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 1 

Abstract  1 

 2 

Numerous factors have been reported to underlie the representation of complex images in high-3 

level human visual cortex, including categories (e.g. faces, objects, scenes), animacy, and real-4 

world size, but the extent to which this organization is reflected in behavioral judgments of real-5 

world stimuli is unclear. Here, we compared representations derived from explicit similarity 6 

judgments and ultra-high field (7T) fMRI of human visual cortex for multiple exemplars of a diverse 7 

set of naturalistic images from 48 object and scene categories. Behavioral judgements revealed a 8 

coarse division between man-made (including humans) and natural (including animals) images, 9 

with clear groupings of conceptually-related categories (e.g. transportation, animals), while these 10 

conceptual groupings were largely absent in the fMRI representations. Instead, fMRI responses 11 

tended to reflect a separation of both human and non-human faces/bodies from all other categories. 12 

This pattern yielded a statistically significant, but surprisingly limited correlation between the two 13 

representational spaces. Further, comparison of the behavioral and fMRI representational spaces 14 

with those derived from the layers of a deep neural network (DNN) showed a strong 15 

correspondence with behavior in the top-most layer and with fMRI in the mid-level layers. These 16 

results suggest that there is no simple mapping between responses in high-level visual cortex and 17 

behavior – each domain reflects different visual properties of the images and responses in high-18 

level visual cortex may correspond to intermediate stages of processing between basic visual 19 

features and the conceptual categories that dominate the behavioral response.  20 
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 2 

Significance Statement  21 

 22 

It is commonly assumed there is a correspondence between behavioral judgments of complex 23 

visual stimuli and the response of high-level visual cortex. We directly compared these 24 

representations across a diverse set of naturalistic object and scene categories and found a  25 

surprisingly and strikingly different representational structure. Further, both types of representation 26 

showed good correspondence with a deep neural network, but each correlated most strongly with 27 

different layers. These results show that behavioral judgments reflect more conceptual properties 28 

and visual cortical fMRI responses capture more general visual features. Collectively, our findings 29 

highlight that great care must be taken in mapping the response of visual cortex onto behavior, 30 

which clearly reflect different information.  31 
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 3 

Introduction 32 

 33 

The ventral visual pathway, extending from primary visual cortex (V1) through the inferior temporal 34 

lobe, is thought to be critical for object, face and scene recognition (Kravitz et al., 2013). While 35 

posterior regions in this pathway respond strongly to the presentation of low-level visual features, 36 

more anterior regions are thought to encode high-level categorical aspects of the visual input. For 37 

example, functional magnetic resonance imaging (fMRI) studies have identified category-selective 38 

regions in ventral temporal cortex (vTC) and lateral occipitotemporal cortex (lOTC) that show 39 

preferential responses for images of one category compared to another (e.g. face-selective fusiform 40 

face area or FFA, scene-selective parahippocampal place area or PPA, and object-selective lateral 41 

occipital complex or LOC; Kanwisher and Dilks, 2013). However, many other factors have been 42 

reported to contribute to responses in high-level visual cortex, including, but not limited to, 43 

eccentricity (Hasson et al., 2003), elevation (Silson et al., 2015), real-world size (Konkle and Oliva, 44 

2012), typicality (Iordan et al., 2016), category level (i.e. superordinate, basic, subordinate – Iordan 45 

et al., 2015), and animacy (Kriegeskorte et al., 2008; Connolly et al., 2012; Naselaris et al., 2012; 46 

Sha et al., 2015; Proklova et al., 2016). The goal of the current study was determine the 47 

correspondence between the response of high-level visual cortex and our mental representations 48 

of category by comparing the representational space reflected in fMRI responses with behavioral 49 

similarity judgements for naturalistic images across a broad range of object and scene categories. 50 

 51 

Determining how responses in high-level visual cortex relate to behavior is critical for elucidating 52 

the functional significance of these regions. For tasks such as identification and categorization, 53 

relevant information has been reported in the responses of lOTC and vTC (Kravitz et al., 2013; 54 

Grill-Spector and Weiner, 2014) and it is commonly assumed there is a direct mapping between 55 

responses in high-level visual cortex and behavioral judgments. But this assumption belies the 56 

diverse behavioral goals these regions likely support (Malcolm et al., 2016; Peelen and Downing, 57 

2017). While the fMRI responses in both human and non-human primate vTC appear to reflect 58 

major distinctions between animate/inanimate and face/body, behavioral similarity judgements 59 
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 4 

reveal additional fine-grained representational structure, patricularly for inanimate objects 60 

(Kriegeskorte et al., 2008; Mur et al., 2013). However, these studies contained a limited sampling 61 

of different categories that emphasized some categories (e.g. faces, food/fruit) over others (e.g. 62 

chairs, appliances) and may have only captured part of the representational structure. While other 63 

fMRI studies have included a broader sampling of different categories (Huth et al., 2012; Naselaris 64 

et al., 2012), behavioral judgments were not collected beyond labels for discrete elements of the 65 

images that may not characterize the broader conceptual representation. Here, we combined a 66 

varied sampling of different categories with both ultra-high field (7T) fMRI and detailed behavioral 67 

similarity measurements to determine what aspects of representation are shared between behavior 68 

and the response of high-level visual cortex.  69 

 70 

We presented multiple images from 48 categories ranging across both object (e.g. bags, dolls) and 71 

scene (e.g. kitchens, mountains) categories. In contrast to some prior studies that presented 72 

segmented objects with limited, arbitrary or no context (Kriegeskorte et al., 2008; Konkle and Oliva, 73 

2012; Yamins et al., 2014) our study used objects in typical contexts. We found highly reproducible 74 

but distinct structure in both behavior and fMRI with little evidence for the previously reported 75 

animacy division. Instead, behavioral judgments reflected a manmade/natural division, while 76 

cortical regions largely showed a separation of images containing human and non-human faces 77 

and bodies from everything else. Computational features extracted from a deep neural network 78 

(DNN) trained on object recognition correlated with representational structure in both behavior and 79 

fMRI, but the strongest match with behavior was with the highest DNN layer, while fMRI correlated 80 

best with a mid-level DNN layer. Collectively, these results suggest that while both behavior and 81 

the response of high-level visual cortex reflect combinations of visual features, those features differ 82 

between domains, with no direct mapping between them. 83 

 84 

Materials and Methods 85 

 86 
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Stimuli. We retrieved high-resolution (1024x768 pixels) color photographs from Google Images to 87 

construct two sets of stimuli, each comprised of 144 individual color images of complex scenes. 88 

We included two separate sets to be able to test generalization of our findings across images. Each 89 

set of images (hereby referred to as Image Set 1 and Image Set 2) contained 48 concrete 90 

categories, with 3 exemplar images per category (Figure 1). The 48 categories were chosen to 91 

reflect a diverse range of naturalistic object and scene categories.  All of the images in Image Set 92 

1 and Image Set 2 depicted people, places, and things in natural context and from familiar 93 

viewpoints. The images portrayed scenes that one might expect to see on a typical day, and were 94 

chosen for their neutral nature (i.e. to be unlikely to elicit any strong emotional response). 95 

