- 1 Epidemiology, Microbiology and Therapeutic Consequences of Chronic Osteomyelitis in
- 2 Northern China: A Retrospective Analysis of 255 Patients
- 3
- 4 Xianzhi Ma, ^aShengshou Han, ^aJun Ma, ^aXiaotao Chen, ^aWenbin Bai, ^aWenqi Yan, ^aKai
- 5 Wang^a#
- ⁶ ^aTrauma Orthopedic Department, Qinghai Provincial People's Hospital, Xining, Qinghai,
- 7 China
- 8
- 9 Running Head: Chronic Osteomyelitis in Northern China.
- 10 #Address correspondence to Kai Wang, wangsci123@sina.com
- 11 X.M. and S.H. contributed equally to this work.

1	Epidemiology, microbiology and therapeutic consequences of chronic osteomyelitis in
2	northern China: A retrospective analysis of 255 Patients
3	Xianzhi Ma ¹ Shengshou Han ¹ Jun Ma ² Xiaotao Chen ³ Wenbin Bai ³ Wenqi
4	Yan ³ Kai Wang ² *
5	Abstract
6	The study aimed to explore the epidemiology and clinical characteristics of chronic
7	osteomyelitis observed in a northern China hospital. Clinical data of 255 patients with
8	chronic osteomyelitis from January 2007 to January 2014 were collected and analyzed,
9	including general information, disease data, treatment and follow-up data. Chronic
10	osteomyelitis is more common in males and in the age group from 41-50 years of age.
11	Common infection sites are the femur, tibiofibular, and hip joint. More g+ than g- bacterial
12	infections were observed, with S. aureus the most commonly observed pathogenic organism.
13	The positive detection rate from debridement bacterial culture is 75.6%. The detection rate
14	when five samples are sent for bacterial culture is 90.6%, with pathogenic bacteria identified
15	in 82.8% of cases. The two-stage debridement method (87.0%) has higher first curative rate
16	than the one-stage debridement method (71.2%). To improve detection rate using bacterial
17	culture, at least five samples are recommended. Treatment of chronic osteomyelitis with
18	two-stage debridement, plus antibiotic-loaded polymethylmethacrylate (PMMA) beads
19	provided good clinical results in this study and is therefore recommended.

20

21	Chronic osteomyelitis is a common clinical disease and a challenging disorder, characterized
22	by its long disease course, difficult early diagnosis and high disability rate. The clinical
23	characteristics of chronic osteomyelitis are varied, and may be affected by geography, time,
24	and pathogenetic differences. Geographically, developing countries have a higher incidence
25	of the disease than developed ones, likely caused by differences in economic foundation,
26	lifestyle and healthcare level [1-2]. Over time, a shift has occurred from predominately
27	hematogenous osteomyelitis several decades ago, to a predominance of chronic osteomyelitis
28	that results from trauma, implant infection, and diabetes [3-6].
29	In recent years, the number of patients with open wounds and multiple fractures from road
30	and industrial accidents has sharply increased in China, as the Chinese economy undergoes
31	rapid development. Multiple injuries are difficult to treat and frequently lead to infection;
32	thus, treatment exerts great pressures on patients, both economically and psychologically. It
33	also poses great challenges for orthopedists [7]. Wang [8] and Jiang et al. [9] provide recent
34	data on the epidemiology of chronic osteomyelitis in southwest and southern China, which
35	can be used by local government policy-makers and by clinicians. However, China is a
36	country of great diversity in its population, climate and culture. Currently, data and relevant
37	research are lacking for northern China on the epidemiology of chronic osteomyelitis. To
38	address this, we conduct an epidemiological statistical analysis on 255 patients at a
39	prominent hospital and explore the clinical characteristics of chronic osteomyelitis in

- 40 northern China.
- 41 Methods
- 42 A retrospective analysis was completed on 255 cases of patients with chronic osteomyelitis
- 43 seen in the trauma orthopedic department at our hospital from January 2007 to January 2014.
- 44 Patient inclusion criteria were:
- 45 (1) osteomyelitis diagnosis;
- 46 (2) local swelling and bone pain on examination;
- 47 (3) draining fistula present;
- 48 (4) imaging procedures completed;
- 49 (5) microbiological and histopathological examinations completed;
- 50 (6) biochemical examinations completed.
- 51 Exclusion criteria were:
- 52 (1) acute osteomyelitis (less than 2 weeks);
- 53 (2) no surgical treatment done;
- 54 (3) osteomyelitis site in the spine, pelvis or skull;
- 55 (4) complete data and examinations not available;
- 56 (5) patient had diabetic foot infection and was not treated in our department.
- 57 All data were obtained from the case management system in the medical record room of the
- 58 hospital prior to this research.

59 The following data were collected:

- 60 1. Demographic information: age and gender;
- 61 2. Disease data: infection site, Cierny-Mader classification, laboratory examination results
- 62 (including erythrocyte sedimentation rate (ESR), C-Reactive protein (CRP) and white blood
- 63 cell (WBC)), and bacterial culture results (respectively from debridement and sinus tract);
- 64 3. Treatment method: two-stage debridement and one-stage debridement;
- 4. Follow-up data were obtained by searching medical records and by telephone. All patients
- 66 were successfully followed-up 9-93 months (46.2 month in average) after the operation.

