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Abstract21

The estimation of origination and extinction rates and their temporal variation is22

central to understanding diversity patterns and the evolutionary history of clades. The23

fossil record provides the most direct evidence of extinction and biodiversity changes24

through time and has long been used to infer the dynamics of diversity changes in deep25

time. The software PyRate implements a Bayesian framework to analyze fossil occurrence26

data to estimate the rates of preservation, origination and extinction while incorporating27

several sources of uncertainty. This fully probabilistic approach allows us to explicitly28

assess the statistical support of alternative macroevolutionary hypotheses and to infer29

credible intervals around parameter estimates. Here, we present a major update of the30

software, which implements substantial methodological advancements, including more31

complex and realistic models of preservation, a reversible jump Markov chain Monte Carlo32

algorithm to estimate origination and extinction rates and their temporal variation, and a33

substantial boost in performance. We demonstrate the new functionalities through34

extensive simulations and with the analysis of a large dataset of Cenozoic marine mammals.35

We identify several significant shifts in origination and extinction rates of marine36

mammals, underlying a late Miocene diversity peak and a subsequent 50% diversity decline37

towards the present. Our analyses indicate that explicit statistical model testing, which is38

often neglected in fossil-based macroevolutionary analyses, is crucial to obtain accurate and39

robust results. PyRate provides a flexible, statistically sound analytical framework, which40

we think can serve as a useful toolkit for many future studies in paleobiology.41
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Introduction42

The evolution of biological diversity is determined by the interplay between origination and43

extinction processes. Estimating the pace at which lineages appear and disappear is44

therefore a central question in macroevolution and paleobiology research. Inferring the45

processes underlying biodiversity patterns helps us understanding what drives the wax and46

wane of taxa (Ezard et al., 2011; Quental and Marshall, 2013), the effects of competition47

and other biotic interactions on diversity changes (Liow et al., 2015; Pires et al., 2017), the48

dynamics and selectivity of mass extinctions (Peters, 2008). The process of taxonomic49

diversification is often modeled using birth-death stochastic models, where the appearance50

of new lineages (e.g. species or genera) and their demise are characterized by origination51

and extinction rates (Kendall, 1948; Keiding, 1975; Nee, 2006). These parameters quantify52

the expected number of origination or extinction events per lineage per time unit (typically53

1 million years) (Foote, 2000; Marshall, 2017).54

In recent years, there have been considerable methodological developments in the55

estimation of diversification dynamics from phylogenies of extant taxa, in which the56

distribution of branching times calibrated to absolute ages are used to infer the parameters57

of a “reconstructed birth-death process” (e.g. Nee et al., 1994; Gernhard, 2008; Stadler,58

2009, 2013; Heath et al., 2014). These methods are appealing because large phylogenies of59

extant taxa are becoming increasingly available (e.g. Jetz et al., 2012; Pyron et al., 2013;60

Zanne et al., 2014; Rolland et al., 2018) and extend to taxa with limited fossil record,61

including hyper-diverse clades such as orchids (Perez-Escobar et al., 2017). Despite this62

methodological progress, there are limitations to estimating diversification dynamics from63

extant data, particularly in terms of estimating realistic extinction rates (Rabosky, 2010;64

Quental and Marshall, 2010; Liow et al., 2010a; Marshall, 2017). A major limiting factor of65

phylogenetic approaches to infer origination and extinction rates is that extant species66
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represent, for most clades, a small fraction of a the total diversity that has existed since67

their origination (Raup and Sepkoski, 1984; Raup, 1986).68

The fossil record provides the most direct evidence of past biodiversity and69

extinction and has therefore long been used to investigate diversification processes (Kurtén,70

1954; Van Valen and E, 1966; Alroy, 1996; Sepkoski, 1998; Alroy, 2008; Foote, 2001; Liow71

and Nichols, 2010; Ezard et al., 2011). However, since the paleontological record is virtually72

always incomplete, fossil occurrences represent a biased representation of the past diversity,73

where the sampled longevities of taxa are likely to underestimate their true lifespan, and74

entire lineages (especially those with low preservation potential or short lifespan) may leave75

no trace of their existence (Foote, 2000; Foote and Raup, 1996; Hagen et al., 2017). Thus,76

the estimation of diversification processes from fossil data typically involves inferring77

preservation, origination, and extinction rates. Most available methods estimate temporal78

rate variation using the presence or absence of lineages within predefined time bins and79

treating the origination and extinction rates in each bin as independent parameters (Foote,80

2001, 2003; Liow et al., 2008; Liow and Nichols, 2010; Alroy, 2014). The resulting patterns81

usually depict rate fluctuations through time, which may however capture stochastic82

variations from a time-homogeneous birth-death process and potentially reflect the83

problems of overparameterization, i.e. overfitting associated with the use of a higher84

number of parameters than supported by the data (Burnham and Anderson, 2002).85

A few years ago we presented a Bayesian probabilistic framework to estimate86

preservation, origination and extinction rates from fossil occurrence data implemented in87

the open-source program PyRate (Silvestro et al., 2014b,a). Unlike most other methods,88

PyRate does not by default estimate origination and extinction rates within fixed time bins89

(although it is able to do it, as shown in Silvestro et al., 2015b). Instead, its core functions90

are designed to explicitly compare models with different amounts of rate heterogeneity,91

with the rationale that rate shifts are only detected when statistically significant. This92
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procedure is important to avoid overparameterization, which in turn can lead to93

inconsistent results and false positives. This is especially true when the amount of data is94

small compared to the number of parameters (Burnham and Anderson, 2002), which is95

often the case for empirical fossil datasets.96

Since its original implementation, PyRate uses a hierarchical Bayesian model to97

jointly estimate: 1) the times of origination and extinction for each sampled lineage (Fig.98

1A), 2) the parameters of a Poisson process modeling fossilization and sampling (Fig. 1B),99

3) the rates of origination and extinction and their temporal heterogeneity (Fig. 1C)100

(Silvestro et al., 2014a). This hierarchical structure allows us to analyze the entire available101

fossil record including all known occurrences of a lineage (i.e. not limited to first and last102

appearances), singletons (lineages sampled in a single occurrence), and extant taxa103

provided that they have at least one fossil occurrence (Fig. 1A). The analysis is conducted104

using Metropolis Hastings Markov chain Monte Carlo (MCMC), to obtain posterior105

estimates of all model parameters along with the respective 95% credible intervals (95%106

CI), providing important information about the level of uncertainty surrounding the107

estimates. One of the main and most challenging aims of the PyRate method is the108

estimation of how origination and rates vary through time. In its initial implementation,109

PyRate included a birth-death MCMC (BDMCMC) algorithm (Stephens, 2000) to sample110

the number and temporal placement of rate shifts in a single analysis. The power of this111

algorithm, however, appears to become limited with increasing levels of rate heterogeneity112

through time and with large datasets (Silvestro et al., 2014b).113

Here we develop extensive improvements of the PyRate method and present a114

substantially upgraded version of software introducing several novel features, which expand115

the scope and applicability of the program for the paleobiological community and improve116

user experience. Specifically we 1) introduce more realistic preservation models117

simultaneously allowing rate heterogeneity across lineages and through time. 2) We develop118
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a new model testing framework using maximum likelihood to choose among alternative119

preservation models. 3) We present a more powerful algorithm to infer temporal variation120

in origination and extinction rates using reversible jump MCMC (RJMCMC) and compare121

its performance with the alternative BDMCMC algorithm, demonstrating improved results122

on simulated data. 4) We develop FastPyRateC, a C++ library which is seamlessly123

imported by the main PyRate program and yields a dramatic boost in performance, by124

optimizing the likelihood computations. FastPyRateC can speed up the analyses by125

orders of magnitude and the performance gain increases with the size of the dataset and126

the complexity of the model. 5) We provide a number of new functions to process output127

files and plot the results, calculate timing of significant rate shifts based on Bayes factors,128

and assess the presence of potential typos and misspellings in the taxa names in an input129

file. We demonstrate some of these features with a worked example by analyzing a recently130

published dataset of marine mammals (Pimiento et al., 2017) and provide extensive131

tutorials with detailed descriptions of analysis setup and output processing.132
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Methods133

PyRate implements a hierarchical Bayesian model that jointly samples the134

preservation rates (indicated by q), the times of origination and extinction for each135

sampled lineage (indicated by vectors s, e), and the origination and extinction rates136

(indicated by λ and µ). The input data are fossil occurrences characterized by their age137

and their assignment to a taxonomic unit (e.g. a genus or a species) and the origination138

and extinction rates scaled to the taxonomic unit utilized in the input data. The joint139

posterior distribution of all parameters is approximated by a Markov Chain Monte Carlo140