 96 

Participants and testing. 20 healthy human volunteers (9 male, mean age = 27.7 years) participated 97 

in the behavioral similarity judgment experiment. 10 participants viewed Image Set 1 (4 male, mean 98 

age = 29.3) and 10 participants viewed Image Set 2 (5 male, mean age = 26.1). 10 of these 99 

participants also participated in the corresponding fMRI experiment prior to participating in the 100 

behavioral portion of this study. 5 of these participants viewed stimuli from Image Set 1 (3 male, 101 

mean age = 26.6 years) and 5 participants viewed stimuli from Image Set 2 (2 male, mean age = 102 

26.2 years). Each participant saw the same stimulus set in both the behavioral and fMRI 103 

experiment. All fMRI participants completed the fMRI scan session before rating the behavioral 104 

similarities of the images. This study was conducted in accordance with The National Institutes of 105 

Health Institutional Review Board, and all participants gave written informed consent as part of the 106 

study protocol (93 M-0170, NCT00001360) prior to participation in the study.  107 

 108 

Behavioral paradigm. We adopted a multi-arrangement paradigm previously used by Kriegeskorte, 109 

Mur and colleagues (Kriegeskorte and Mur, 2012; Mur et al., 2013). Participants were seated at a 110 

distance of approximately 50 cm in front of a computer monitor (Dell U3014, 30 inches, 2560 x 111 

1600 pixels) and completed the object arrangement task on 144 images comprising either Image 112 

Set 1 or Image Set 2. At the onset of the task, all 144 images were presented simultaneously in 113 

random order around the perimeter of a circle presented on the computer monitor, forming an 114 
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“arena” in which similarity judgments were made. Participants were instructed to “please arrange 115 

these images according to their similarity, whatever that means to you. Images that are more similar 116 

should go closer together and images that are less similar should go farther apart.” These 117 

instructions were purposefully general so as not to bias the arrangements of the images in any 118 

particular way, allowing us to investigate what dimensions participants spontaneously use when 119 

judging the similarity between images. Participants dragged the individual images into the arena 120 

using the mouse and physically arranged them according to their perceived similarity. Given the 121 

large number of images (and thus the small size each could be presented at), when a participant 122 

clicked on a particular image in the arena, an enlarged version of the image (150 x 200 pixels) was 123 

displayed in the top right of the computer screen.  124 

 Given the large number of images in the stimulus sets, participants completed only one 125 

arrangement of the images, in contrast to the original implementation of this method that used 126 

additional trials with selective subsets of stimuli (Kriegeskorte et al., 2012). However, participants 127 

were able to re-arrange images within the circular area on the screen after their initial placement 128 

as many times as they wanted within a 1-hour time limit, and they were encouraged to verify that 129 

they were satisfied with the final arrangement. In addition, in our experience this task exhibits very 130 

high correlations between results of the first and the last trial (unpublished data). One of the benefits 131 

of this arrangement method is that we were able to collect a large number of simultaneous pairwise 132 

similarity judgments in a reasonably short amount of time. Perceived object-similarity is traditionally 133 

measured using pairwise similarity judgments, however it would take many hours and testing 134 

sessions to acquire judgments on our 10,296 possible pair combinations of images. Therefore, in 135 

the current method we used the spatial arrangement of the images as a measure of their perceived 136 

similarity. Specifically, the Euclidean distance between an image and every other image was used 137 

as the measurement of perceived dissimilarity between the images (i.e. dissimilarity estimate). 138 

Representational dissimilarity matrices (RDMs) were constructed for each participant, using the 139 

ranked dissimilarity estimates for each image pair. Note that the distance matrix discards the 140 

absolute position of stimuli and only retains their relative location, which should minimize bias 141 

related to the initial placement of the stimuli. 142 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/316554doi: bioRxiv preprint 

https://doi.org/10.1101/316554


 7 

 143 

 144 

Figure 1: Naturalistic image categories. One exemplar from each of the 48 image categories, presented in alphabetical 145 

order: accessories, adults, airplanes, appliances, bags, bathrooms, beaches, beds, bikes, birds, boats, body parts, bugs, 146 

butterflies, cars, churches, cityscapes, clothes, deserts, dishes, dolls, factories, farm animals, fire, flowers, food, forests, 147 

gyms, houses, kids, kitchens, living rooms, lizards/snakes, masks, motorcycles, mountains, older adults, pets, pools, roads, 148 

signs, spiders, sports, suburbs, tools, toys, trains, wild animals. 149 

 150 

fMRI paradigm. Participants were scanned while viewing the stimuli on a back-projected screen 151 

through a rear-view mirror that was mounted on the head coil. Stimuli were presented at a resolution 152 
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of 1024 x 768 pixels and subtended 20 x 15 degrees of visual angle. Individual scenes were 153 

presented in an event-related design for a duration of 500 ms, separated by a 5 s interval. 154 

Throughout the experimental run, a small fixation cross (<0.5 degrees) was presented in the center 155 

of the screen. Participants viewed all 144 images in either Image Set 1 or Image Set 2 while 156 

performing an unrelated fixation cross task. Simultaneous with the onset of each stimulus, either 157 

the vertical or horizontal arm of the fixation cross became slightly elongated. Participants were 158 

asked to indicate, via button response, whether the horizontal or vertical line of the fixation cross 159 

was longer. Both arms changed equally often within a given run, and arm changes were randomly 160 

assigned to individual stimuli. Participants completed 12 runs of the event-related experiment, with 161 

each run being composed of 156 TRs. Within each run, 48 images were presented such that after 162 

3 consecutive runs participants had viewed the entire set of 144 images. Thus, participants viewed 163 

4 complete repeats of the 144 images in total.  164 

 165 

Scanning parameters. Participants were scanned on a research-dedicated Siemens 7 Tesla 166 

Magnetom scanner in the Clinical Research Center on the National Institutes of Health campus in 167 

Bethesda, Maryland. Partial T2*-weighted functional image volumes of the frontal, temporal, and 168 

occipital cortices were acquired using a 32-channel head coil (47 slices; 1.6 x 1.6 x 1.6 mm isotropic 169 

voxels; 10 % interslice gap; TR 2 s; TE 27 ms; flip angle 70°, matrix size 126 x 126; FOV 200 mm). 170 

In all scans, oblique slices were oriented approximately parallel to the ventral portion of the 171 

prefrontal cortex. In addition, standard MPRAGE (magnetization-prepared rapid-acquisition 172 

gradient echo) and corresponding GE-PD (gradient echo–proton density) images were acquired, 173 

and the MPRAGE images were then normalized by the GE-PD images for use as a high-resolution 174 

anatomical image for the following fMRI data analysis (Van de Moortele et al., 2009).  175 

 176 

Functional localizers. During each scan session, an independent functional localizer scan was also 177 

collected in each participant to identify scene and face selective regions in ventral temporal and 178 

lateral occipitotemporal cortex. The localizer used an on-off design, alternating between 16 s blocks 179 

of scene images and blocks of face images presented at 5 x 5° of visual angle. Localizer runs 180 
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comprised 144 TRs. Participants performed a one-back task, responding to immediate repeats of 181 

the same image using a button press. 182 

 183 

fMRI data preprocessing. All imaging data were processed using the Analysis of Functional 184 

NeuroImages (AFNI) software package (http://afni.nimh.nih.gov/afni, RRID:SCR_005927). Prior to 185 

statistical analyses, the functional scans were slice-time corrected and all images were motion 186 

corrected to the first image of the first functional run, after removing the appropriate number of 187 