67 Bacterial Culture and Identifying Pathogenic Bacteria

- 68 Different samples were collected during debridement and in sinus tract and sent for bacterial
- 69 culture. The results are essential to identify pathogenic bacterial.
- 70 If the same bacteria type was detected in at least two different samples, it was identified as a
- 71 pathogenic bacterium. Based on this principle, we examined the number of samples that
- tested positive with the number of samples analyzed, and the differences between them in
- 73 identifying the pathogenic bacteria.
- 74 Bacterial cultures from the sinus tract samples can be an additional aid when examining
- 75 chronic osteomyelitis and its result can serve as a reference for diagnosis and treatment.
- 76 Samples from 58 patients with sinus tracts were sent for bacterial culture.
- 77 The coincidence rate between sinus tract positive result and identified pathogenic bacterial

78 were examined, to assess its ability in identifying pathogenic bacteria.

79 Treatment Methods

- 80 Two treatments were used in the study.
- 81 *Two-stage Debridement*: Two-stage debridement + Antibiotic-loaded
- 82 polymethylmethacrylate (PMMA) spacers ± External fixation
- 83 Step 1: Debridement and implantation of antibiotic-loaded PMMA. At the first stage of
- 84 debridement, the antibiotics vancomycin and imipenem are used locally.
- 85 Step 2: During the one-week clinical observation, X-rays and CT scans are repeated, along
- 86 with laboratory tests of CRP and ESR levels and reexamined while awaiting pathology
- 87 results from the debridement bacterial culture. Patients received intravenous antibiotics
- 88 during this time.
- 89 Step 3: Debridement was performed again after one week. The original
- 90 antibiotic-impregnated cement beads were removed. Based on the pathogenic bacteria
- 91 detected and its sensitivity test, appropriate antibiotic PMMA beads were implanted.
- 92 *One-stage debridement:* Debridement + Antibiotic-loaded PMMA spacers ± external fixation
- 93 This treatment included only step 1 of the two-stage treatment above.
- 94 In the current study, we compared and analyzed their clinical effects and prognosis of each

95 treatment.

96 Follow-up: In a follow-up session, clinical cure was assessed based on the following

97	information: whether clinical symptoms of infection had disappeared, including local redness,
98	swelling, heat, pain, abscess, and sinus tract; whether laboratory examination results no
99	longer had indicators of infection, including WBC count, ESR, and CRP; and, whether
100	progressive periosteum thickening or osteolysis was no longer present on a recent X-ray
101	image.
102	Ethics approval and informed consent: The current study was approved by the ethical
103	medical committee of the hospital. All participants gave informed written consent.
104	Statistics Analysis
105	Statistical analysis was performed with SPSS software (Version 21.0; SPSS Inc., Chicago,
106	IL). Frequency data were compared by Pearson's chi-square test. For normally distributed
107	data, independent groups were compared by a Student t-test or one-way analysis of variance
108	(ANOVA). Where data were not normally distributed, the Mann-Whitney U test or
109	Kruskal–Wallis H test was adopted. Results were considered significant at $p < 0.05$.
110	Results
111	Gender Ratio and Age at First Diagnosis
112	The present study included 202 males (79.2%) and 53 females (20.3%), an approximate
113	gender ratio of 4:1.
114	The median age at first diagnosis was 45.5 years. Approximately 80% of affected patients

115 were between 21 and 60 years of age (206 cases). The top three age groups represented were

116 41 to 50 years (29%), 21 to 30 years (20.8%), and 31 to 40 years (16.5%).

117 Infection Site

- 118 All cases included in the current study were single-site infections. Among them, there were
- 119 77 cases of femur infections (30.2%), 66 tibiofibular infections (25.9%), 39 hip joint
- 120 infections (15.3%), 16 ankle joint infections (6.3%), 14 humerus infections (5.5%), 14 ulna
- 121 and radius infections (5.5%), 10 patella infections (3.9%), eight calcaneus infections (3.1%),
- 122 five elbow infections (2.0%), four pelvis infections (1.6%), and two astragalus infections
- 123 (0.8%).

124 Classifications

- 125 All 255 cases met the Cierny-Mader classification criteria for chronic osteomyelitis (Table 1).
- 126 Type IIA (23.1%), type IIIA (20.4%), and type IVA (18.0%), are the most frequent
- 127 classifications in the study.
- 128 Table S1. Cierny-Mader classification results.

129 Laboratory Test

- 130 The white blood cell count (WBC), ESR, and CRP of 255 patients before operation are
- 131 presented in Table 2 below.
- 132 Table S2. Laboratory tests of WBC, ESR and CRP.
- 133 Comprehensive Statistics
- All data on WBC, ESR, and CRP were analyzed. The 255 patients had a total of 323 hospital
- admissions and WBC, ESR, and CRP were tested 304 times.