(MCMC) algorithm and can be written as141

P (q, s, e, λ, µ|X)︸ ︷︷ ︸
posterior

∝ P (X|q, s, e)︸ ︷︷ ︸
likelihood

×P (s, e|λ, µ)︸ ︷︷ ︸
BD prior

× P (q)P (λ, µ)︸ ︷︷ ︸
other (hyper-)priors

(1)

where X = {x1, ...xN} is the list of vectors of fossil occurrences for each of N lineages, so142

that xi = {x1, ..., xK} is a vector of all fossil occurrences sampled for taxon i. The143

likelihood component of the model allows us to estimate the preservation rates and the144

times of origin and extinction given the occurrence data, based on a stochastic model of145

fossilization and sampling (see below). The birth-death (BD) prior allows us to infer the146

underlying diversification process based on the (estimated) origination and extinction147

times. Additional priors on q, λ, µ enable the estimation of these parameters from the data.148

These priors are by default set to gamma distributions (thus allowing only positive values),149

unless otherwise specified.150

Preservation models151

We model the process of fossil preservation and sampling using Poisson processes,152

where the estimated preservation rate(s) indicate the expected number of fossil occurrences153
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per sampled lineage per time unit. Thus, fossil preservation is modeled as a154

time-continuous stochastic process capturing fossilization, sampling and identification, i.e.155

all the events occurring from the living organism to the digitized fossil occurrence. The156

likelihood of a lineage with fossil occurrences x = {x1, ..., xK} given origination time s,157

extinction time e, and preservation rate q under a general Poisson model is158

P (x|q, s, e) =

exp

(
−
∫ e

s

q(t)dt

)
×

K∏
i=1

q(xi)

K!×
(

1− exp

(
−
∫ e

s

q(t)dt

)) (2)

where q(t) is the preservation rate at time t (Silvestro et al., 2014b). The two terms of the159

numerator quantify the probability of the waiting times between fossil occurrences and the160

probability of each occurrence. The denominator includes the normalizing constant of the161

Poisson distribution and the condition on sampling at least one fossil occurrence, where162

exp(·) represents the probability of zero fossil occurrences between origination and163

extinction times (Silvestro et al., 2014b).164

The original PyRate implementation included two models of preservation: the165

homogeneous Poisson process (HPP) and the non-homogeneous Poisson process (NHPP).166

The HPP model assumes that the preservation rate is constant throughout the lifespan of167

an organism and across time. The NHPP assumes that preservation rates change along the168

lifespan of a lineage according to a bell-shaped distribution, where the rates are lower at169

the two extremities (i.e., close to the times of origin and extinction of the lineage) and170

highest in the middle (Silvestro et al., 2014b). The shape of the distribution is fixed and171

the estimated preservation rate q represents the expected number of fossil occurrences per172

sampled lineage per Myr averaged across the lifespan of the lineage. This model is justified173

by the empirical observation that the number of occurrences per time unit for a given174

organisms tends to increase following its origination and to decrease prior to its extinction175
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(Liow et al., 2010b). The pattern also reflects the idea that species originate from a small176

initial pool of individuals in a restricted geographic area (therefore with lower potential for177

preservation and sampling) and later expand, thus increasing the chances to leave fossil178

records. Similarly, under this model, species are expected to decline in abundance and179

geographic range prior to their extinction (Raia et al., 2016), resulting in decreased180

preservation rates.181

Both HPP and NHPP models can be coupled with a Gamma model (i.e. HPP+G182

and NHPP+G), which allows us to incorporate rate heterogeneity across lineages. Under183

these models, preservation rates are defined so that their mean equals q and their184

heterogeneity is distributed according to a gamma distribution, with shape parameter α,185

discretized in a user-defined number of categories (Yang, 1994; Silvestro et al., 2014b).186

Both q and α are estimated as free parameters by the MCMC and small values of α187

indicate increased amount of heterogeneity. Gamma models do not assign individual188

preservation rates to each lineage in the dataset. Instead, the likelihood of each lineage is189

averaged across all rates, thus incorporating rate heterogeneity across lineages while adding190

a single additional parameter (α) to the model (Yang, 1994).191

Here, we introduce a third preservation model, that implements a time-variable192

Poisson process (TPP). The TPP model is an extension of the HPP, in which the rate of193

preservation is constant within predefined time windows, but allowed to change between194

them. For instance, different preservation rates can be estimated within geological epochs195

(Foote, 2001; Liow and Nichols, 2010). The likelihood of this process is the product of196

piece-wise HPP likelihoods across multiple time frames, each with its specific preservation197

rate (q = {q1, ..., qS}, where S is the number of time frames in the model). As for HPP and198

NHPP models, the TPP can be coupled with a Gamma model, therefore allowing for rate199

heterogeneity both through time and across lineages.200

The default prior specified for q is a gamma distribution, chosen to reflect the fact201
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that preservation rates must take positive values. Defining appropriate prior distributions202

is often a challenge in Bayesian analysis and prior choice can strongly affect the effective203

parameter space and the complexity of a model (Gelman et al., 2004). This may become204

even more problematic under the TPP model, where very strict priors could artificially205

reduce rate heterogeneity through time, whereas very vague priors could unnecessarily206

expand the amount of parameter space, increasing the risk of over-parameterization. To207

overcome this issue, we use a hyper-prior to estimate the prior on the preservation rates208

from the data, instead of setting the prior to a fixed distribution. We set a gamma prior on209

the vector q with fixed shape parameter (α = 1.5) and unknown rate parameter β. The210

rate parameter is assigned a vague gamma hyper-prior, β ∼ Γ(a = 1.01, b = 0.1), and is211

itself estimated from the data. Using the properties of the conjugate gamma prior, we212

sample the rate parameter β directly from its posterior distribution, given any vector of213

preservation rates q:214

P (β|q, α, a, b) ∼ Γ

(
a+ αS, b+

S∑
i=1

(qi)

)
. (3)

A maximum likelihood test to compare preservation models215

We developed a likelihood-based test to assess the statistical fit of alternative216

preservation processes. Although it is theoretically possible to infer the marginal likelihood217

of a preservation model in a Bayesian framework (for instance using the thermodynamic218

integration available in PyRate to test between alternative birth-death models (Lartillot219

and Philippe, 2006; Silvestro et al., 2014b)), the task would be computationally extremely220

demanding. Indeed, the number of parameters over which the likelihood needs to be221

marginalized can be very high, including the vectors of origination and extinction times,222

the preservation rates and potentially the parameters of the birth-death prior. Thus, we223

implemented a maximum likelihood test for preservation models, which substantially224
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reduce computational burden.225

Let ŝ and ê be the expected times of origination and extinction of a lineage with226

fossil occurrences x = {x1, ..., xK} (sorted from oldest to most recent) for a given227

preservation rate q. In order to compare the fit of different models we maximize the228

likelihood P (x, ŝ, ê|q), where q is treated as a free parameter and estimated in the229

optimization, while ŝ and ê are calculated based on the preservation rate and model. In the230

simplest case of an HPP of preservation the expected times of origination and extinction231

are determined by the expectation of an exponential distribution with rate equal q:232

E[Exp(q)] = 1/q. Thus, under HPP the expected times of origination and extinction are233

ŝ = x1 + 1/q and ê = xK − 1/q (Fig. 2A). Note that the expected times of origination and234

extinction differ from their maximum likelihood estimates, which under HPP are sML = x1235

and eML = xK .236

In the case of the NHPP model, neither the expectation nor the maximum237

likelihood values of s and e are easily derived analytically. Instead, we use a two-step238

approach to obtain a maximum likelihood value that is comparable to that obtained under239

HPP. First, we optimize the rate q by maximizing the likelihood P (x|q, s, e), where240

q, s, and e are treated as free parameters. This results in maximum likelihood estimates of241

the preservation rate qML and origination and extinction times (sML and eML). Secondly,242

since the likelihoods of different preservation models are compared based on the expected243

origination and extinction times (i.e. not their maximum likelihood values), we use MCMC244

sampling to infer ŝ and ê given the estimated rate qML (Fig. 2B). The MCMC samples245

from the posterior probability246

P (s, e|qML,x) ∝ P (x|qML, s, e)× P (s) P (e) (4)

where P (s) ∼ U(x1,∞) and P (e) ∼ U(0, xK) are uniform priors on origination and247
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extinction times. We sample 1,000 values of s and e and use their mean as expected248

origination and extinction times ŝq, and êq. Once obtained q̂, ŝq, and êq we can calculate249

the likelihood of the data given the model and use it for model comparison.250

Under the TPP model the expected times of origination and extinction are251

determined by a combination of exponential expectations with rate parameters (i.e.252

preservation rates) q = {q1, ..., qS}, truncated at the boundaries of each of S time windows253