‘dummy’ volumes (6) to allow for stabilization of the magnetic field. Following motion-correction, 188 

data were smoothed with a 2 mm full-width at half-maximum Gaussian kernel.  189 

 190 

Functionally defined ROIs. Scene and face selective regions of interest (ROIs) were created for 191 

each participant based on the localizer runs. A response model was built by convolving a standard 192 

HRF function with the block structure for each run and was correlated to the activation time course. 193 

ROIs were generated by thresholding the statistical parametric maps at a threshold of p < 0.0001 194 

(uncorrected). Contiguous clusters of voxels (> 20) exceeding the defined threshold were defined 195 

as scene or face selective. The anatomical locations of these clusters were then inspected to 196 

ensure that the current ROIs were consistent with those described in previously published work 197 

(Kanwisher, 2010). Our functionally defined face-selective regions included the Fusiform Face Area 198 

(FFA) and Occipital Face Area (OFA), and our functionally defined scene-selective regions included 199 

the Parahippocampal Place Area (PPA) and the Occipital Place Area (OPA). Ventral early visual 200 

areas (vEVC) and dorsal early visual (dEVC) areas (V1-V3) were defined using previously acquired 201 

retinotopic field maps from independent participants (Silson et al., 2015, 2016a). 202 

 203 

Anatomically defined ROIs. Anatomically defined ROIs were constructed using the Freesurfer 204 

image analysis suite, which is documented and freely available for download online 205 

(http://surfer.nmr.mgh.harvard.edu/). A ventral temporal cortical (vTC) region was defined using the 206 

lower edge of the inferior temporal sulcus as the lateral boundary, extending medially to include 207 

the collateral sulcus. Posteriorly, the vTC extended to the edge of the EVC ROIs and anteriorly to 208 
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the tip of the collateral sulcus This vTC ROI overlapped with both the functionally-defined FFA and 209 

PPA and was drawn to be analogous to the human IT ROI used by Kriegeskorte and colleagues 210 

(Kriegeskorte et al., 2008). In addition, a lateral occipitotemporal (lOTC) region was defined 211 

extending from the junction of the dorsal and ventral EVC ROIs anteriorly to the superior temporal 212 

sulcus, superiorly to the intraparietal sulcus and ventrally to the inferior temporal sulcus. This lOTC 213 

ROI overlapped with both the functionally-defined OFA and OPA and also included retinotopic 214 

regions such as V3A, LO1 and LO2 (Larsson and Heeger, 2006).  215 

 216 

fMRI analysis: event-related data. All 12 functional runs were concatenated and compared to the 217 

activation time course for each stimulus condition using Generalized Least Squares (GLSQ) 218 

regression in AFNI. In the current paradigm, each image was treated as an independent condition, 219 

resulting in 144 separate regressors for each individual stimulus condition, as well as motion 220 

parameters and four polynomials to account for slow drifts in the signal. To derive the response 221 

magnitude per stimulus, t-tests were performed between the stimulus-specific beta estimates and 222 

baseline for each voxel. All subsequent analyses of these data were conducted in Matlab 223 

(Mathworks, Natick, RRID:SCR_001622). To derive representational dissimilarity matrices 224 

(RDMs), pairwise Pearson’s correlations were computed between conditions using the t-values 225 

across all voxels within a given ROI (Kravitz et al., 2010, 2011). The resulting RDM for a given ROI 226 

was a 144 x 144 matrix representing the pairwise correlations between patterns of activity elicited 227 

by each stimulus condition. RDMs were created for each participant, ranked using a tied ranking 228 

procedure, and then averaged together across participants for each ROI. 229 

 230 

Behavior-fMRI comparisons. We calculated full correlations between behavioral judgment RDMs 231 

and each of the fMRI derived RDMs (Spearman’s r). For all analyses, the behavioral RDMs were 232 

based on averages across the maximum number of participants available for that analysis (e.g., all 233 

20 subjects that performed the behavioral experiment for the group-average behavioral judgments; 234 

all 10 subjects that performed the behavioral task on Image Set 1 for the group average behavioral 235 

RDM of Image Set 1), with the exception of the within-subject behavior-fMRI comparisons (Figure 236 
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4) in which only the participants that also performed the fMRI experiment were included. Statistical 237 

significance of between-RDM correlations was determined using fixed-effects stimulus-label 238 

randomization tests (Nili et al., 2014). For these tests, a null distribution of between-RDM 239 

correlations was obtained by permuting stimulus condition labels of one of the subject-averaged 240 

RDMs (e.g., behavioral RDM) 10,000 times, after which the p-value of the observed correlation was 241 

determined as its two-tailed probability level relative to the null distribution. In addition, 95% 242 

confidence intervals and standard deviations were determined using bootstrap resampling, 243 

whereby a distribution of correlation values was obtained by sampling stimulus conditions with 244 

replacement (n = 10,000 bootstraps). To correct for multiple testing of the behavioral RDM against 245 

the multiple fMRI ROIs, the resulting p-values were corrected for multiple comparisons across all 246 

ROIs using FDR-correction at a = 0.05. 247 

 248 

Hierarchical clustering. To reveal higher-order relations between the image categories, the 249 

behavioral and fMRI measurements were subjected to hierarchical clustering. To estimate the 250 

number of clusters that best described the data, we performed k-means clustering ('kmeans' 251 

function implemented in Matlab, 28 iterations) and evaluated the trade-off between number of 252 

clusters and explained variance using the elbow method. Using this method, we determined that 253 

six clusters optimally described the behavioral data (80% variance explained in each image set). 254 

We subsequently performed hierarchical clustering on both the behavioral judgement RDMs and 255 

fMRI derived RDMs ('cluster' function in Matlab, method: 'linkage', number of clusters: 6). 256 

 257 

Searchlight analysis. To test the relationship between behavioral similarity judgments and activity 258 

recorded outside specified ROIs, we conducted whole-brain searchlight analysis. The searchlight 259 

analysis stepped through every voxel in the brain and extracted the t-values from a sphere of 3 260 

voxel radius around that voxel (total number of voxels per searchlight sphere = 123), which were 261 

then used to compute pairwise correlation distances (1-Pearson’s r) between each stimulus 262 

condition. Analogous to the ROI analyses, the resulting RDMs were correlated (Spearman’s rho) 263 

with the average behavioral RDM. These correlation coefficients were assigned to the center voxel 264 
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of each searchlight, resulting in a separate whole-volume correlation map for each participant 265 

computed in their native volume space. To allow comparison at the group level, individual 266 

participant maps were first aligned to their own high-resolution anatomical T1 and then to surface 267 

reconstructions of the grey and white matter boundaries created from these T1s using the 268 

Freesurfer (http://surfer.nmr.mgh.harvard.edu/, RRID:SCR_001847) 5.3 autorecon script using 269 

SUMA (Surface Mapping with AFNI) software (https://afni.nimh.nih.gov/Suma). Group-level 270 

significance was determined by submitting these surface maps to node-wise t-tests in conjunction 271 

with Threshold Free Cluster Enhancement (Smith and Nichols, 2009) to correct for multiple 272 

comparisons, using the CoSMoMVPA toolbox (Oosterhof et al., 2016).  273 

 274 

DNN comparisons. Deep convolutional neural networks (DNNs) are state-of-the-art computer 275 

vision models capable of labeling objects in natural images with human-level accuracy (Krizhevsky 276 

et al., 2012; Kriegeskorte, 2015), and are therefore considered potentially relevant models of how 277 

object recognition may be implemented in the human brain (Kriegeskorte, 2015; Yamins and 278 