7

- 136 ESR and CRP are important indicators of chronic osteomyelitis in laboratory examination. If
- 137 both ESR and CRP are abnormal, it is highly indicative of infection. If only CRP is increased,
- 138 this may indicate infection. According to the results above, ESR and CRP were abnormal in
- 139 71.1% patients. Only 17.4% patients had an abnormal CRP result (Table 3).
- 140 Table S3. Comprehensive statistics of WBC, ESR and CRP.

141 Pathogenic Microorganism

- 142 Bacterial culture results were classified into g+ bacteria, g- bacteria, or fungus.
- 143 245 samples were sent to bacterial culture. According to the result, g+ bacteria (160 times,
- 144 65.3%) were overall more common than g- bacteria (83 times, 33.9%). Fungus only
- 145 appeared two times (0.8) in the result.
- 146 In total, 41 types of bacteria were detected. The 13 most frequently detected bacteria are
- 147 given in Table 4.
- 148 **Table S4. Bacterial distribution.**
- 149 Another 28 bacteria were detected three times or less, including Klebsiella oxytoca (3 times
- 150 or 1.22%), Citrobacter braakii (3 times or 1.22%), Staphylococcus sciuri (2 times or 0.82%),
- 151 S. kloosii (2 times or 0.82%), and Proteus mirabilis (2 times or 0.82%). The following
- 152 bacteria were detected only once (0.41%): A. calcoaceticus-A. baumannii complex,
- 153 Achromobacter spp., Bacillus sp., Burkholderia cepacia, Candida parapsilosis,
- 154 Corynebacterium minutissimum, Corynebacterium sp., Corynebacterium striatum,
- 155 Dermatococcus sp., Escherichia vulneris, Mora staphylococcus, Moraxella atlantae,

- 156 Moraxella fulton, Mucor sp., Proteus sp., Pseudomonas putida, Serratia marcescens,
- 157 Streptococcus agalactiae, Staphylococcus caprae, Staphylococcus saprophyticus,
- 158 Staphylococcus warneri, Viridans streptococci and Weeksella virosa.
- 159 Different numbers of samples were sent for detection of bacteria using bacterial cultures.
- 160 Correlations between the number of samples sent and the detection rate were examined
- 161 through pairwise comparisons (Table 5). Five samples sent to bacterial culture achieved
- 162 highest detection rate.
- 163 Table S5. Detection rate when using different numbers of samples, and the correlations
- 164 between detection rate and number of samples.
- 165 Identifying Pathogenic Bacteria
- 166 According to the results, it is statistically significant between 2 samples and 4 samples, 2
- 167 samples and 5 samples, 3 samples and 5 samples. Five samples sent for detection has the
- 168 greatest likelihood of identifying pathogenic bacterial (Table 6).
- 169 Table S6. Ability to identify pathogenic bacteria for different numbers of sample, and
- 170 the correlation between number of samples and identification success.
- 171 Sinus Tract
- 172 Samples collected from 58 patients with sinus tracts were sent for bacterial culture (Table 7).
- 173 Table S7. The distribution of bacteria found in the sinus tract.
- 174 We compared the result of sinus tract bacterial culture with the pathogenic bacteria. Only
- 175 less than half of samples (42.1%) from sinus tract were in consistent with the pathogenic
- 176 bacteria.

177 Table S8. The coincidence rate between the result from sinus tract bacterial culture and

178 pathogenic bacteria.

179 Two-Stage Debridement and One-Stage Debridement

- 180 Two-stage debridement treatment has higher union rate (87.0%) than the one-stage
- 181 debridement (71.4%) and the result was statistically significant (p<0.05). In addition,
- 182 one-stage debridement has more recurrence than two-stage debridement (p < 0.05).
- **Table S9. Clinical effects and prognosis of the two different treatments.**
- 184 **Discussion**
- 185 Analysis of General Data
- 186 Gender Ratio

187 Among patients with chronic osteomyelitis, the male:female ratio was 4:1. This is in

- accordance with Kremers's report [10], which argued that increasing road and industrial
- accidents contributed to the greater number of male patients, since males are more likely to

190 engage in heavy physical labor or high risk activities.

191 Age Distribution

- 192 The current study showed chronic osteomyelitis was highest in the age group of 41 to 50
- 193 year-olds (29.0%), probably because road accidents frequently occur among those aged
- 194 20-50 years [11]. Traffic trauma is a high energy trauma that often leads to an open wound, a
- 195 potential pathogenic factor for traumatic osteomyelitis. In addition, this age group has a high
- 196 incidence of diabetes, which increases the frequency of diabetes-related osteomyelitis.