(Fig. 2C). For any given preservation rate q, we use numerical integration to approximate254

the resulting distribution and obtain expected values for the times of origination and255

extinction (ŝ, ê). We use maximum likelihood to optimize the vector of preservation rates.256

The likelihood of a dataset encompassing multiple taxa, under any preservation257

model, is the product of the individual likelihood of each lineage (Silvestro et al., 2014b).258

For the purpose of model testing between HPP, NHPP and TPP models, we assume that259

the preservation rates are constant across lineages and therefore optimize a single260

parameter q (or vector of parameters q under the TPP model) to obtain the maximum261

likelihood of the data. We then calculate the fit of each model using the Akaike262

Information Criterion corrected for sample size (AICc), based on the number of analyzed263

lineages (Burnham and Anderson, 2002). We consider this test as a useful tool to choose264

between qualitatively different preservation processes (HPP, NHPP and TPP) and advise265

researchers to always couple the best-fitting Poisson process with the Gamma model in266

empirical analyses. The risk that the Gamma model represents an overparameterization of267

the preservation process is minimal, because the Gamma model only adds a single268

parameter to incorporate any potential amount of rate heterogeneity across clades269

(Silvestro et al., 2014b). Additionally, virtually all empirical datasets we have analyzed so270

far indicated very high levels of rate variation across clades (see also Results).271
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AICc thresholds and testing272

We used simulated data to assess the performance of our likelihood test for273

preservation models. We simulated 1,000 datasets of fossil occurrences under each of three274

models HPP, NHPP, TPP. Each simulation included 100 lineages with lifespan determined275

by a randomly sampled extinction rate µ ∼ U [0.05, 0.5], reflecting a realistic range of276

extinction rates (e.g. Pimiento et al., 2017). Thus, for the properties of the birth-death277

process (Kendall, 1948) the distribution of lifespans followed an exponential distribution278

with mean 1/µ. Fossil occurrences were then simulated based on each Poisson process with279

a rate q randomly drawn from U [0.05, 3.5]. The rate q represented the mean preservation280

rate for each lineage in NHPP simulations (Silvestro et al., 2014b). In TPP simulations we281

simulated one shift in preservation rate occurring at half time between the origination time282

of the oldest lineage and the most recent extinction time. The preservation rate after the283

shift was then set to 5× q.284

Although singletons (i.e. lineages represented by a single fossil occurrence) can be285

analyzed and are usually included in PyRate analyses, they should be removed when the286

aim is comparing the fit of different preservation models. While singletons contribute to the287

correct inference of preservation rates in an analysis aimed at parameter estimation, at least288

one waiting time between occurrences is needed when testing among preservation models.289

Singletons are therefore removed automatically from the data when using the model testing290

function implemented in PyRate. Thus, before running the test on simulated data we291

removed all lineages with fewer than 2 occurrences. This procedure left, depending on the292

simulation settings, between 10 and 100 sampled lineages, providing a range of data sizes.293

We used simulations to define the appropriate δAICc thresholds necessary to294

confidently choose between preservation models. While the model yielding the smallest295

AIC score can be considered as best fitting (Burnham and Anderson, 2002), small296
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differences in AICc values might be difficult to interpret and the threshold for significance297

is often obtained through simulations (e.g. Pennell et al., 2014; Dib et al., 2014).298

Additionally, verifying empirically the accuracy of model testing is especially important299

here since the optimization involves a combination of analytical expectations of origination300

and extinction times for HPP and numerical approximations for NHPP and TPP. Thus, we301

used the 3,000 simulations (for which the true generating model is known) as a training set302

and for each computed AICc scores under the three preservation models. Based on the303

resulting distributions of AICc scores, we determined the δAICc thresholds yielding less304

than 5% errors and less than 1% errors in model selection. We then simulated an305

additional 300 datasets (100 for each preservation model) to verify the appropriateness of306

the thresholds (Fig. S1–S3).307

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/316992doi: bioRxiv preprint 

https://doi.org/10.1101/316992


Time-variable birth-death models308

The temporal distribution of origination and extinction times of sampled lineages,309

estimated through the preservation process, is modeled to be the result of a310

time-continuous birth-death stochastic process, where lineages originate at a rate λ and go311

extinct at a rate µ (Kendall, 1948). PyRate implements several birth-death models, in312

which rates can change through time at discrete events or rate shifts (Silvestro et al.,313

2014b), following time-continuous variables (Lehtonen et al., 2017). The general likelihood314

of a birth-death process with time variable rates is derived from Keiding (1975):315

P (s, e|λ, µ) ∝
N∏
i=1

λ(si)× µ(ei)
Ii × exp

(
−
∫ ei

si

λ(t) + µ(t) dt

)
(5)

where N is the number of lineages, λ(t) is the origination rate at time t, µ(t) is the316

extinction rate at time t and Ii is an indicator set to Ii = 1 if species i is extinct (ei > 0)317

and Ii = 0 if species i is extant (ei = 0).318

A birth-death model with rate shifts (BDS) is characterized by changes in rates of319

origination and extinction at shift times, while the rates are constant between shifts320

(Silvestro et al., 2014b). The BDS model is described by a vector of origination rates321

Λ = {λ0, λ1, ..., λJ} delimited by times of shifts τΛ = {τΛ
1 , ..., τ

Λ
J } and by extinction rates322

M = {µ0, µ1, ..., µH} delimited by times of shifts τM = {τM1 , ..., τMH }, where J and H323

represent the number of origination and extinction rate shifts, respectively. Under this324

notation, origination and extinction rates are constant and equal to λ0 and µ0, respectively,325

when the model includes no rate shifts. The original PyRate implementation used a326

Bayesian algorithm, the BDMCMC (Stephens, 2000), to jointly infer the number of rate327

shifts (J and H), the rates between shifts (Λ,M) and the times of rate shift (τΛ, τM).328

While we showed BDMCMC to be able to correctly infer rate variation under several329

scenarios, it tends to be too conservative in assessing rate heterogeneity through time when330
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the true generating process involves several rate shifts (Silvestro et al., 2014b). In the331

sections below we develop an alternative method to estimate birth-death models with rate332

shifts using the more general RJMCMC algorithm (Green, 1995), and demonstrate through333

simulations that it outperforms BDMCMC.334

Inferring rate variation using RJMCMC335

In the RJMCMC framework the number of rate shifts is considered as an unknown336

variable and is estimated from the data. To this end we include two additional types of337

proposals: namely the forward move and the backward move, which add or remove rate338

shifts, respectively, thus changing the number of parameters in the birth-death model.339

Given that these moves are identical for both speciation and extinction rates, we use the340

notation Φ to denote either the speciation (Λ) or extinction (M) rates. We indicate the341

time frames identified by rate shifts with ∆ = {δ0, δ1, ...δK−1}. Under this notation, we set342

δi = τi − τi+1, where τ is the time of rate shift for 0 < i ≤ K, whereas τ0 = max(s) and343

τK+1 = min(e) represent the maximum and minimum ages of the full birth-death process344

spanned by the data. A given set of time frames ∆ of length K is associated with a vector345

of rate parameters Φ = {φ0, φ1, ..., φK}.346

The RJMCMC algorithm requires a modification in the acceptance rule of a347

standard MCMC in order to maintain its reversibility, while moving across models with348

different parameterization (Green, 1995). The general form of the acceptance probability349

for a forward move (i.e. adding a rate shift) can be written as min {1, A(θ, θ′)}, where θ350

and θ′ are the model parameters of the current and new states, respectively and A(θ, θ′) is351

the product of three main terms:352

A(θ, θ′) =
π(θ′)

π(θ)︸ ︷︷ ︸
Posterior ratio

× P (M|M′)

P (M′|M)
× P (θ|θ′)
P (θ′|θ)︸ ︷︷ ︸

Hastings ratio

×
∣∣∣∣ ∂(θ′)

∂(θ, u)

∣∣∣∣︸ ︷︷ ︸
Jacobian

(6)
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The first term is the posterior ratio, i.e. the ratio between unnormalized posterior353

probabilities, of the new state over the current state (where π(·) indicates the posterior as354

in Eq. 1). The second term, often referred to as the Hastings ratio (e.g. Heath et al., 2014),355

describes the ratio between the probability of going back from the new state to the current356

one and the probability of proposing the new state given the current one. This term357

includes the probability of a forward move, which generates a new model M′ from the358

current one M by adding a rate shift and the probability of a backward move, which359

removes a rate shift. The Hastings ratio also includes the probability of proposing a new360

parameter state θ′ from the current one θ and vice versa. Note that the new and current361

states will differ in the number of parameters by one additional time of rate shift and one362

additional rate shift. The third term is the Jacobian of the mapping function transforming363

the parameters of the current state into the parameters of the new state and corrects for364

the change in the dimensionality of the parameter space. The acceptance probability of a365

backward move (i.e. removing a rate shift) can be directly deduced from the associated366

forward move. The move from a model with parameters θ (with K rates) to a model θ′367