DiCarlo, 2016; Scholte, 2017; Tripp, 2017). DNNs consist of multiple layers that perfom 279 

transformations from pixels in the input image to a class label through a non-linear mapping of local 280 

convolutional filters responses (layers 1–5) onto a set of fully-connected layers of classification 281 

nodes (layers 6–8) culminating in a vector of output ‘activations’ for labels assigned in the DNN 282 

training phase. Inspection of the learned feature selectivity (Zhou et al., 2014; Güçlü and van 283 

Gerven, 2015; Bau et al., 2017; Wen et al., 2017) show that earlier layers contain local filters that 284 

resemble V1-like receptive fields while higher layers develop selectivity for entire objects or object 285 

parts, perhaps resembling category-selective regions in visual cortex. The feature representations 286 

learned by these DNNs have indeed been shown to exhibit some correspondence with both 287 

behavior and brain activity measurements in humans and non-human primates during object 288 

recognition (Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Güçlü and van Gerven, 289 

2015; Cichy et al., 2016) and scene recognition (Greene et al., 2016; Bonner and Epstein, 2017; 290 

Martin Cichy et al., 2017; Groen et al., 2018).  291 
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We used the MatConvNet toolbox (Vedaldi and Lenc, 2015) to implement a pre-trained 292 

version of an 8-layer deep convolutional neural network (VGG-S CNN) (Chatfield et al., 2014) that 293 

was trained to perform the 1000-class ImageNet ILSVRC 2012 object classification task. DNN 294 

representations for each individual image in both stimulus sets were extracted from layers 1-5 295 

(convolutional layers) and 6-8 (fully-connected layers) of the network. For each layer, we calculated 296 

the Pearson correlation coefficient between each pairwise combination of stimuli yielding one 144 297 

x 144 RDM per DNN layer. Analogous to the behavior-fMRI analyses, we then calculated 298 

Spearman’s rank correlations between RDMs derived from DNN layers and RDMs derived from 299 

the fMRI and behavioral measurements. Statistical significance was again determined using 300 

stimulus-randomization (n = 10,000 permutations, two-tailed tests). Differences in correlation 301 

between individual layers were determined using bootstrap tests (n = 10,000) whereby the p-value 302 

of a difference in correlation between two layers was estimated as the proportion of bootstrap 303 

samples further in the tails (two-sided) than 0 (Nili et al., 2014). To correct for multiple testing of 304 

several model representations against the same RDM, the resulting p-values were corrected for 305 

multiple comparisons across all tests conducted for a given behavioral or fMRI RDM using FDR-306 

correction at a = 0.05. 307 

 308 

Results 309 

 310 

The primary aim of this study was to elucidate the representational space of complex naturalistic 311 

categories as reflected in human behavior and in neural responses measured with fMRI. We first 312 

present analyses examining and comparing the representational structure of each image set 313 

estimated from both behavioral similarity judgments and from fMRI responses in visual cortex. We 314 

then examine to what extent features derived from a deep neural network (DNN) model can explain 315 

the behavioral and fMRI data.  316 

 317 

Comparison of behavioral judgments and fMRI: Representational Dissimilarity Matrices (RDMs)  318 

 319 
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We first created RDMs based on both the behavioral judgments and fMRI responses, separately 320 

for Image Set 1 and Image Set 2. For behavioral judgments, dissimilarities were based on the pixel 321 

distances between images in the multi-arrangement similarity task. For fMRI, we focused on the 322 

pairwise comparisons of multi-voxel patterns for each stimulus in ventral temporal cortex using a 323 

vTC ROI following Kriegeskorte and colleagues (Kriegeskorte et al., 2008; see Methods). The 324 

resulting RDMs are organized alphabetically by category (Figure 2).  325 

 326 

Figure 2: Representational dissimilarity matrices for Image Set 1 and Image Set 2. Matrices show comparisons for all 327 

144 images grouped alphabetically by category (3 images per category, same order as Figure 1). A) Behavioral dissimilarity 328 

was measured as the Euclidean distance between pairs of images in the multi-arrangement task. Clustering-by-category is 329 

evidenced by the appearance of 3 x 3 exemplar ‘blocks’ exhibiting low dissimilarity along the diagonal. B) fMRI dissimilarity 330 

was measured as 1 minus the pairwise correlation between the pattern of response to images in vTC. There is some 331 

clustering-by-category present, but it is less evident than for the behavioral judgments. 332 
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For behavioral judgments, these RDMs exhibit a clear clustering of exemplars within each 333 

category for both image sets (Figure 2A). Participants judged exemplars of the same category as 334 

more similar to other exemplars within the same category than to exemplars in different categories 335 

(e.g. body parts are more similar to body parts than to mountains). In contrast, there was much less 336 

clustering of exemplars for the vTC RDMs, even within category (Figure 2B). The striking difference 337 

between behavioral and fMRI RDMs is reflected in weak, albeit significant, correlations between 338 

the two measures (Image Set 1, rho = 0.06, 95% CI = [0.02, 0.14], p = 0.012; Image Set 2, rho = 339 

0.07, CI = [0.03, 0.15], p = 0.004), suggesting limited similarity in the representation of the images 340 

at the image level in behavioral similarity judgements and vTC.  341 

To quantify the extent of category coherence in each image set, we calculated a 342 

Category Index as the difference between the average within-category distance and the average 343 

between-category distance (Figure 3A). For both behavioral judgments and vTC, this Category 344 

Index was greater than zero for both image sets (behavior Image Set 1: one-sample t-tests: t(47) 345 

= 41.6, CI = [0.40, 0.45], p < 0.0001; behavior Image Set 2: t(47) = 44.3, CI = [0.42, 0.46], p < 346 

0.0001; vTC Image Set 1: t(47) = 5.2, CI = [0.05, 0.11], p < 0.0001; vTC Image Set 2: t(47) = 6.3, 347 

CI = [0.05, 0.09], p < 0.0001), indicating the presence of significant categorical structure in both 348 

domains. However, categorization was much stronger for the behavioral judgments compared to 349 

vTC (independent samples t-test: t(94) = 29.7, CI = [0.34, 0.39], p < 0.001).  350 

Given the presence of significant categorical structure in both domains, and to directly 351 

compare Image Set 1 and Image Set 2, which contained different exemplars for each category, 352 

we averaged across exemplars (excluding the diagonal), reducing our 144 x 144 exemplar-level 353 

RDMs to 48 x 48 category-level RDMs. For both behavioral judgments and vTC there was a 354 

strong positive correlation between Image Set 1 and Image Set 2 (behavioral judgments, rho = 355 

0.64, CI = [0.55, 0.76], p < 0.0001;  vTC, rho = 0.48, CI = [0.32, 0.67], p < 0.0001), indicating that 356 

the representational structure in both domains is reproducible across image sets.  357 

Given this reproducibility of representational structure across image sets in both behavior 358 

and vTC, we averaged across sets to compare the representational space at a category-level 359 

between behavior and vTC (Figures 3B, C). Similar to the exemplar level, there was only a weak, 360 
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albeit significant, correlation between behavioral judgments and vTC (rho = 0.10, CI = [0.02, 361 