197	Kremers [10] reports that American patients with diabetes-related osteomyelitis have
198	increased from 2.3/100,000 in the late 1970s, to 10.5/100,000 in the 1990s, although
199	currently its incidence appears to be stable at approximately 7.6/100,000. According to
200	Cierny et al. [12], immunity of an organism is a significant factor in the occurrence and
201	transformation of osteomyelitis. Different age groups have different resistance to infection,
202	and older individuals may be more likely to have osteomyelitis because they have weaker
203	immune systems.
204	Analysis of Disease Data
205	Infection Site
206	The top three infection sites of chronic osteomyelitis - the femur (30.2%), tibiofibular
207	(25.9%) and hip joint (15.3%) – account for 71.4% of all infections. This is consistent with
208	other clinical reports [13,14], but differs from the clinical reports of south China. Wang et al.
209	[8] reports that in southwest China, the top two infection sites are tibia (57.5%) and femur
210	(26.8%). Jiang et al. [9] reported a similar result for southern China, finding the most
211	frequent single infection site was the tibia (39.00%), followed by the femur (24.46%), and
212	calcaneus (11.46%). One possible reason for this difference between north and south China
213	could be the dense population found in southern China, leading to more frequent road and
214	industrial accidents. As noted above, such accidents are more likely to create trauma with an
215	open wound, and the thin soft tissue surrounding the tibia and lack of blood supply can

010			C 11 1 1	1	1.4. 1.1
216	increase the likelihood of	wound intection	tollowed by	J chronic osteomy	velific Lhus fihia
210	merease the incention of		10110 wear		yonnis, inus, nona

- 217 osteomyelitis has the highest incidence in the north China.
- 218 Cierny-Mader Classification
- 219 The top three classifications in the current study are type IIA (23.1%), type IIIA (20.4%), and
- type IVA (18.0%), accounting for 61.5% of cases in total. In the domestic literature, the
- 221 Cierny-Mader classification information given is often insufficient, with only anatomical
- type staging provided and no classification of the physiological type of the host [15]. In
- 223 foreign literature using the Cierny-Mader classification, different literature focuses on
- different case groups, and the results also differ from each other. Hence, there is no uniform

consensus on the statistical distribution of *Cierny-Mader* types [16-18].

- 226 Cierny et al. [12] discussed osteomyelitis classification in detail. They held the view that
- 227 osteomyelitis classifications are not fixed for a particular case, but rather that osteomyelitis
- 228 may transform from one classification to another in the same patient, as a process of natural
- 229 progression or treatment. Thus, different types of osteomyelitis can be thought of as different
- pathological/physiological stages of disease [12]. The current study suggests that most
- 231 chronic osteomyelitis falls into types II, III, and IV. For the physiological class, host A is
- 232 more common than host B, and host C type is seen only rarely.

233 Bacterial Culture

The results of debridement bacterial cultures indicate that g+ bacteria (65.3%) was more

common than g- bacteria (33.9%). The five most commonly observed bacteria were

- 236 Staphylococcus aureus (35.51%), S. epidermidis (14.29%), Pseudomonas aeruginosa (9.8%),
- 237 *Enterobacter cloacae* (5.31%), and *Escherichia coli* (4.08%); these accounted for 69.0% of
- the infections observed. The two g+ *Staphylococcus* bacteria made up nearly 50% of
- 239 infections. The remaining three of the most five common bacteria were all g- bacteria. This is
- similar to most results found in clinical reports in China and abroad [8, 9, 19, 20, 21].
- 241 Detection Rate for Different Numbers of Samples
- 242 Identifying the pathogenic bacteria involved is an important step in treating chronic
- 243 osteomyelitis. Based on characteristics of the pathogenic bacteria, effective antibiotics
- specific to the bacteria found should be used in clinical practice; this is a precondition to
- 245 guaranteeing a curative effect. Sending more samples at once was an effective method to
- improve the detection rate of pathogenic bacteria. Lew et al. [22] suggested that five samples
- or more should be sent when treating chronic osteomyelitis, and that this could significantly
- improve the microbial detection rate. Our study similarly showed that the more sample sent
- for bacterial culture, the higher the detection rate. Sending only one sample had the lowest
- detection rate (66.7%), while five samples gave the highest rate (90.6%). Therefore, five or
- 251 more samples should be sent from debridement to improve detection rates.
- 252 Identifying Pathogenic Bacteria
- 253 Typically, pathogenic bacteria and contamination bacteria are both observed in the results

254	from bacterial cultures. If the same bacteria is detected twice or more in the culture results, it
255	is presumed to be the pathogenic bacteria [23]. Using this principle, contaminant bacteria can
256	be distinguished from pathogenic bacteria in the results. If all cultures give negative results,
257	or if only one or differing results are observed among samples, then pathogenic bacteria
258	cannot be determined. The current study indicates that the more samples that are sent for
259	examination, the higher the probability of identifying the pathogenic bacteria. The
260	probability of identifying the pathogenic bacteria was significantly improved (82.5%) if five
261	or more samples were sent for bacterial culture; this is higher than the rates reported from
262	Wang (71.5%) and Kremers et al. (75%).
263	Bacterial Culture of Sinus Tract Sample
264	In the current study, results from sinus tract bacterial culture were consistent with pathogenic
265	bacteria in only 42.1% of cases. This might be caused by contamination with nonpathogenic
266	bacteria during the sampling process, or other naturally-occurring random factors [8, 24].
267	Clinicians may also be collecting these samples in a non-standard manner. Regardless, the
268	results from sinus tract bacterial culture can only be used as a reference for finding
269	antibiotics to which bacteria are susceptible, not as the basis of the diagnosis and treatment
270	decision.
271	Clinical Treatments