(with K − 1 rates) has the acceptance probability set to min (1, A(θ′, θ)) with368

A(θ′, θ) = A(θ, θ′)−1. (7)

Probability of a reversible jump369

In our implementation forward and backward moves are selected with equal370

probability P (MK+1|MK) = P (MK |MK+1) = 0.5 except for the boundary cases K = 1371

and K = Kmax, where Kmax is the maximum allowed number of rate shifts. When K = 1,372

i.e. constant rates and no rate shift, forward moves are proposed with probability 1, while373

only backward moves are proposed when K = Kmax. To avoid numerical issues (e.g.,374

overflows), PyRate does not allow time windows smaller than 1 time unit (i.e. δ >= 1),375
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therefore resulting in Kmax = τK+1 − τ0.376

Forward move: adding a new rate shift377

A forward move from model MK to MK+1 is done by splitting an existing time378

frame into two time frames to which new rates are assigned. We first select a time frame δi379

randomly from ∆ and split it into two time frames δx, δy, by drawing a new time of rate380

shift τ ′ from U(τi, τi+1). Since δx + δy = δi, we can calculate the relative weight of the two381

new time frames as wx = δx/δi and wy = δy/δi. We then assign the rates φx and φy to the382

new time frames, to replace the original φi. Although the new rates could be drawn from383

independent distributions, we choose φx and φy such that their weighted geometric mean384

equal the original rate φi, which was shown to be more efficient in Poisson processes with385

rate shifts Green (1995). The weights are wx and wy (i.e. based on the relative size of the386

new time frames) and the new rates are chosen so that387

φi = exp (wx log(φx) + wy log(φy)) (8)

We draw a random variable u from a beta distribution B(α, β) that quantifies the

amount of discrepancy between rates φx and φy by using the following equation

1− u
u

=
φy

φx

.

We therefore generate the new rates as:388

φx = exp (log(φi)− wy log((1− u)/u)) (9)

φy = exp (log(φi) + wx log((1− u)/u)) (10)

The parameters of the beta distribution are set by default to α = β = 10, yielding an389
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expected E[u] = 0.5 with 95% of the values ranging from 0.29 to 0.71. We chose these390

values as they provided good convergence in our tests, although PyRate includes391

commands to easily tweak this and other tuning settings.392

The Hastings ratio for a forward move Mk →Mk+1 is computed as393

P (M|M′)

P (M′|M)
× (K + 1)−1

(K + 1)−1
× 1

P (u|α, β)
× 1

(δi)−1
(11)

where the first ratio is based on the simple rules described above and allowing forward and394

backward moves with equal probabilities when 1 < K < Kmax. The numerator and395

denominator of the second ratio define the uniform probability of drawing one of the K396

rate shifts from the new model MK+1 and the uniform probability of drawing one of the K397

time frames from the current model MK , respectively (noting that a model with K rate398

shifts includes K + 1 time frames). The two following denominators identify the399

probability of drawing u from its distribution β(α, β) (where P (u|α, β) is based on the400

probability density function of a beta distribution B(α, β)) and the probability of uniformly401

drawing a new rate shift within time frame δi. The Jacobian for the transformation of402

variables (φi, u)→ (φx, φy) (Eqn. 9) is equal to (Green, 1995):403

∂(φx, φy)

∂(φi, u)
=

(φx + φy)
2

φi

. (12)

Backward move: removing an existing rate shift404

A backward move from model MK+1 to MK is done by removing an existing rate405

shift and merging the two adjacent time frames and their rates. The first step is to406

randomly select a rate shift j over the K − 1 existing ones. The temporal placement of the407

rate shift is τj and its adjacent time frames are identified as δj−1 and δj. Thus, the rates φx408

and φy are combined to obtain a new rate φi based on Eq. 8.409
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For a backward move MK+1 →MK , the same computations are applied but the410

Hastings ratio and the Jacobian must be inverted as defined in Eq. (7). The value u must411

be defined using Eqs. (9) in order to compute P (u|α, β).412

Priors on the number of shifts413

Because in the RJMCMC implementation the number of origination and extinction414

rates (J and K, respectively) are considered as unknown variables, we assign them a prior415

distribution to sample them from their posterior distribution. We use a single Poisson416

distribution with rate parameter r to compute the prior probability of J and K. To reduce417

the subjectivity of the prior, we consider r itself as an unknown parameter and estimate it418

from the data. We assign a gamma hyper-prior, which allows us to sample r directly from419

its conjugate posterior distribution for any given J and K values:420

P (r|J,K, α, β) ∼ Γ (α + J +K, b+ 2) , (13)

where α and β are the shape and rate parameters of the gamma hyper-prior distribution.421

In our simulations, we use the hyper-prior Γ(α = 2, β = 1), which sets the highest prior422

probability to models with constant origination and extinction rates (i.e. mode = 1).423

Marginal origination and extinction rates424

To summarize the origination and extinction rates sampled by RJMCMC we425

marginalize them within arbitrary small (user-defined) time bins. We emphasize that this426

procedure does not imply that the birth-death process itself is discretized in time bins,427

since both the origination and extinction events are modeled within a time-continuous428

stochastic process. The marginal distributions of origination and extinction rates429

incorporate uncertainties on:430
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1. the true times of origination and extinction of sampled lineages, which is itself a431

function of the preservation process;432

2. the number of rate shifts as sampled by the RJMCMC;433

3. the temporal placement of the rate shifts.434

We summarized the marginal rates by computing their posterior mean and 95% credible435

intervals (95% CI).436

Timing of significant rate shifts437

We implemented a function to assess the timing of significant rate changes based on438

the RJMCMC posterior samples. To this aim, we compute the frequency of sampling a439

rate shift (using arbitrarily small time bins) and plot them against time to assess when rate440

shifts are more likely to have occurred. To assess whether the frequency of a rate shift441

significantly exceeds the prior expectation, we run an MCMC simulation where the number442

and times of rate shifts are purely sampled from their respective priors, i.e. a uniform443

distribution on the times of shift and Poisson distributions on the number of speciation and444

extinction rates with a gamma prior assigned to its hyper-parameter r (see paragraph445

above). From the samples obtained from the simulation, we compute the prior probability446

of a rate shift at any given time, based on the user-specified size of the bins.447

We then compute the posterior sampling frequencies corresponding to significant448

statistical support based on the standard log Bayes factors thresholds (so that 2 logBF = 2449

and 6, for positive and strong support, respectively) (Kass and Raftery, 1995).450

Given the two alternative hypotheses (presence of absence of a shift in a bin), we451

can define the Bayes factor as the the posterior odds divided by the prior odds (Kass and452

Raftery, 1995):453

BF =
P (s|D)

1− P (s|D)
/

P (s)

1− P (s)
, (14)
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where P (s|D) is the posterior probability of a rate shift, P (s) is its prior probability. After454

solving the equation for the posterior term, we obtain that the posterior probability455

corresponding to a 2 logBF = x is456

P (s|D) =
A

1 + A
, where A = exp

(x
2

) P (s)

1− P (s)
(15)

We implemented these calculations directly into a single function that generates plots of457

marginal origination and extinction rates through time and posterior frequencies of rate458

shifts through time with dashed lines indicating positive and strong statistical support459

based on Bayes factors (i.e. 2 logBF = 2 and 6, respectively; Kass and Raftery, 1995).460

Simulations461

We tested the new RJMCMC algorithm on simulated datasets and compared its462

performance with that of the BDMCMC algorithm previously implemented in PyRate. We463

simulated fossil datasets under three different birth-death scenarios:464

1. Constant origination and extinction rates set to 0.15 and 0.07, respectively, with root465

age set to 45 Ma.466

2. Time-variable birth-death model with 2 rate shifts in origination and 2 rate shifts in467

extinction. The time of origin was set to 35 with origination rate shifts at 20 and 10 Ma468

and extinction rate shifts at 15 and 10 Ma. Origination rates decrease across time469

windows (Λ = {0.4, 0.1, 0.01}), whereas extinction rates peaked between 15 and 10 Ma470

(M = {0.05, 0.3, 0.01}).471

3. Time-variable birth-death model with 4 rate shifts in origination (at 30, 18, 15, 7 Ma)472

and 4 rate shifts in extinction (at 25, 22, 17, 2). Origin time was set to 45 Ma, and the473

rates between shifts were: Λ = {0.3, 0.07, 0.6, 0.05, 0.3} and474
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M = {0.02, 0.6, 0.05, 0.2, 0.5}.475

We simulated 100 datasets under each scenario assuming a homogeneous Poisson process of476

preservation with rate drawn from a uniform distribution q ∼ U [0.5, 1.5]. To avoid477

extremely small or large datasets, we constrained the simulations to yield between 150 and478