0.32], p = 0.019). Notably, this correlation was weaker than the relationship between Image Set 1 362 

and Image Set 2 within behavior and vTC separately (Fisher’ r to z transformation: behavior-vTC 363 

correlation vs. behavior-behavior Image Set correlation: z(48) = 3.1, p = 0.002 (two-tailed); 364 

behavior-vTC correlation vs. vTC-vTC Image Set correlation: z(48) = 2.0, p = 0.045 (two-tailed)). 365 

Thus, at both the exemplar and category level there was only weak agreement between the 366 

representational structure reflected in behavioral judgments and that derived from vTC, despite 367 

reliable representational structure across image sets for both behavioral judgments and vTC.  368 

 369 
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 370 

Figure 3: Category representations. a) Category indices for vTC and behavioral similarity judgements calculated as the 371 

difference between the average within-category and between-category distances, averaged across categories. Gray dots 372 

indicate indices for each category separately. Error bars indicate 95% confidence intervals estimated from a one-sample t-373 

test. * = p < 0.001. b), c) RDMs averaged by category for behavioral similarity judgements and fMRI responses in vTC. 374 

Categories are ordered alphabetically in the matrices. 375 

 376 

The difference between the representational structure in behavior and vTC may be due to 377 

greater variation in the structure across individuals. To address this question, we compared the 378 

representational structure from behavior and vTC of the individual participants (Figure 4).  This 379 
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analysis was consistent with the group-level findings: in general, across participants, correlation 380 

within an experimental measure (behavior, vTC response) was greater than zero (behavior: range 381 

rho = [0.05, 0.47]; vTC: range rho = [-0.02, 0.41]), suggesting that within a domain the structure of 382 

representation was consistent across individuals. However, between experimental measures, 383 

correlations were weaker (range rho = [-0.06, 0.18]), even for the same participant. Thus, there 384 

was not a strong relationship between a single participant’s behavioral RDM and his or her own 385 

vTC RDM. 386 

 387 

 388 

Figure 4: Comparison of individual participant RDMs. At the individual participant level correlations between RDMs for 389 

behavioral similarity judgements and fMRI responses in vTC (lower left, upper right quadrant) were weaker than those within 390 

each experimental measure (upper left and lower right quadrant). Thus, an individual’s behavioral RDM tended to be more 391 

correlated to another subject’s behavioral RDM than to their own vTC RDM. 392 

 393 

Structure of category representations: Hierarchical Clustering 394 

 395 

To investigate the nature of the category representational structure, we conducted hierarchical 396 

clustering analyses (see Materials and Methods). For behavioral similarity judgements, a group of 397 

clear and intuitively meaningful clusters emerged, including clusters that appear to reflect ‘urban 398 

landscapes’, ‘transportation’, ‘humans’, ‘household items’, ‘animals/insects’, and ‘natural scenes’ 399 
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(Figure 5A, left). The first branching point in the dendrogram separates animals/insects and natural 400 

scenes from all other categories. Thus, animal categories (e.g. farm animals, wild animals) were 401 

not grouped with people (i.e. by animacy), but rather were grouped closest to natural objects and 402 

scenes (e.g. fire, flowers, beaches). Human categories (e.g. adults, older adults, kids, sports, and 403 

body parts) were grouped most closely to people-related objects (e.g. human food, airplanes, 404 

trains, bikes) and people-related places (e.g. living rooms, kitchens). These results suggest that 405 

behaviorally, participants tended to group images into manmade (including humans) and natural 406 

categories (including animals).  407 

In contrast, however, hierarchical clustering based on data derived from vTC revealed a 408 

relationship between categories that is much harder to characterize (Figure 5b, left). In general, it 409 

appears that some categories containing stimuli with faces and/or bodies (e.g. wild animals, pets, 410 

dolls, older adults, kids, adults) were represented as similar to one another and distinct from all 411 

other categories in vTC, a division that is reflected in the first branching point of the dendrogram. 412 

However, there is not a clean grouping of images containing faces and/or bodies from all others 413 

since some categories containing faces or bodies (e.g. farm animals, masks) were not contained 414 

in the same cluster. In terms of a possible animate/inanimate distinction, it is clear that many 415 

animate categories (e.g. lizards/snakes, spiders) were clustered with inanimate categories (e.g. 416 

food, flowers, boats, etc.). 417 

 Applying the hierarchical clustering orders to the behavioral and vTC RDMs (Figure 5A, B 418 

right) highlights the differences between the behavioral and vTC RDMs. When the behavioral 419 

clustering order is applied to the vTC RDM, very little structure is present except for the grouping 420 

of the categories of kids, adults and older adults, which were relatively more similar to each other 421 

than any other categories except for farm animals, wild animals and pets. This suggests some 422 

similarities in the representation of kids, adults and older adults between behavior and vTC. When 423 

the vTC clustering order is applied to the behavioral RDM, many of the clusters in the behavioral 424 

data become fragmented, but some groupings remain. For example the grouping of older adults, 425 

kids and adults is clear as well as that of farm animals, butterflies and birds.  426 
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In sum, the hierarchical clustering reveals no evidence for a separation of animate and 427 

inanimate categories in either the behavioral or the vTC RDM. Moreover, we observe clear 428 

differences in the representational structure of the behavioral and vTC RDMs, with more discrete 429 

clustering in the behavioral compared to the fMRI domain. The one clear consistency between the 430 

behavioral and vTC RDMs is the grouping of the kids, adults and older adults categories. In the 431 

next section, we consider whether the differences between the behavioral and vTC RDMs reflect 432 

the particular ROI chosen for the fMRI data.  433 

 434 

Figure 5: Hierarchical clustering of behavioral and vTC RDMs. A) Hierarchical clustering of behavioral similarity 435 

judgments. RDMs for behavior (left) and vTC (right) arranged in the behavioral dendrogram order. B) Hierarchical clustering 436 

of vTC dissimilarity. RDMs for vTC (left) and behavioral judgments (right) arranged in the vTC dendrogram order. 437 

Dendrogarms are colored according to the top six clusters and the white lines on the RDMs show the boundaries between 438 

these clusters. 439 

 440 
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Beyond the vTC ROI 441 

 442 

To investigate whether the weak relationship observed between the behavioral and vTC RDMs 443 

reflects the a priori choice of ROI, we identified a number of other ROIs in visual cortex and 444 

conducted a series of exploratory analyses to determine if any of these regions are more closely 445 

correlated with the representational structure that emerged in the behavioral similarity judgments.  446 

First, we defined a series of new ROIs using either independent functional localizers and 447 

anatomical constraints (see Methods and Figure 6A). In particular, we examined i) a high level 448 

visual region in lateral occipitotemporal cortex (lOTC), analogous to the vTC, incorporating face-, 449 

scene-, and object-selective regions, ii) functionally-defined category-selective regions, including 450 

both face-selective (FFA and OFA) and scene-selective (PPA and OPA) regions in ventral temporal 451 

and lateral occipital cortex, respectively and iii) early visual cortex (EVC) ROIs (combining V1-V3) 452 

subdivided into a dorsal (dEVC) and ventral (vEVC) division. We compared the RDMs for each ROI 453 

across Image Set 1 and Image Set 2 and also correlated them with the RDM for behavioral 454 

judgments.  455 

The diagonal of the ROI comparison matrix (Figure 6B) indicates the reliability of the 456 

representational structure across image sets and participants. There are clear differences in the 457 

strength of the correlations for the different ROIs. In general, reliability was higher for the ventral 458 

compared to the dorsal ROIs (vTC vs. lOTC, vEVC vs. dEVC, FFA vs. OFA, PPA vs. OPA).  459 