272 In treating chronic osteomyelitis, the patient's overall condition and local lesion must be

273	considered to accurately assess the patient's state before making careful decisions regarding
274	treatment. The published literature includes a number of clinical treatments for chronic
275	osteomyelitis [25-28], such as radical debridement, bone transport, acute limb shortening,
276	two-staged reconstruction, local antibiotic therapy (antibiotic-impregnated beads, spacers,
277	cements, intramedullary nails) and soft tissue grafting (free flap, myocutaneous flap, skin
278	graft). Nonetheless, a common standard of diagnosis and treatment has not been established.
279	Two basic consensuses are present regarding the treatment of chronic osteomyelitis. The first
280	is that debridement is key to all treatments. The second is that guaranteeing a curative effect
281	requires identifying the pathogenic bacteria involved and the use of appropriate antibiotics.
282	The site of bone defect should be treated with local antibiotic-loaded PMMA spacers.
283	External fixation or internal fixation can stabilize fracture ends.
284	Cierny [29] and Forsberg et al. [30] repeatedly emphasize radical debridement as the
285	foundation for treating chronic osteomyelitis. A thorough scrape is needed at the dead space,
286	necrotic tissue and sinus tract, until fresh blood is exuded, indicating healthy tissue, and
287	plenty of irrigation must be done. Results of the current study suggest a good curative effect
288	(87%) is achieved by repeated radical debridement, and implantation of appropriate
289	antibiotic bone cement beads in the local lesion, with external or internal fixation. The
290	reasons are as follow. 1) In the two-stage debridement method, debridement is completed in
291	a more thorough manner. Within one week, debridement is performed twice. The second

292	debridement removes all possible contaminated tissues based on the first debridement, thus
293	reducing the possibility of recurrence [22,31-32]. 2) Sending five samples for bacterial
294	culture in the first debridement improves the detection rate of pathogenic bacterial. Further,
295	an appropriate (i.e., one the bacteria was susceptible to) antibiotic release-carrier can be
296	identified; it is more successful to use antibiotics based on the results of the bacterial culture
297	and susceptibility testing. This also ensures rare bacteria are quickly recognized, and reduces
298	the side effects of antibiotics since targeted antibiotics are used [33]. 3) An appropriate
299	antibiotic release-carrier implanted after one week maintains the effective blood
300	concentration of the antibiotic in local tissue longer. Previous research has shown that, after
301	the blood antibiotic concentration reached its peak, it would gradually decline, so that after a
302	few weeks, local antibiotic blood concentration was less than the effective blood
303	concentration [34, 35]. Therefore, implanting a second, targeted antibiotic release carrier
304	after one week could extend the duration of the local blood concentration, thus better
305	inhibiting the growth of pathogenic bacteria. The method of repeating radical debridement
306	and local antibiotic-loaded PMMA spacers \pm external fixation gave good clinical results and
307	can be recommended. One drawback of this approach is that it increases the number of
308	operations required and prolongs hospitalization, thus increasing expenses.
309	The present study had several limitations. Since it was conducted in a single medical center
310	in north China, it may not characterize chronic osteomyelitis in the whole area. Therefore,

311	multicenter studies should be performed to obtain more detailed data. Second, this study
312	lacked detailed statistical data on oral antibiotic therapy because most patients received oral
313	antibiotics out of hospital.
314	Conclusions
315	In summary, our study showed that chronic osteomyelitis is more common in males and in
316	the age group from 41-50 years of age. Common infection sites are the femur, tibiofibular,
317	and hip joint. Using Cierny-Mader classification, type IIA, IIIA and IVA infections were
318	most common. More g+ than g- bacterial infections were observed, with S. aureus the most
319	commonly observed pathogenic organism.
320	To improve pathogen detection rate, five or more samples should be sent for bacterial culture.
321	Bacterial culture of the sinus tract performed poorly in identifying pathogenic bacteria, so
322	choosing the appropriate antibiotic based on the result of sinus tract bacteria is not advised.
323	Repeated radical debridement and identification of pathogenic bacteria are keys to successful
324	treatment of chronic osteomyelitis. The current study suggests a treatment of two stage
325	debridement + antibiotic-loaded PMMA spacers \pm external fixation is the most effective.
326	

327 Acknowledgment

- 328 This research received no specific grant from any funding agency in the public, commercial,
- 329 or not-for-profit sectors. There is no conflict of interests in the current research.