250 lineages. We analyzed each dataset using both BDMCMC and RJMCMC, running for479

each algorithm 2,000,000 MCMC iterations, sampling every 1,000 iterations.480

We assessed the performance of the BDMCMC and RJMCMC algorithms by481

quantifying their ability to infer the correct number of rate shifts and the accuracy and482

precision of the origination and extinction rates, marginalized within 1 Myr time bins. We483

computed the posterior probability of models with different numbers of rate shifts based on484

their sampling frequencies and compared them with the true values used to simulate the485

data. To quantify the accuracy of rate estimates, we used the posterior mean of the486

marginal rates at different times and calculated the mean absolute percentage error487

(MAPE), i.e. the absolute percentage error between the estimated rate (rest) and the true488

rate (rtrue), computed as (|rest − rtrue|)/rtrue, averaged across rates and among simulations.489

We also summarized the precision of the rate estimates in terms of size of the 95% CI490

relative to the mean rate, again averaged across rates and among simulations.491

FastPyRateC: A new C++ library for PyRate492

Because of the large number of parameters estimated in a typical PyRate analysis493

and due to the inherent iterative nature of MCMC algorithms, the analyses of large fossil494

datasets (e.g. hundreds or thousands of lineages) can be very time consuming. We495

therefore developed a Python module named FastPyRateC to boost the performance of the496

analysis. This module consists of a SWIG (http://www.swig.org/) wrapper to a fast C++497

implementations of PyRate core functions such as the main likelihood functions (e.g.498
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preservation models and most available birth-death models). This module is pre-compiled499

for the main operating systems (see Software availability) and can be easily compiled using500

a Python installation script and requires a single external dependency, the C++ boost501

library (http://www.boost.org/).502

We assessed the improvement in performance by running analyses on three datasets503

of 50, 150, and 300 lineages (with 543, 1368, and 2736 fossil occurrences, respectively). We504

ran 100,000 RJMCMC iterations under the HPP, NHPP, and TPP models coupled with505

the Gamma model of rate heterogeneity among lineages. Analyses were run on a506

Macintosh computer with a 3.1 GHz Intel Core i7 processor. We ran with and without the507

FastPyRateC library to compute the speed-up achieved by the C++ library and508

estimate the time necessary to run the default 10M iterations, which are the default509

number of iterations in PyRate.510

Empirical case study511

We demonstrate the new PyRate implementation by analyzing genus-level fossil512

occurrences of marine mammals recently compiled by Pimiento et al. (2017). The data513

included 535 genera, 73 of which are extant, and 4,740 occurrences spanning from the514

Eocene to the recent. Since the dating of most fossil occurrences is given as a temporal515

range, we resampled the age of each occurrence uniformly from their range and produced 10516

randomized input files (as in Silvestro et al., 2014b). We then repeated all analyses on each517

replicate and combined the results to incorporate dating uncertainties in our estimates.518

First of all, we ran the a model test to choose the most appropriate preservation519

model. We tested the HPP and NHPP models as well as a TPP model with rate shifts set520

at the boundaries between epochs in the Cenozoic. We therefore ran the subsequent521

analyses using the best fitting preservation model and added the Gamma option to allow522

for rate heterogeneity across lineages. We assumed a birth-death process with rate shifts523
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and used the RJMCMC algorithm to determine the number and temporal placement of the524

shifts and the origination and extinction rates through time. After running 50 million525

iterations, sampling every 10,000 iterations, we combined samples of the 10 randomized526

datasets to infer the number of rate shifts and plot origination and extinction rates through527

time. The complete list of commands utilized for the empirical analyses presented here is528

available as Supplementary Information.529

Additional features530

We incorporated several new or improved utility functions in the updated PyRate.531

For example, the output of RJMCMC can be processed with a single command to obtain532

plots of origination and extinction rates through time (posterior mean and 95% credible533

intervals) and estimated times of rate shift. The command also runs an MCMC simulation534

in the background to compute Bayes factors as described above, to determine which535

periods of times include a statistically significant rate shift. We also included functions to536

plot the number of sampled lineages through time, based on the times of origination and537

extinction inferred using PyRate.538

Finally, we implemented a new algorithm to help researchers cleaning fossil539

occurrence datasets. Working with fossil occurrences often requires expert taxonomic540

assessment of species or genera to verify that the taxonomy is as consistent as possible541

within a dataset. Although such an assessment cannot be fully automatized, some542

data-cleaning steps can be performed in a more efficient way. One problem we have often543

experienced is that occurrences that are identified as belonging to one species, may be544

assigned slightly different Latin names (depending on the author or database). This might545

be due to typos or to slight variations in spelling, especially when looking at occurrences546

from different online databases, such as The Paleobiology Database547

(https://paleobiodb.org), the NOW database (http://www.helsinki.fi/science/now/), or548
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Miomap (http://www.ucmp.berkeley.edu/miomap/). Examples of this are Amblonyx549

cinerea vs Amblonyx cinereus or Felis libyca vs Felis lybica. The presence of typos and550

spelling variation in species names can artificially inflate the number of lineages analyzed,551

therefore biasing the results. However, manually identifying these spelling issues can be552

extremely difficult and time consuming when dealing with thousands of occurrences.553

We implemented, as a utility function in PyRate, a machine-learning algorithm that554

classifies species names (genus + species epithet) and identifies groups of names that only555

differ by typos or small spelling differences. We designed the algorithm specifically to deal556

with Latin names applying different scores to quantify differences between strings, based on557

common variations in Latin nomenclature (e.g. gender differences: antiquus vs antiquum).558

The output of this algorithm is a list of species names that are likely to represent variations559

of the same taxonomic entity, after which it is up to the scientist to decide if the names560

indeed belong to the same species and which name should be used in the final dataset. We561

emphasize that the algorithm does not check for synonyms (for which a look-up table562

would be needed), but only identifies spelling variations.563

We tested this algorithm on a large fossil dataset that combined all mammalian564

occurrences identified to a species level retrieved from PBDB (accessed on Feb 9, 2018) and565

from NOW (accessed on May 9, 2017). The combined dataset included 106,937 occurrences566

and 19,231 unique species names.567
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Results568

Testing among preservation models569

The maximum likelihood test implemented to distinguish among alternative570

preservation processes provides a reliable tool to infer the correct model. Extensive571

simulations show that different δAIC thresholds can be applied for different competing572

models. For instance if the best model (smallest AIC) is obtained for NHPP, we can reject573

the HPP model as a valid alternative only if AICHPP − AICNHPP > 3.8 (for a 5% error574

tolerance) or AICHPP − AICNHPP > 8 (for a 1% error tolerance). However, the TPP575

model can be confidently rejected simply based on AICTPP − AICNHPP > 0. The full set576

of thresholds derived from our simulations is given in Table 1 and incorporated in the577

model-test as implemented in PyRate 2.0.578

Our simulations show that the ability to statistically distinguish between579

preservation models (computed as δAIC scores) generally increases with the size of the580

dataset, i.e. number of lineages and number of occurrences (Fig. SS1–SS3). Increasing581

preservation rates also yield stronger support for the correct model. Additionally, there is582

an effect of the extinction rate, whereby lower extinction rates are associated with better583

differentiation between preservation models. This effect is likely linked with the increased584

mean longevity of lineages, which therefore tend to accumulate more occurrences.585

Performance of RJMCMC compared with BDMCMC586

The RJMCMC algorithm outperformed the BDMCMC alternative in most587

simulations (Table 2). The RJMCMC method identified the correct number of shifts in588

origination rates in 88% of the simulations. In comparison, the BDMCMC method589

identified correct model of origination in 52% of the simulations. This value is mostly590
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driven by a consistent underestimation of rate heterogeneity in simulation scenarios 2 and591

3. The RJMCMC analyses identified the correct model of extinction in 67% of the592

simulations. We note that the correct number of shifts in extinction rates was found in593

99% of the simulations under scenarios 1 and 2, whereas under scenario 3 the algorithm594

consistently inferred four rates instead of five, suggesting that one of the rate shifts did not595

leave a significant signature on the simulated fossil data. The BDMCMC analyses correctly596

identified the absence of extinction rate shifts in scenario 1, but were substantially less597

accurate than RJMCMC analyses in finding the correct model in the case of rate598

heterogeneity (Table 2).599

The marginal rates of origination and extinction were estimated with high accuracy600

by both BDMCMC and RJMCMC under scenario 1 (constant rates), with a MAPE around601