Further, the representational structure differed across ROIs. For example, the representational 460 

structure in the EVC ROIs was very different from that observed in the higher-level ROIs. The vTC 461 

ROI, which we used in our analyses so far, varied in its relationship with the other ROIs, showing 462 

highest similarity with PPA and lOTC, and lowest with dEVC and vEVC. 463 

For behavior, we compared the RDM for each ROI with the behavioral similarity RDM. PPA 464 

showed the strongest correlation (rho = 0.22, CI = [0.08, 0.46], p < 0.0001) followed by OPA (rho 465 

= 0.16, CI = [0.07, 0.38], p < 0.0001) (Figure 6C), although these correlations were again much 466 

weaker than the correlation of the PPA RDM across image sets (rho = 0.41, CI = [0.28, 0.59], p = 467 

0.0002). The weakest relationship was observed for FFA, which actually showed a trend towards 468 
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a negative correlation (rho = -0.09, CI = [-0.13, 0.10], p = 0.06), despite showing a strong positive 469 

correlation across image sets (rho = 0.49, CI = [0.38, 0.63], p < 0.0001). 470 

 471 

Figure 6: Comparison of multiple visual cortical ROIs. A) Anatomically (left) and functionally defined (right) ROIs. 472 

Anatomical and category-selective ROIs were defined in each individual participant. Early visual cortex ROIs were defined 473 

at a group-level in an independent set of participants. B) Correlation between the RDMs for each region of interest. 474 

Correlations are computed between participants viewing Image Set 1 and those viewing Image Set 2. ROIs included high-475 

level visual cortex on the ventral (vTC) and lateral (lateral occipitotemporal cortex, lOTC) surfaces, dorsal and ventral early 476 

visual cortex (dEVC, vEVC), face-selective (OFA, FFA) and scene-selective (OPA, PPA) cortex. Correlations within a ROI 477 

were higher on the ventral compared to the lateral/dorsal cortex for all pairs of regions. C) Correlation between the average 478 

behavioral RDM and the RDM for each ROI. * Significant correlations (FDR-corrected) relative to zero (two-tailed) as 479 

assessed with a permutation test (n = 10,000). Error bars reflect the standard deviation of the bootstrap distribution of 480 

correlation values. The strongest correlation was observed in PPA and the weakest in FFA. Note that the multiple 481 

comparisons correction renders the correlation between behavior and vTC reported in our earlier analyses no longer 482 

significant.  483 
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Second, we conducted an exploratory searchlight analysis to examine any other brain 484 

areas that might show a relationship to the representational structure of the stimuli that emerged in 485 

behavioral similarity judgments. Our slice prescription included all of occipital, temporal and parietal 486 

cortex, but not frontal regions. The strongest brain-behavior correlation emerged in areas 487 

corresponding to scene-selective regions PPA and OPA (Figure 7), as well as a medial parietal 488 

region that seems to correspond to a third scene-selective region (medial place area, MPA, also 489 

referred to as retrosplenial complex, RSC (Epstein, 2008; Silson et al., 2016b).  490 

 491 

Figure 7: Behavioral RDM searchlight results. The strongest correlations with the behavioral RDM were observed in 492 

scene-selective regions OPA and PPA. There was also a strong correlation in medial parietal cortex that likely corresponds 493 

to a third scene-selective region, MPA (medial place area). Small brains show the unthresholded correlation values and 494 

large brains are cluster-corrected for multiple comparisons using Threshold-Free Cluster Enhancement (thresholded on 495 
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z = 1.94, corresponding to two-sided p < 0.05). Group-level results are overlaid on the freesurfer reconstruction of one 496 

example participant, with the corresponding functionally-defined ROIs highlighted in solid white lines. 497 

 498 

Taken together, these data indicate the strongest relationship between the representational 499 

structure of behavioral similarity judgments and fMRI responses is in scene-selective cortex, 500 

particularly PPA, followed by OPA, while the weakest relationship was observed for FFA. This could 501 

be considered surprising, given that the one clear consistency between the behavioral judgments 502 

and fMRI responses in vTC (a large ROI that encompasses both PPA and FFA) appeared to reflect 503 

a grouping of the adults, kids and older adults categories, which are image categories that FFA 504 

responds strongly to, but PPA does not. To further explore the origin of this correspondence, we 505 

next examined the representational structure in PPA and FFA and their relation with the behavioral 506 

dissimilarity in more detail.  507 

 508 

Representation of human categories in PPA and FFA 509 

 510 

Hierarchical clustering (Figure 8) indicated that both PPA and FFA contained an early branching of 511 

a cluster that included adults, kids and older adults, similar to the larger vTC ROI. However, in PPA, 512 

this cluster also included body parts, while in FFA this cluster also included sports (which typically 513 

contained people) and dolls. Further, inspection of their respective RDMs (Figure 9A) revealed 514 

some clear differences in representational structure. While for both FFA and PPA the categories of 515 

adults, kids and older adults showed strong dissimilarity with most other categories (presumably 516 

resulting in them being grouped separately in a cluster in both cases), in FFA these categories 517 

were also similar to one another, as well as to pets, wild animals and farm animals. In contrast, 518 

PPA showed no such grouping by similarity of these categories, instead exhibiting high similarity 519 

between urban scenes such as houses, cityscapes and churches, categories that were highly 520 

dissimilar from one another in FFA.  521 
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 522 

Figure 8: PPA versus FFA: hierarchical clustering. A) Hierarchical clustering of representational dissimilarity in scene-523 

selective PPA indicated the presence of a face- and body-selective cluster (first branch) containing the categories adults, 524 

kids and older adults, as well as body parts. B) Hierarchical clustering of face-selective FFA indicated a face-selective 525 

cluster (second branch) containing adults, kids and older adults, as well as sports (which typically included people) and 526 

dolls.  527 

 528 

This difference between the PPA and FFA RDMs was further highlighted when the 529 

correlation between PPA or FFA and behavioral judgments was computed for each category 530 

separately (Figure 9B). High correlations indicate that the category was similarly represented in the 531 

fMRI and behavioral RDM, while low or negative correlations indicate differences in the 532 

representational structure. For PPA, most categories showed a positive correlation, with the 533 

strongest correlations for urban landscapes such as factories, houses and cities. The lowest 534 

correlations were observed for categories containing humans or faces such as adults, kids, masks 535 

and dolls. In contrast, in FFA, most of the correlations were negative, indicating a striking difference 536 

in the representational space for most categories. The strongest positive correlations were 537 

observed for categories containing people and for animals. Collectively these analyses suggest 538 

that PPA and FFA each capture different aspects of the behavioral similarity judgements. 539 