330 References

- 331 [1] Wirbel, R., and K. Hermans. 2014. Surgical treatment of chronic osteomyelitis in children
- admitted from developing countries. African Journal of Paediatric Surgery 11:297.
- 333 [2] Geurts, J., A. Hohnen, T. Vranken, and P. Moh. 2017. Treatment strategies for chronic
- 334 osteomyelitis in low- and middle-income countries: systematic review. Tropical Medicine &
- 335 International Health 22:1054-1062.
- 336 [3] Islam, G., J. Tomlinson, T. Darton, and R. Townsend. 2013. Bone and joint infections.
- 337 Surgery 4:187-192.
- 338 [4] J. G. Penn-Barwell, P. M. Bennett, C. A. Fries, J. M. Kendrew, M. J. Midwinter, and R. F.
- 339 Rickard. 2013. Severe open tibial fractures in combat trauma: management and preliminary
- outcomes. The Bone & Joint Journal 95-B:101-105.
- 341 [5] Zimmerli, W. 2014. Clinical presentation and treatment of orthopaedic implant-associated
- 342 infection. Journal of Internal Medicine 276:111-119.
- 343 [6] Sagray, B. A., S. Malhotra, and J. S. Steinberg. 2014. Current therapies for diabetic foot
- 344 infections and osteomyelitis. Clinics in Podiatric Medicine and Surgery 31:57-70.
- 345 [7] Junlin, Z., L. Yihan, Q. Wang, A. N. Pollak, and G. P. Slobogean. 2014. Status of road
- 346 safety and injury burden: China. J Orthop Trauma:S41-S42.
- 347 [8] Wang, X., S. Yu, D. Sun, J. Fu, S. Wang, K. Huang, and Z. Xie. 2017. Current data on
- 348 extremities chronic osteomyelitis in southwest China: epidemiology, microbiology and

- 349 therapeutic consequences. Scientific Reports 7.
- 350 [9] Jiang, N., Y. Ma, Y. Jiang, X. Zhao, G. Xie, Y. Hu, C. Qin, and B. Yu. 2015. Clinical
- 351 characteristics and treatment of extremity chronic osteomyelitis in southern China. Medicine

352 94:e1874.

- 353 [10] Kremers, H. M., M. E. Nwojo, J. E. Ransom, C. M. Wood-Wentz, L. J. Melton, and P.
- 354 M. Huddleston. 2015. Trends in the epidemiology of osteomyelitis. The Journal of Bone and
- 355 Joint Surgery 97:837-845.
- 356 [11] Bucholz, R. W., J. D. Heckman, and C. Court-Browm. 2006. Rockwood & Greens
- 357 Fracture in Adults. 6 Edition., vol. 18.484 499.
- 358 [12] III, G. C., J. T. Mader, and J. J. Penninck. 2003. A clinical staging system for adult
- 359 osteomyelitis. Clinical Orthopaedics and Related Research 414:7-24.
- 360 [13] Zhao, G., Qi. M., Zhang. B.S., and Huang.L. 2012. Staged treatment strategy for
- 361 chronic osteomyelitis. Chinese Journal of Bone and Joint Surgery 5:416-419.
- 362 [14] Hwang, H., W. Jeong, D. Lee, and S. Lee. 2016. Acute primary hematogenous
- 363 osteomyelitis in the epiphysis of the distal tibia: A case report with review of the literature.
- 364 The Journal of Foot and Ankle Surgery 55:600-604.
- 365 [15] Xu, Y.Q., Zhu.Y.L., Fan. X.Y., Tang. H., Wang. Y., He. X.Q., Li. J., Ding.J., and Li. Y.
- 366 2014. Treatment of osteomyelitis following surgery of open tibial fracture with vancomycin
- 367 calcium sulphate or vancomycin cement. Chinese Journal of Orthopaedic Trauma

- 368 11:925-929.
- 369 [16] Bose, D., R. Kugan, D. Stubbs, and M. McNally. 2015. Management of infected
- 370 nonunion of the long bones by a multidisciplinary team. The Bone & Joint Journal:814-817
- 371 [17] Romanò, C. L., D. Romanò, N. Logoluso, and L. Drago. 2011. Bone and joint infections
- 372 in adults: a comprehensive classification proposal. European Orthopaedics and Traumatology
- **373 1:207-217**.
- 374 [18] JR, J. W. M., J. B. Jupite, A. J. Weiland, and H. S. Byrd. 1989. Current concepts review
- 375 clinical classification of post-traumatic tibial osteomyelitis. The Journal of Bone and Joint
- 376 Surgery 71-A:1422-1428.
- 377 [19] Ceroni, D., C. Grumetz, O. Desvachez, S. Pusateri, P. Dunand, and E. Samara. 2016.
- 378 From prevention of pin-tract infection to treatment of osteomyelitis during paediatric
- 379 external fixation. Journal of Children's Orthopaedics 10:605-612.
- 380 [20] Vuong, C., and M. Otto. 2002. Staphylococcus epidermidis infections. Microbes and
- 381 Infection 4:481-489.
- 382 [21] Vieira, G. D., H. R. Mendonca, T. C. Alves, D. F. Araujo, F. M. Silveira, A. P. Freitas, F.
- 383 Bressan, R. F. Radaeli, and C. M. Sousa. 2015. Survey of infection in orthopedic
- postoperative and their causative agents: a prospective study. Rev Assoc Med Bras (1992)
- 385 61**:**341-6.
- 386 [22] Lew, D. P., and F. A. Waldvogel. 2004. Osteomyelitis. Lancet 364:369–79.