0.08 to 0.15 (Table 3, Fig. SS4). In contrast, simulations based on time-variable origination602

and extinction rates show that RJMCMC estimates are substantially more accurate than603

those yielded by BDMCMC (Fig. 3; SS5). For instance for scenario 2, RJMCMC estimates604

marginal rates with an average MAPE of around 0.30, one order of magnitude lower than605

the MAPE ranging from 1.83 to 2.52 under BDMCMC. These results reflect the better606

ability of RJMCMC to recover the correct birth-death model, in terms of number of rate607

shifts (Table 2).608

Performance of the FastPyRateC library609

The new C++ library boosted dramatically the PyRate performance, with different610

levels of speed-up depending on the underlying model and the size of the dataset. In our611

tests the C++ version was between 5 and 8 times faster than the Python implementation612

when using the HPP model of preservation. Under the TPP model, the speed-up reached613

26 times for a dataset of 300 taxa (Fig. 4). This performance improvement has a very614

significant impact on the feasibility of analyzing large dataset. For instance, an analysis of615
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300 taxa with TPP model, running 10 million RJMCMC iterations (default in PyRate) on616

a reasonably fast CPU, takes about three hours using the FastPyRateC library, whereas617

it takes around three days using the all-Python version. The magnitude of this618

performance boost becomes crucial when it comes to the analysis of large empirical619

datasets. The analysis of Cenozoic marine mammals presented in this study (more than620

500 taxa, 50 million MCMC iterations) takes about 14 hours on a 3.1 GHz CPU, using the621

C++ library. In contrast, the same analysis performed using the python implementation622

would need more than 19 days to complete (i.e. more than 30 times longer).623

One of the advantages of the current configuration of the FastPyRateC library624

(as compared to e.g. a complete re-implementation of PyRate in C++) is that the switch625

between Python and C++ languages happens ‘under the hood’. Thus, using or not the626

library does not change the way the program’s usage and PyRate automatically switches to627

an all-Python version if the C++ library is incompatible with the current operating628

system. Future program developments will be initially implemented in Python with629

internal functions being additionally brought to C++ to improve performance.630

Diversification dynamics of Cenozoic marine mammals631

The maximum likelihood test preservation models resulted in a very strong support632

for the TPP model against HPP (δAICc = 324.23) and against the NHPP model (δAICc =633

799.41). The TPP model assumed independent rates at each epoch and included 7634

parameters (for Eocene, Oligocene, Miocene, Pliocene, Pleistocene, Holocene). We635

therefore ran the PyRate analyses using a TPP model of preservation, coupled with rate636

heterogeneity across lineages (Gamma model).637

The estimated preservation rates showed a strong increase towards the recent. For638

instance, the preservation rate estimated for the Miocene was 1.15 (95% CI: 0.89–1.40),639

whereas in the Pliocene it was 4.06 (95% CI: 3.07–5.30), raising in the Pleistocene to 8.52640
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(95% CI: 6.80–10.67). Furthermore, we found evidence of strong heterogeneity of641

preservation across lineages, as identified by the estimated parameter α = 0.88 (95% CI:642

0.75–1.01). This indicates that, for instance, while the average preservation rate in the643

Miocene was 1.15, the rate varied across lineages between 0.14 and 2.71 (median rate =644

0.88).645

The RJMCMC algorithm estimated a considerable amount of temporal variation in646

the origination and extinction rates. Constant-rate birth-death models were never sampled647

(i.e. null estimated posterior probability). The estimated number of rate shifts was 3 (95%648

CI: 2–5) for origination and 2 for extinction (95% CI: 2–5).649

Origination rates (Fig. 5a) were highest in the early Eocene, indicating a rapid650

diversification of marine mammals, but potentially also reflecting the lack of Paleocene651

records in the dataset (this is also reflected in large credible intervals). After a decrease in652

the late Eocene, origination rates increased again during the Oligocene and early Miocene.653

The lowest origination rates were estimated between the late Miocene and the early654

Pleistocene, after which they show a mild increase. Four times of rate shift (Fig. 5b)655

received positive support by Bayes factors (i.e. 2logBF > 2) including 48–45.5, 32–29,656

21–18.5, 11–15, and 1.5–1.25 Ma.657

Inferred extinction rates (Fig. 5c) were stable across most of the Eocene and658

Oligocene and dropped in the Early Miocene. The rates increased then dramatically659

between the late Miocene and high levels of extinctions were inferred for the Pliocene and660

Pleistocene, although we estimated a mild rate decrease in the Middle Pleistocene. Bayes661

factors indicated strong support (i.e. 2logBF > 6) for rate shifts 23–21 and 6.25–5.75 Ma662

and positive support of shifts 16–15 and 1.25-1.75 Ma (Fig. 5d).663
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Identification of spelling variations in species names664

The analysis of 19,231 unique species names (global mammalian fossil occurrences665

from PBDB and NOW) involved the screening of 116,334,631 pairs of species names and666

took about 6 hours on a 3.1 GHz Intel Core i7 CPU. The function identified 174 species667

names as most likely (rank 0) referring to a set of 87 actual taxonomic entities. At lower668

similarity score (rank 1), the algorithm found 241 names which likely represent 120 actual669

taxonomic entities. The implemented function only flags taxa names likely representing670

spelling variations of the same taxonomic entity, but does not modify the original data. It671

is then the researcher’s task to decide which spelling is the most appropriate.672

Examples of species names identified as potential variants of the same taxonomic673

entity (with ranks 0 or 1) included: Deinotherium laevius and Deinotherium levius,674

Prosiphneus ericksoni and Prosiphneus eriksoni, Plionictis oaxacaenis and Plionictis675

oaxacaensis, Nannodectes gidleyi and Nannodectes gildeyi. Although a detailed assessment676

of all these matches goes beyond the purpose of this study (but the full list of identified677

species names is given in Tables S1–S4), we estimate that the fraction of false positives to678

be very low, with only few cases (probably fewer than 5%) identifying species names that679

indeed belong to different lineages, e.g. Eomys minor Geomys minor. The output also680

includes names with a lower similarity score (ranks 2–6), which almost entirely include681

similar names belonging to different lineages, such as Sus arvernensis and Ursus682

arvernensis. These results suggest that the algorithm has a very low rate of false negatives,683

i.e. a good power.684
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Discussion685

Methodological advancements686

We presented a flexible and powerful suite of quantitative methods to infer687

macroevolutionary processes using fossil occurrence data. These methods are part of a688

major update of the program PyRate and include more realistic models of preservation,689

new algorithms to test across models and to infer the temporal heterogeneity of origination690

and extinction rates.691

Preservation processes are typically modeled by constant or time varying sampling692

probabilities (Foote, 2000; Liow and Nichols, 2010; Bapst and Hopkins, 2016), which are693

however constant across lineages. In PyRate, different preservation processes with constant694

or time-variable mean rates can be coupled with rate heterogeneity across lineages, and695

virtually all the empirical datasets we have analyzed so far (including the marine mammals696

analyzed here) support the idea that preservation varies both through time and among697

taxa. We demonstrated a maximum likelihood test allowing a statistical comparison among698

models, which facilitates an objective, data-driven, selection of the most appropriate model699

of fossil preservation.700

We implemented a new algorithm that uses RJMCMC to estimate birth-death701

processes and jointly infer (in addition to the preservation parameters) the number and702

temporal placement of rate shifts and marginal origination and extinction rates through703

time. We found RJMCMC to outperform the previously implemented BDMCMC704

algorithm, providing more accurate rates and estimated number of shifts. The main705

advantages of RJMCMC are that 1) it provides marginal rates that account for706

uncertainties in the time and number of rate shifts, 2) it allows us to easily compute Bayes707

factors to assess statistically significant times of rate shift, and 3) its prior on the number708
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of rate shifts is itself estimated from the data (unlike in BDMCMC, where it is fixed a709

priori (Silvestro et al., 2014b)), thus making the algorithm more versatile and able to710

adapt to different datasets.711

Although the high number of parameters inferred by the PyRate model and the use712

of Monte Carlo sampling render the method computationally intensive, with the new C++713

library we achieved a considerable speed-up (orders of magnitude). This and the714

ever-increasing performance of computers and clusters make PyRate a suitable method715

even for relatively large datasets.716

Inferring macroevolutionary rates from fossils717

A large proportion of macroevolutionary research focuses on quantifying718

diversification process aiming to understand how biodiversity has evolved through time and719

space and what drives the rise and demise of clades in the tree of life (e.g. Raup and720

Sepkoski, 1984; Raup, 1986; Foote et al., 2007; Alroy, 2008; Quental and Marshall, 2013;721

Benton et al., 2014; Cantalapiedra et al., 2015; Ezard et al., 2016). The fossil record has722

been used to infer diversification and extinction processes for long time and arguably723

provides, at least for some organisms, the most informative available data for724

understanding macroevolutionary dynamics (Marshall, 2017).725

Different approaches have been developed to this end, which typically jointly infer726

sampling, origination, and extinction rates (Foote, 2000; Liow and Finarelli, 2014; Alroy,727