In sum, comparisons of regions beyond the vTC ROI suggest that representational 540 

structure was most reliable for ventral regions, with clear differences in representational structure 541 

between regions. Out of all ROIs examined, scene-selective regions correlated best with behavior, 542 

and this observation was supported by the searchlight results. However, relative to the 543 

reproducibility within the fMRI domain, the magnitude of the fMRI-behavior correlations remained 544 
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relatively weak. The separation of the kids, adults and older adults categories that we observed for 545 

vTC was evident in hierarchical clusters obtained for both PPA and FFA. However, for PPA, the 546 

correlation with behavior was driven by non-face categories, while FFA only correlated weakly with 547 

behavior for those categories and exhibited limited correspondence for other categories. 548 

Collectively, these results suggest that neither ROI fully captured the representational structure 549 

reflected in the behavioral judgments. To better understand what is being represented in behavioral 550 

judgements and fMRI responses, we next considered a third domain of representation: 551 

computational modeling. 552 

 553 

Figure 9: PPA versus FFA: RDMs and individual category correlation with behavior. A) RDMs of PPA and FFA 554 

arranged in the behavioral clustering order. Superimposed white lines indicate the clusters derived from the behavioral 555 

judgments RDM (see Figure 5A). B) For each category, correlations were computed between PPA (left) or FFA (right) 556 
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dissimilarity and behavioral dissimilarity (Spearman’s rho). Individual correlations are color-coded by the clusters derived 557 

from behavioral judgments. Significant correlations are depicted as opaque bars, while non-significant correlations are 558 

transparent. Significance was assessed using a permutation test with 10,000 permutations per category (p < 0.05, two-559 

tailed). Error bars reflected the standard deviation of the bootstrap distribution of correlations (10,000 bootstraps).  560 

 561 

DNN comparisons with fMRI responses and behavioral judgments 562 

 563 

In light of previous reports showing a correspondence between DNNs and both behavioral 564 

judgments and brain activity measurements in humans and non-human primates, we next 565 

examined to what extent DNN representations were able to explain the representational structure 566 

observed in our current data. In particular, given the discrepancy between our fMRI and behavioral 567 

measurements, we were interested to determine which of the two domains corresponded more 568 

strongly with the DNN representations.  569 

We created RDMs based on DNN representations for individual layers of an 8-layer, off-570 

the-shelf pre-trained DNN (see Materials and Methods), separately for Image Set 1 and Image Set 571 

2. Dissimilarities were calculated as the correlation distances between the vectorized responses 572 

across all units within a given layer. Similar to the behavioral and fMRI measurements described 573 

above, representational structure within each DNN layer (Figure 10A) was reproducible across 574 

image sets, increasing gradually from lower to higher layers (Image Set 1 versus Image Set 2, all 575 

rho = [0.21, 0.62], all p < 0.0001). For comparisons with representational structure in the behavioral 576 

judgments and fMRI, responses we averaged the RDMs across the two image sets separately for 577 

each layer. We then compared the representational structure of each layer with the RDMs for 578 

behavioral judgments and a number of fMRI ROIs (Figure 10B).  579 

For behavior, we observed a consistent correlation with the DNN that gradually increased 580 

with higher layers, culminating in the highest correlation for layer 8 (rho = 0.56, CI = [0.46, 0.69], p 581 

< 0.0001). In contrast, the highest correlation with PPA was found for layer 5 (rho = 0.55, CI = [0.44, 582 

0.68], p < 0.0001); while its correlation also gradually increased from layer 1 to 5, higher layers did 583 

not differ significantly from layer 5. A similar pattern of results was observed for the larger vTC ROI 584 

(highest correlation with layer 5: rho = 0.44, CI = [0.32, 0.60], p < 0.0001). In contrast, none of the 585 
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DNN layers exhibited a significant correlation with FFA, whose correlations instead appeared to 586 

trend negatively (all rho = [-0.18, -0.01], all p > 0.05), similar to the relationship between FFA and 587 

behavior. 588 

These results demonstrate that higher-level DNN representations are reproducible across 589 

image sets and, surprisingly, are correlated with both the behavioral and the brain measurements 590 

in PPA and vTC, with relatively high maximal correlations for both domains (around rho = 0.55). 591 

However, behavioral and fMRI representational similarity differed in terms of which layer correlated 592 

more strongly. For behavioral judgments, higher layers invariably resulted in increasing 593 

correspondences with behavior, all the way to the top-most layer that is closest to the output (layer 594 

8). In contrast, correlations with fMRI measurements in high-level cortex regions increased up to 595 

mid-level layer 5, only to plateau or even decrease again for subsequent layers.  596 

This result suggests that additional computations carried out in the fully-connected layers 597 

(6-8) are important to explain human behavioral judgments, but not fMRI responses, which map 598 

more strongly onto representations contained in the mid-to-high-level convolutional layers.  599 
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 600 

Figure 10: DNN representations correlate with brain and behavior. A) RDMs (correlation distances) for each of the 8 601 

layers of the DNN, ordered based on the hierarchical clustering of the behavioral RDM. Superimposed white lines indicate 602 

the cluster derived from the behavioral judgments RDM (see Figure 5A). The between set correlation values above each 603 
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RDM (rho [95% CI]) increase with layer number, reflecting increased reproducibility of representational structure for higher 604 

DNN layers. B) Correlation of each individual layers with behavior, vTC, PPA and FFA. * significant correlations (FDR-605 

corrected) relative to zero (two-tailed) as assessed with a randomization test (n = 10.000). Horizontal lines indicate 606 

significant differences (FDR-corrected) between correlations (two-tailed) as assessed with bootstrapping (n = 10.000). Error 607 

bars reflect the standard deviation of the mean correlation, obtained via a bootstrapping procedure (see Methods). 608 

 609 

Discussion 610 

 611 

We compared the representational similarity of behavioral judgments with those derived from fMRI 612 

measurements of visual cortex for a set of naturalistic images drawn from a range of object and 613 

scene categories. While the representational structure for each type of measurement was 614 

reproducible across image sets and participants, there was surprisingly limited agreement between 615 

the behavioral and fMRI results. While the behavioral data revealed a broad distinction between 616 

manmade (including humans) and natural (including animals) content, with clear sub-groupings of 617 

categories sharing conceptual properties (e.g., transportation: roads, signs, airplanes, bikes), the 618 

fMRI data largely reflected a division between images containing faces and bodies (e.g. kids, 619 

adults, older adults, body parts) and other types of categories, with sub-groupings that were very 620 

heterogeneous. This discrepancy was not due to the specific cortical regions chosen, and even the 621 

region showing the strongest correlation with behavior (scene-selective PPA) exhibited quite 622 

distinct representational structure from that observed for behavioral judgments. An off-the-shelf 623 

DNN appeared to explain both the behavioral and fMRI data, yet the behavior and fMRI data 624 

showed maximal correspondences with different layers, with fMRI responses mapping more 625 

strongly onto middle levels of representation compared to behavior. Collectively, these results 626 

demonstrate that there is not a simple mapping between multi-voxel responses in visual cortex and 627 

behavioral similarity judgments. Below, we discuss three potential explanations for this divergence.  628 