- 387 [23] Parvizi, J., B. Zmistowski, E. F. Berbari, T. W. Baue, B. D. Springer, C. J. D. Valle, K. L.
- 388 Garvin, M. D. Wongworawa, C. G. Zalavras, T. K. Fehring, D. R. Osmon, M. A. Mont, R. L.
- 389 Barrack, K. R. Berend, J. L. Esterhai, T. J. Gioe, S. M. Kurtz, B. A. Masri, A. D. Nana, M. J.
- 390 Spangehl, and J. Segreti. 2011. New definition for periprosthetic joint infection: the
- 391 workgroup convened by the musculoskeletal infection society. The Journal of Arthroplasty
- **392 26:**1136-1138.
- 393 [24] Mackowiak, P. A., S. R. Jones, and J. W. Smith. 1978. Diagnostic value of sinus-tract
- 394 cultures in chronic osteomyelitis. JAMA 239:2772-75
- 395 [25] Zalavras, C. G., T. Christensen, N. Rigopoulos, P. Holtom, and M. J. Patzakis. 2009.
- 396 Infection following operative treatment of ankle fractures. Clinical Orthopaedics and Related
- 397 Research® 467:1715-1720.
- 398 [26] Pederson, W. C., and D. W. Person. 2007. Long bone reconstruction with vascularized
- bone grafts. Orthopedic Clinics of North America 38:23-35.
- 400 [27] Masquelet, A. C., and T. Begue. 2010. The concept of induced membrane for
- 401 reconstruction of long bone defects. Orthopedic Clinics of North America 41:27-37.
- 402 [28] Patzakis, M. J., and C. G. Zalavras. 2005. Chronic posttraumatic osteomyelitis and
- 403 infected nonunion of the tibia: Current management concepts. Journal of the American
- 404 Academy of Orthopaedic Surgeons 13:417-27.
- 405 [29] Cierny, G. 2011. Surgical treatment of osteomyelitis. Plastic and Reconstructive Surgery

- 406 127**:**190S-204S.
- 407 [30]Forsberg, J. A., M. B. K. Potter, G. C. III, and L. Webb. 2011. Diagnosis and
- 408 management of chronic infection. Journal of the American Academy of Orthopaedic
- 409 Surgeons 19:S9-S19.
- 410 [31] III, G. C., J. T. Mader, and J. J. Penninck. 2003. A clinical staging system for adult
- 411 osteomyelitis. Clinical Orthopaedics and Related Research 414:7-24.
- 412 [32] Simpson, A. H. R. W., M. Deakin, and J. M. Latham. 2001. Chronic osteomyelitis: the
- 413 effect of the extent of surgical resection on infection-free survival. The Journal of Bone and
- 414 Joint Surgery 83-B:403-407.
- 415 [33] Luo, S., T. Jiang, Y. Yang, X. Yang, and J. Zhao. 2016. Combination therapy with
- 416 vancomycin-loaded calcium sulfate and vancomycin-loaded PMMA in the treatment of
- 417 chronic osteomyelitis. BMC Musculoskeletal Disorders 17.
- 418 [34] Stallmann, H. P., C. Faber, A. L. Bronckers, A. V. N. Amerongen, and P. I. Wuisman.
- 419 2006. In vitro gentamicin release from commercially available calcium-phosphate bone
- 420 substitutes influence of carrier type on duration of the release profile. Bmc Musculoskeletal
- 421 Disorders 7:18.
- 422 [35] Zalavras, C. G., M. J. Patzakis, and P. Holtom. 2004. Local antibiotic therapy in the
- 423 treatment of open fractures and osteomyelitis. Clinical Orthopaedics and Related Research
- 424 427:86-93.

425	Table Headers

- 426 **Table S1. Cierny-Mader classification results.**
- 427 Table S2. Laboratory tests of WBC, ESR and CRP.
- 428 Table S3. Comprehensive statistics of WBC, ESR and CRP.
- 429 Table S4. Bacterial distribution.
- 430 Table S5. Detection rate when using different numbers of samples, and the correlations
- 431 between detection rate and number of samples.
- 432 Table S6. Ability to identify pathogenic bacteria for different numbers of sample, and
- 433 the correlation between number of samples and identification success.
- 434 Table S7. The distribution of bacteria found in the sinus tract.
- 435 Table S8. The coincidence rate between the result from sinus tract bacterial culture and
- 436 pathogenic bacteria.
- 437 Table S9. Clinical effects and prognosis of the two different treatments.

438

		Host A	Host BL	Host BS	Host BL+BS	Host C
Type I	Cases	10	2	1	0	0
	Percentage	3.9%	0.8%	0.4%	0.0%	0.0%
Type II	Cases	59	13	17	8	0
	Percentage	23.1%	5.1%	6.7%	3.1%	0.0%
TypeIII	Cases	52	10	8	5	0
	Percentage	20.4%	3.9%	3.1%	2.0%	0.0%
TypeV	Cases	46	17	4	3	0
Ι						
	Percentage	18.0%	6.7%	1.6%	1.2%	0.0%

Table S1. Cierny-Mader classification results.

