated in white, clear-bottom 96-well plates (Costar #3610) and 

incubated to confluency.  Only the inner 60 wells were used to reduce variability due to 

edge affect with outside wells.  Compounds KAF246 and KDU691 were obtained from 

Novartis Tropical Research Institute.  The remaining compounds were provided by 
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MMV.  All compounds were prepared as 10 mM stock in 100% DMSO and stored at -

80oC until use.  After dilution, the final DMSO concentration for all experimental wells 

was 0.1%.  Pyrimethamine (Sigma-Aldrich, #46706) was reconstituted in 100% DMSO 

at 5 mM stock concentration and stored at -20oC until use. 

 For the single point assay, 5x103 ME49-FLuc parasites (in 100 µL volume) were 

inoculated into plates containing 100 µL of 2x compound (10 µM final concentration, 

200 µL final well volume), incubated for 72h at 37°C and luciferase activity evaluated 

using the Luciferase Assay System (Promega, E1501) according manufacturers 

protocol.  Briefly, culture medium was aspirated and replaced with 40 µL of 1x Passive 

Lysis buffer (1xPLB, Promega, E1531) and incubated for 5 min at room temperature 

(RT).  Luciferase activity was measured on a Beckman Coulter integrated and 

automated platform using the following protocol: Inject 100 µL of Luciferase Assay 

Reagent (LAR), shake 1 sec and read 10 sec post-injection.  Only compounds that 

showed greater than 50% growth inhibition over DMSO control were selected for EC50 

determination (average of 3 biological replicates).  Liquid handling steps (media 

exchange, compound dilution and addition and luciferase assay steps) were performed 

on a Biomek Dual Pod FX system using the SAMI EX software as part of the High 

Throughput Screening Center at Washington University School of Medicine. 

 For compounds demonstrated >50% growth inhibition at 10 µM, EC50 values were 

determined form a 10-point dose-response curve.  Briefly, 5x10^3 ME49-FLuc parasites 

(100 µL/well) were added to a 96-well plate that contained 100 uL of 2x compound (1x 

final compound concentration, 200 µL total well volume,) and allowed to replicate for 

72h prior to preparation for luciferase assay.  All experimental steps, growth conditions 

and luciferase assay protocols were completed as described above.  Compounds were 

tested using a 3-fold dilution series from 10 µM to 0.001 µM with all wells containing a 

final concentration of 0.1% DMSO.  Pyrimethamine (2.5 µM, positive control) and 

DMSO (vehicle) controls were added to the outside wells of all plates as controls.  The 

EC50 data are presented as the average of two biological replicates.  

Statistics 
All results are presented as the average of two or more biological replicates.  Linear 

regression analysis and dose-response inhibition (Log (inhibitor) vs. normalized 
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response – variable slope) or (Log (inhibitor) vs. normalized response) were performed 

in Prism 7 (GraphPad Software, Inc.).   
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Figure legends 
 
Figure 1  Rank order of compounds in terms of EC50 values for inhibition of T. gondii 

tachyzoite growth in vitro.  Values represent mean of two independent 10-point titrations 

that were used to derive EC50 values by dose- response curve fits (see methods).  

Compounds of interest are highlighted including pyrimethamine (red dot), artemisinin 

and related compounds (yellow), inhibitors of PfATP4 (orange), and antibiotics (green).  

See Table 1 for complete EC50 values. 

 

Figure 2  Structures and EC50 values for artemesinin and related analogs artusunate 

and artemether.  Deoxyartemesinin, which is inactive, is shown for comparison.  Several 

synthetic trioxanes are also illustrated.  See Table 1 for complete EC50 values.  

 

 

Figure 3  Structures and EC50 values for several PfATP4 inhibitors including two 

spiroindolones (KAE609 and KAF246) and a structurally unrelated pyrazoleamide 

(21A092).  See Table 1 for complete EC50 values.  
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Table	1		Sumary	of	EC50	values	for	inhibtion	of	T.	gondii	growth	in	vitro

Compound Name Chemical class
Known or suspected mechanism of action 
(resistance mechanism)

EC50 log inhib vs normalized 
response (µM)