 629 

1) Visual versus conceptual information 630 

 631 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/316554doi: bioRxiv preprint 

https://doi.org/10.1101/316554


 31 

One possibility is that while the fMRI data reflect the visual properties of the stimuli, behavioral 632 

similarity judgments reflect conceptual structure that goes beyond those visual properties. Such a 633 

view is consistent with prior studies demonstrating that low-level visual properties contribute to 634 

responses in high-level regions of visual cortex (Watson et al., 2017; Groen et al., 2017). Our 635 

comparison with the DNN representations seem to support this suggestion, with fMRI most related 636 

to layer 5 and behavior corresponding most strongly to layer 8, consistent with prior studies 637 

reporting a peak correlation between scene-selective cortex and layer 5 in similar networks (Bonner 638 

and Epstein, 2017; Groen et al., 2018; but see Khaligh-Razavi and Kriegeskorte, 2014). The type 639 

of DNN layer may be an important factor as layers 1-5 are convolutional and contain ‘features’ that 640 

can be visualized (Zeiler and Fergus, 2014) and are still spatially localized in the image. In contrast, 641 

layers 6-8 perform a mapping of those features onto the class labels used in training. Thus the later 642 

DNN layers contain a potentially more fine-grained categorical representation that better matches 643 

behavior of human observers, while the fMRI responses correspond to an earlier stage of 644 

processing where visual features relevant for categorization are represented at a coarser level.  645 

Others have suggested, however, that hierarchical visual models (e.g. HMax, DNN) do not 646 

capture semantic or conceptual information and that an additional level of representation is required 647 

(Clarke and Tyler, 2014; Clarke et al., 2015; Devereux et al., 2018). However, this view tends to 648 

discount the covariance between visual features and conceptual properties as well as co-649 

occurrence statistics (e.g. a banana and an orange are much more likely to occur in an image 650 

together than a banana and a motorcycle). Indeed, the correspondence we observed between the 651 

higher levels of the DNN and behavioral similarity judgments, which appear to reflect fine-grained 652 

groupings of conceptually-related stimuli, suggests that a significant amount of conceptual 653 

information can be captured by a feedforward visual model. 654 

While we focused on visual cortex, it has been reported that conceptual representations 655 

are reflected beyond visual cortex in perirhinal cortex (Devereux et al., 2018; Martin et al., 2018). 656 

However, our searchlight analysis demonstrated the strongest correlations between fMRI and 657 

behavioral similarity measures in scene-selective regions and did not highlight perirhinal cortex. 658 
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Our slices included occipital, temporal and parietal cortices but not prefrontal cortex, so it is possible 659 

that a stronger correspondence between the fMRI and behavior could emerge there.    660 

 661 

2) Organization of representations in the cortex 662 

 663 

In this study we compared behavioral similarity judgments with representations in regionally-664 

localized brain regions using multi-voxel patterns. In this context, there are two important factors to 665 

consider, namely i) the scale and ii) the distribution of information representation in the cortex.  666 

First, multi-voxel patterns may primarily reflect the large-scale topography of cortex rather 667 

than more fine-grained representations (Freeman et al., 2011). In high-level visual cortex, there are 668 

large-scale differences across the vTC reflecting the categorical distinction between faces and 669 

scenes that overlap with an eccentricity gradient (Hasson et al., 2002) and variation according to 670 

the real-world size of objects (Konkle and Oliva, 2012). These considerations are consistent with 671 

the general grouping we observed in the fMRI data that seemed to reflect a separation of images 672 

with faces and bodies from all other images. An alternative approach to using multi-voxel patterns 673 

is to model feature-selectivity at the individual voxel level (Naselaris et al., 2011). While this 674 

approach might be more sensitive to more fine-grained selectivity, it is striking that studies using 675 

this approach have primarily revealed smooth gradients across visual cortex that largely seem to 676 

reflect the large-scale category-selective organization (Huth et al., 2012; Wen et al., 2018) with 677 

evidence for a limited number of functional sub-domains (Çukur et al., 2013, 2016). 678 

 Second, the behavioral similarity judgments revealed apparent conceptual groupings that 679 

likely reflect multiple dimensions on which the images could be evaluated. A strong correspondence 680 

between a localized cortical region and the behavioral similarity judgments would suggest that all 681 

those dimensions are represented in a single region (i.e. a ‘semantic hub’; Patterson et al., 2007). 682 

However, we found no such region in our searchlight analysis, suggesting that if it does exist, it 683 

likely lies outside of visual cortex. Alternatively, conceptual knowledge may be distributed across 684 

multiple regions with each representing specific object properties (Martin, 2016) and there is some 685 

fMRI evidence for distributed semantic representations (Huth et al., 2012). However, we also failed 686 
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to observe a good correspondence with behavior in our vTC ROI, which include a large proportion 687 

of high-level visual cortex. While it is possible that some differential weighting of the response 688 

across this region may have led to a better fit with the behavioral response, this possibility only 689 

further highlights the difficulty in mapping between the response of high-level visual cortex and 690 

behavior. 691 

  692 

3) Task differences 693 

 694 

The behavioral task required participants to compare simultaneously presented stimuli and make 695 

explicit similarity judgments, but an unrelated fixation cross task was performed during fMRI. It is 696 

thus possible that during fMRI participants processed the images differently, resulting in a different 697 

representational space (Mur et al., 2013) and a more explicit and involved fMRI task might have 698 

yielded more similar representations across tasks. However, while task has been reported to have 699 

a strong impact on behavioral representations (Schyns and Oliva, 1999; Harel and Bentin, 2009; 700 

Bracci et al., 2017a), fMRI studies have found limited effects of task on representations in vTC 701 

(Harel et al., 2014; Bracci et al., 2017a; Groen et al., 2018; Hebart et al., 2018). Instead, task effects 702 

appear to be much more prevalent in parietal and frontal regions (Erez and Duncan, 2015; Bracci 703 

et al., 2017a; Vaziri-Pashkam and Xu, 2017). In fact, the relative inflexibility of representations in 704 

vTC compared to behavior further highlights the difficulty in directly mapping between them. 705 

 706 

Representation of animacy 707 

 708 

One striking aspect of our results is that contrary to previous work (Kriegeskorte et al., 2008; 709 

Naselaris et al., 2012; Mur et al., 2013; Sha et al., 2015)  we did not observe a clear separation of 710 

animate vs. inanimate categories in either behavioral or fMRI representational similarities. Instead, 711 

in behavior, images were initially grouped according to a broad division between man-made 712 

(including humans) and natural categories (including animals). With fMRI, we observed a 713 

separation of face and body categories from all others. This difference with the prior literature could 714 
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reflect a broader sampling of categories in our study or the use of backgrounds rather than 715 

segmented objects presented in isolation (Kriegeskorte et al., 2008; Sha et al., 2015). However, 716 

evidence for an animate distinction has been reported even with a large sampling of natural scenes 717 

(Naselaris et al., 2012). Alternatively, it is also possible that what has been termed animacy in 718 

previous studies primarily reflects the presence of face or body features and not animacy per se. 719 

Indeed, a recent study found that animate objects (e.g. cow) and inanimate objects that looked like 720 

an aimate object (e.g. cow-shaped mug) are represented similary in vTC (Bracci et al., 2017b). 721 

 722 

Conclusion 723 

 724 

By comparing behavioral similarity judgments with fMRI responses in visual cortex across a range 725 

of object and scene categories, we find that while there is a correlation between fMRI and behavior, 726 

particularly in scene-selective areas, the structure of representations is strikingly different. Further, 727 

while both the behavior and the fMRI data correlate well with DNN features, the modalities best 728 

matched different levels of representation. Collectively, these results suggest that there is not a 729 

simple mapping between localized fMRI responses and behavioral similarity judgments with each 730 

domain capturing different visual properties of the images.  731 

 732 

  733 
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