2008, 2014). PyRate is a software designed to analyze fossil data in a Bayesian framework.728

Its main strengths are: 1) enabling users to analyze the entire fossil occurrence record (i.e.729

not only first and last appearances) and all described lineages (including singletons and730

extant taxa) 2) incorporating parameter uncertainties using Bayesian algorithms, and 3)731

using explicit probabilistic model selection to infer the adequate complexity of the732

preservation and birth-death models based on the data. Because fossil data are often733
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limited in size, it is essential to adequately quantify the uncertainty around each parameter734

estimate to avoid interpreting the results with a false sense of precision. Thus the use of a735

Bayesian framework is well suited for the task, providing credible intervals for each736

parameter rather than point estimates, and simultaneously integrating the uncertainties737

associated with all parameters (Gelman et al., 2013).738

Importance of model-testing in estimating origination and739

extinction: Comparing PyRate with other methods740

Using a robust and explicit model selection framework is crucial to avoid741

over-parameterization and this represents one of the biggest novelties of the PyRate742

method, compared with other approaches. Indeed, treating origination, extinction and743

preservation rates in predefined time bins as independent parameters (i.e. without744

explicitly model-testing) is common practice in paleobiological studies of macroevolution745

(Foote, 2003; Liow and Finarelli, 2014; Alroy, 2015), and analogous models are available in746

PyRate as well (Silvestro et al., 2015b). However, this practice may generate spurious747

results if the amount of data is insufficient to confidently estimate all the parameters748

(Smiley, 2018), which is a general problem with overparameterization (Burnham and749

Anderson, 2002). The RJMCMC algorithm presented here and the other algorithms750

implemented in PyRate infer the amount of rate variation directly from the data.751

Although we focused here on algorithms that simultaneously optimize the parameters and752

the model (RJMCMC and BDMCMC), other methods to avoid overparameterization are753

available in PyRate, based on the estimation of model marginal likelihoods (Silvestro et al.,754

2014b), Bayesian variable selection (Silvestro et al., 2015a), and Bayesian shrinkage755

(Silvestro et al., 2015b, 2017). Using these methods, the complexity of the model adapts to756

the signal provided by the data and their statistical power, so that only statistically757
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significant rate changes are identified. This procedure also provides a formal approach to758

assess whether apparent rate variations are not just the result of the stochastic nature of a759

constant rate birth-death process.760

In order to demonstrate the general importance of explicit model testing in the761

estimation of origination and extinction rates, we replicated some of the analyses recently762

presented by Smiley (2018). Smiley (2018) tested the performance of three methods,763

namely per capita rate method (Foote, 2000), the three-timer method (Alroy, 2008) and764

the capture-mark-recapture (CMR) method (Liow and Finarelli, 2014) under several765

preservation and diversification scenarios.766

Here, we analyzed datasets simulated under constant speciation and extinction rates767

(set to λ = 0.2 and µ = 0.1) with low preservation rate (so that the sampling probability768

per lineage per Myr equals 0.3), i.e. following step-by-step the simulation settings of769

Smiley’s scenario “R30%”. We then generated and analyzed additional datasets following770

Smiley’s scenario “IncR” (where the sampling probabilities increased linearly through time771

from an initial 0.10 to 0.50), and scenarios “StratR” and “FreqR”, where preservation rates772

change over times as predicted by empirical data (based on the rock record and on North773

American fossil record, respectively) (Smiley, 2018). We simulated 100 datasets under each774

preservation scenario and analyzed them in PyRate, using the RJMCMC algorithm to infer775

origination and extinction rates and any evidence of rate variation and summarized the776

results across simulations.777

PyRate correctly inferred that origination and extinction rates were constant778

through time under all preservation scenarios and the estimates are substantially more779

robust and less volatile than those from other methods which do not explicitly optimize the780

number of parameters in the model based on the available data (Fig. 6). The credible781

intervals inferred by PyRate also show that decreasing preservation rates reduce the level782

of confidence in origination and extinction rate estimates (Fig. 6B–D), as expected783
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(Smiley, 2018). Although a formal comparison between the performance of PyRate and784

other methods is beyond the scope of this study, these results indicate that optimizing the785

complexity of the model based on the data is crucial to obtaining realistic estimates of786

diversification processes from incomplete fossil data. Based on these results, we recommend787

to always verify the statistical support for the number of model parameters, when inferring788

diversification dynamics from fossil data.789

Conclusions790

PyRate is an open-source project in which researchers are welcome to contribute code,791

ideas, and feedback through it’s Github repository. It includes numerous birth-death792

models for taxonomic diversification as well as several preservation models in which rates793

can vary through time and across lineages. The hierarchical Bayesian methods794

implemented in PyRate allow users to assess the statistical support of different models and795

to jointly infer all the parameters. Credible intervals are inferred for all model parameters796

(e.g. preservation, origination, and extinction rates) and can be used to quantify the level797

of uncertainties surrounding the estimates.798

Importantly, PyRate requires a minimum number of a priori decisions from the user799

and, while each setting can be accessed through specific commands, default values and800

settings are set to adapt to most datasets. PyRate runs as a stand-alone command-line801

program and running the software does not require any knowledge of Python from the user.802

The program’s package also includes many utility functions that can be used to plot and803

summarize the results, process multiple output files, and parse large datasets to identify804

potential spelling variation in taxon names using a built-in machine learning classifier.805

Although we focused here on diversification processes in which origination and806

extinction rates change through time, several other models have been implemented in807
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PyRate enabling users to test specific hypotheses, e.g. about diversity dependent808

diversification with competition within and among clades (Pires et al., 2017), correlations809

to biotic and abiotic factors (Lehtonen et al., 2017), age-dependent and trait-dependent810

extinction rates (Hagen et al., 2017; Piras et al., 2018). The versatility of PyRate’s811

Bayesian hierarchical models enables researchers to analyze the growing amount of available812

fossil occurrence data and assess alternative hypotheses in a statistically robust framework.813

Software availability814

All the models described in this study are implemented within the open-source package815

PyRate and available at: https://github.com/dsilvestro/PyRate. The program is816

written in Python 2.7 and R and has been tested under the major operating systems817

(MacOS, Windows, and several Linux distributions). A detailed command list and818

tutorials are available in the GitHub repository. In order to provide an easy access to the819

augmented performance of the FastPyRateC library, we pre-compiled modules for 64820

bits versions of Windows, MacOS, and Linux and are available on the PyRate Github821

repository, in addition to the source code.822
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Figure captions992

Figure 1: PyRate’s main analytical structure. The input data consist of993

dated fossil occurrences assigned to lineages, e.g. species or genera (represented by circles994

in A), including singletons and extant taxa. The Bayesian framework jointly estimates the995

lifespans of all lineages (dashed lines), preservation rates (B) and origination and extinction996

rates (C). All parameter estimates are inferred as posterior mean values (solid lines in B997

and C) and 95% credible intervals (shaded areas in B and C).998

Figure 2. Graphical representation of the preservation rate models999

implemented in PyRate. In the HPP model (A) the preservation rate is constant1000

through time and the expected times of origination and extinction (s, e, blue curves) are1001

exponentially distributed. In the NHPP model (B), preservation rates vary throughout the1002

lifespan of a species generating gamma-like expected s, e. The TPP model (C) assumes1003

piece-wise constant preservation rates (e.g. different rates for each Epoch) and the1004

resulting expected s, e combine multiple exponential distributions. All models can1005

incorporate rate heterogeneity across-lineages (Gamma models).1006

Figure 3: Marginal rates through time inferred for simulation scenario 2.1007

The datasets were simulated under decreasing rates of origination (with shifts at 20 and 101008

Ma) and extinction rates (with a peak at 15–10 Ma; true values are shown as dashed lines).1009

Estimates are averaged across 100 simulations with the shaded areas showing 95% credible1010

intervals. The top row shows the origination and extinction rates inferred using the1011

BDMCMC algorithm, whereas the bottom row shows the results of the RJMCMC.1012

Figure 4: Performance comparison between the all-Python1013

implementation of PyRate and its new version using C++ library. Comparisons1014

are based on three datasets of 50, 150, and 300 lineages (see Methods for more details),1015
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analyzed using the RJMCMC algorithm for to infer the number and placement of rate1016

shifts. The datasets were analyzed for 100,000 RJMCMC iterations under three1017

preservation models: HPP (purple circles), NHPP (orange triangles), TPP (green squares).1018

Figure 5: Origination and extinction rates through time in marine1019

mammals. The dataset, obtained from Pimiento et al. (2017), comprised 535 genera and1020