Clindamycin macrolide	-	lincosamide Protein	synthesis	-	bacterial		50S	ribosomal	subunit					 0.0081
Trans-Mirincamycin macrolide	-	lincosamide Protein	synthesis	-	bacterial		50S	ribosomal	subunit 0.0140
Cyclohexamide glutarimide Protein	synthesis	-	eukaryotic	-	elongation 0.0161
Cis-Mirincamycin macrolide	-	lincosamide Protein	synthesis	-	bacterial		50S	ribosomal	subunit 0.0197
ELQ-300 quinolone Mitochondrial	bc1	complex-	Qi 0.0577
Artemisone sesquiterpene	lactone peroxide-mediated,	oxidative	damage	(Kelch	13) 0.0755
Azithromycin macrolide	-	azalide Protein	synthesis	-	bacterial		50S	ribosomal	subunit 0.1654
Atovaquone hydroxynapthylquinone Mitochondrial	bc1	complex-	Qo 0.2441
Pyrimethamine pyrimidine	derivative DHFR 0.2538
KAE609 spirotetrahydro	β-carboline ATP4 0.2561
Artemether sesquiterpene	lactone peroxide-mediated,	oxidative	damage	(Kelch	13) 0.2861
Methylene	blue phenothiazin Uncertain 0.2958
Artesunate sesquiterpene	lactone peroxide-mediated,	oxidative	damage	(Kelch	13) 0.5989
Ro	47-7737 4-aminoquinoline	(bis) Hemozoin	formation 0.6508
Artemisinin sesquiterpene	lactone peroxide-mediated,	oxidative	damage	(Kelch	13) 0.7595
BIX-01294 diaminoquinazoline Histone	methyl	transferase 0.8792
Phenylequine 4-aminoquinoline Hemozoin	formation 0.9362
MMV688558 pantothenamide Co-enzyme	A 0.9526
Doxycycline macrolide	-	tetracycline Protein	synthesis	-	bacterial 1.0080
Thiostrepton cyclic	oligopeptide	-	thiopeptide Protein	synthesis	-	bacterial		50S	ribosomal	subunit					 1.1310
Dihydroartemisinin sesquiterpene	lactone peroxide-mediated,	oxidative	damage	(Kelch	13) 1.1390
Pyronaridine 4-anilino-quinoline Hemozoin	formation	and	novel 1.2430
KAF246 spirotetrahydro	β-carboline ATP4 1.4000
Chlorproguanil biguanide	-	prodrug DHFR	after	cyclization	-	and	unique 1.4330
2k 4-anilino-quinoline Hemozoin	formation 1.4560
NPC-1161B 8-aminoquinoline Uncertain 1.4680
Mefloquine	(racemic) quinoline	amino-alcohol Uncertain	(Pfmdr1) 1.4900
Sitamaquine 8-aminoquinoline Uncertain 1.5800
Cladosporin isocoumarin Lysyl	t-RNA	synthase 1.5820
(+)-Mefloquine quinoline		amino-alchohol Uncertain	(Pfmdr1) 1.661
AQ-13 4-aminoquinoline Hemozoin	formation 1.6460
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AZ412 triaminopyrimidine Vacuolar	ATPase	synthase	/	V-type	H+	ATPase 1.7560
Pamaquine 8-aminoquinoline Uncertain 1.7840
Halofantrine amino	alcohol Hemozoin	formation 1.8140
OZ277 trioxolane	-	synthetic	endo-peroxide peroxide-mediated,	oxidative	damage	 1.8570
N-desethyl amodiaquine 4-anilino-quinoline Hemozoin	formation 1.8670
Dapsone sulfone Dihydropteroate	synthesis 1.9430
Tafenoquine 8-aminoquinoline Uncertain 2.1160
Amodiaquine 4-anilino-quinoline Hemozoin	formation 2.2260
AN13762 oxaborole Uncertain 2.7030
OZ439 trioxolane	-	synthetic	endo-peroxide peroxide-mediated,	oxidative	damage	 2.7220
Cycloguanil cyclic-biguanide DHFR	 2.7580
UCT944 aminopyrazine PI4K 2.7900
KAF156 imidazolopiperazine (PfCarl) 3.0620
Sulfamethoxazole sulfonamide Dihydropteroate	synthesis 3.1530
MK-4815 aminocresol Hemozoin	formation 3.3010
UCT048 aminopyridine PI4K 3.4340
Primaquine 8-aminoquinoline Uncertain 3.5140
Pentamidine bisamidine	derivative Uncertain 3.6790
Proguanil biguanide	-	prodrug DHFR	after	cyclization	-	and	unique 4.4700
Sulfadiazine sulfonamide Dihydropteroate	synthesis 4.5220
21A092 pyrazoleamide ATP4 4.6370
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