	Frequency	Percentage
WBC(+)	104	32.2%
WBC(-)	219	67.8%
ESR(+)	230	71.2%
ESR(-)	93	28.8%
CRP(+)	290	89.7%
CRP(-)	83	10.3%

Table S2. Laboratory tests of WBC, ESR and CRP.

	WBC	ESR	CRP	Times	Percentage
Result 1	(-)	(-)	(-)	20	6.6%
Result 2	(+)	(-)	(-)	3	1.0%
Result 3	(-)	(+)	(-)	2	0.7%
Result 4	(-)	(-)	(+)	53	17.4%
Result 5	(+)	(+)	(-)	0	0.0%
Result 6	(+)	(-)	(+)	8	2.6%
Result 7	(-)	(+)	(+)	132	43.4%
Result 8	(+)	(+)	(+)	86	28.3%
In total				304	100.0%

Table S3. Comprehensive statistics of WBC, ESR and CRP.

Bacterial	Frequency	Percentage
Staphylococcus aureus	87	35.51%
Staphylococcus epidermidis	35	14.29%
Pseudomonas aeruginosa	24	9.80%
Enterobacter cloacae	13	5.31%
Escherichia coli	11	4.49%
Klebsiella pneumoniae	7	2.86%
Staphylococcus capitis	6	2.45%
Baumann's acinetobacter complex.	6	2.45%
Enterococcus faecalis	5	2.04%
Staphylococcus haemolyticus	4	1.63%
Enterococcus faecium	4	1.63%
Staphylococcus hominis	4	1.63%
Serratia marcescens	4	1.63%
Others		14.28%

Table S4. Bacterial distribution.

Table S5. Detection rate when using different numbers of samples, and the
correlations between detection rate and number of samples.

Number of	Detecti	Negativ	Positive	Detecti	Compare	P Value
samples for	on	e result	result	on rate	with other	
detection	times				groups	
					VS 2 sample	>0.05
					VS 3 samples	>0.05
1 sample	63	21	42	66.7%	VS 4 samples	>0.05
					VS 5 samples	<0.05
					VS 3 samples	>0.05
2 samples	76	23	53	69.7%	VS 4 samples	>0.05
					VS 5 samples	<0.05
					VS 4 samples	>0.05
3 samples	51	13	38	74.5%	VS 5 samples	<0.05
4 samples	41	9	32	78.0%	VS 5 samples	>0.05
5 samples or	64	6	58	90.6%		
above						

Sample	Times of	Identifying	Fail to identify	Percentage of	
	detection	pathogenic	pathogenic	identifying	
		bacteria	bacteria	pathogenic	
				bacteria	
2 samples	76	32	44	42.1%	
3 samples	52	27	25	51.9%	
4 samples	41	28	13	68.3%	
5 samples	64	53	11	82.8%	
and above					
			PN	/alue	
	2 samples V	S 3 samples	>().05	
	2 samples V	S 4 samples	<0.05		
	2 samples V	S 5 samples	<0.05		
	3 samples V	S 4 samples	>0.05		
	3 samples V	S 5 samples	<().05	
	4 samples V	S 5 samples	>().05	

Table S6. Ability to identify pathogenic bacteria for different numbers of sample, and the correlation between number of samples and identification success.

Bacteria	Frequency	percentage
staphylococcus aureus	15	25.86%
staphylococcus epidermidis	9	15.52%
pseudomonas aeruginosa	5	8.62%
enterobacter cloacae	3	5.17%
escherichia coli	3	5.17%
staphylococcus haemolyticus	2	3.45%
enterococcus faecalis	2	3.45%
klebsiella pneumoniae	2	3.45%
Baumann's acinetobacter	2	3.45%
complex.		
Candida albicans	2	3.45%
Rhodococcus rhodococcus	2	3.45%
peptostreptococcus anaerobius	2	3.45%
staphylococcus warneri	1	1.72%
Enterobacter agglomerans	1	1.72%
enterobacter	1	1.72%
providencia rettgeri	1	1.72%
staphylococcus hominis	1	1.72%
citrobacter braakii	1	1.72%
staphylococcus saprophyticus	1	1.72%

Table S7. The distribution of bacteria found in the sinus tract.

proteus mirabilis	1	1.72%
klebsiella oxytoca	1	1.72%
In total	58	100.0%

	Numbers	Percentage
Total Positive samples	57	100.0%
Same with pathogenic bacteria	24	42.1%
Different with pathogenic bacteria	33	57.9%

Table S8. The coincidence rate between the result from sinus tract bacterialculture and pathogenic bacteria.

Treatment	Two-stage	one-stage	P-value
	(108cases)	(147cases)	
union	94	105	< 0.05
Recurrence	14	42	< 0.05
Union rate after first treatment	87.0%	71.4%	< 0.05
Continue the treatment after	11	30	>0.05
Recurrence			
Union after once retreatment	9	4	< 0.05
Union after twice retreatments	0	13	-
Union after thrice treatments	0	12	-
Withdraw treatment after	3	6	>0.05
Recurrence			
Nonunion(amputation)	2	1	>0.05

Table S9. Clinical effects and prognosis of the two different treatments.