4,740 fossil occurrences. Marginal posterior estimates of origination rates (A) and1021

extinction rates (C) are shown together with the respective 95% credible intervals. These1022

estimates incorporate not only parameter uncertainty, but dating uncertainties (deriving1023

from 10 replicated analyses obtained by resampling the ages of the fossil occurrences), and1024

uncertainties around model selection, since the RJMCMC algorithm samples the number of1025

rate shifts from their joint posterior distribution. Plots on the right show the frequency of1026

sampling a shift in origination (B) and extinction (D) rates within arbitrarily small time1027

bins (here set to 0.5 Myr). Dashed lines show log Bayes factors of 2 and 6 (as inferred from1028

MCMC simulation). Sampling frequencies exceeding these lines indicate positive and1029

strong statistical evidence for a rate shift, respectively.1030

Figure 6: Origination and extinction rates estimated using different1031

methods. The dashed lines indicate the true origination and extinction rates used to1032

simulate the data. Preservation rates were constant in panel A (“R30%”), increasing1033

through time in B (“IncR”), and varying according to empirical estimates in C and D1034

(“stratR” and “FreqR”, respectively). See main text and Smiley (2018) for more details.1035

Green lines show the mean per capita rates based on Foote (2000); purple lines show rates1036

inferred using the three-timer method by Alroy (2008); blue lines indicate rates inferred1037

using the CMR method by (Liow and Finarelli, 2014). These plots are modified from1038

Smiley (2018). The orange lines show the posterior rate estimates inferred by PyRate using1039

RJMCMC (summarizing results from 100 simulated datasets), with shaded areas indicating1040
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the 95% credible intervals.1041

Table captions1042

Table 1: Thresholds for δAIC estimated by simulations to test between1043

different preservation models. Depending on the selected best model (i.e. the one with1044

the lowest AIC score), different thresholds are applied to determine whether the model is1045

significantly better than the alternatives (P < 0.05). Values in parentheses show the1046

thresholds estimated for P < 0.01. Cases in which δAIC values do not exceed the1047

thresholds provided here, indicate that the evidence in the data is not sufficient to1048

confidently choose among preservation models.1049

Table 2: Model testing using RJMCMC and the BDMCMC algorithms.1050

The simulations (replicated 100 times) are based on different number of origination rates1051

(J) and extinction rates (K): 1) J = 1, K = 1; 2) J = 3, K = 3; and 3) J = 5, K = 5. For1052

each value of J and K we estimated the how frequently it was estimated as the best model1053

by RJMCMC and BDMCMC across all replicates. Values in bold represent the frequencies1054

at which the correct models were identified by the algorithms.1055

Table 3: Comparison of accuracy and precision of the marginal1056

origination and extinction rates between the new RJMCMC and the1057

BDMCMC algorithms. Mean absolute percentage errors (MAPE) and precision are1058

averaged across analyses of 100 simulated datasets for each simulation scenario. While the1059

precision of rate estimates (here quantified by the relative size of the 95% credible1060

intervals) is similar between algorithms, the RJMCMC implementation yields substantially1061

more accurate results especially in the presence of rate heterogeneity through time.1062
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Table 1: Thresholds for δAIC estimated by simulations to test between different preservation
models.

Best model δAIC thresholds
HPP NHPP TPP

HPP - 6.4 (17.4) 0 (0)
NHPP 3.8 (8) - 0 (2.4)
TPP 3.2 (6.8) 10.6 (23.3) -
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Table 2: Model testing using RJMCMC and the BDMCMC algorithms.

Simulation 1 Simulation 2 Simulation 3
n. shifts RJ BD RJ BD RJ BD
J = 1 0.83 0.91 0 0 0 0
J = 2 0.17 0.09 0.02 0.42 0.01 0.09
J = 3 0 0 0.98 0.55 0.09 0.6
J = 4 0 0 0 0.03 0.06 0.22
J = 5 0 0 0 0 0.83 0.09
J = 6 0 0 0 0 0.01 0
J = 7 0 0 0 0 0 0
K = 1 0.99 1 0 0 0 0.01
K = 2 0.01 0 0 0.3 0.09 0.7
K = 3 0 0 0.99 0.13 0.23 0.16
K = 4 0 0 0.01 0.56 0.65 0.13
K = 5 0 0 0 0 0.03 0
K = 6 0 0 0 0 0 0
K = 7 0 0 0 0 0 0
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Table 3: Comparison of accuracy and precision of the marginal origination and extinction
rates between the new RJMCMC and the BDMCMC algorithms.

Simulation Algorithm Origination rates Extinction rates
MAPE precision MAPE precision

1 BD 0.086 0.477 0.126 0.517
RJ 0.110 0.462 0.153 0.550

2 BD 1.833 1.393 2.523 2.058
RJ 0.299 1.145 0.326 1.203

3 BD 0.618 1.317 1.267 1.085
RJ 0.319 1.285 0.894 1.110
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Figure 1: PyRate’s main analytical structure. The input data consist of dated fossil occur-
rences assigned to lineages, e.g. species or genera (represented by circles in A), including
singletons and extant taxa. The Bayesian framework jointly estimates the lifespans of all
lineages (dashed lines), preservation rates (B) and origination and extinction rates (C). All
parameter estimates are inferred as posterior mean values (solid lines in B and C) and 95%
credible intervals (shaded areas in B and C).
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Figure 2: Preservation rate models implemented in PyRate. [Full caption in the next page]
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Figure 2. Graphical representation of the preservation rate models implemented in1063

PyRate. In the HPP model (A) the preservation rate (red line) is constant through time1064

and the expected times of origination and extinction (s, e, blue curves) are exponentially1065

distributed. In the NHPP model (B), preservation rates vary throughout the lifespan of a1066

species generating gamma-like expected s, e. The TPP model (C) assumes piece-wise1067

constant preservation rates (e.g. different rates for each Epoch) and the resulting expected1068

s, e combine multiple exponential distributions. All models can incorporate rate1069

heterogeneity across-lineages (Gamma models).1070
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Figure 3: Marginal rates through time inferred for simulation scenario 2. The datasets were
simulated under decreasing rates of origination (with shifts at 20 and 10 Ma) and extinction
rates (with a peak at 15–10 Ma; true values are shown as dashed lines). Estimates are
averaged across 100 simulations with the shaded areas showing 95% credible intervals. The
top row shows the origination and extinction rates inferred using the BDMCMC algorithm,
whereas the bottom row shows the results of the RJMCMC.
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Figure 4: Performance comparison between the all-Python implementation of PyRate and
its new version using C++ library. Comparisons are based on three datasets of 50, 150,
and 300 lineages (see Methods for more details), analyzed using the RJMCMC algorithm for
to infer the number and placement of rate shifts. The datasets were analyzed for 100,000
RJMCMC iterations under three preservation models: HPP (purple circles), NHPP (orange
triangles), TPP (green squares). The right panel shows the computing time necessary to
reach 10 million iterations using the all-Python implementation (red dashed lines) and the
C++ version (blue lines).
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Figure 5: Origination and extinction rates through time in marine mammals. The dataset,
obtained from Pimiento et al. (2017), comprised 535 genera and 4,740 fossil occurrences.
Marginal posterior estimates of origination rates (A) and extinction rates (C) are shown
together with the respective 95% credible intervals. These estimates incorporate not only
parameter uncertainty, but dating uncertainties (deriving from 10 replicated analyses ob-
tained by resampling the ages of the fossil occurrences), and uncertainties around model
selection, since the RJMCMC algorithm samples the number of rate shifts from their joint
posterior distribution. Plots on the right show the frequency of sampling a shift in origination
(B) and extinction (D) rates within arbitrarily small time bins (here set to 0.5 Myr). Sam-
pling frequencies are proportional to the posterior probnability of a rate shift and dashed
lines show log Bayes factors of 2 and 6 (as inferred from MCMC simulation). Sampling
frequencies exceeding these lines indicate positive and strong statistical evidence for a rate
shift, respectively.
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Figure 6: Origination and extinction rates estimated using different methods. [Full caption
in the next page]
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Figure 6. Origination and extinction rates estimated using different methods. The1071

dashed lines indicate the true origination and extinction rates used to simulate the data.1072

Preservation rates were constant in panel A (“R30%”), increasing through time in B1073

(“IncR”), and varying according to empirical estimates in C and D (“stratR” and “FreqR”,1074

respectively). See main text and Smiley (2018) for more details. Green lines show the1075

mean per capita rates based on Foote (2000); purple lines show rates inferred using the1076

three-timer method by Alroy (2008); blue lines indicate rates inferred using the CMR1077

method by (Liow and Finarelli, 2014). These plots are modified from Smiley (2018). The1078

orange lines show the posterior rate estimates inferred by PyRate using RJMCMC1079

(summarizing results from 100 simulated datasets), with shaded areas indicating the 95%1080

credible intervals.1081
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Supplementary materials1082

Analysis protocol for marine mammals1083

We list below the complete list of commands we used in the empirical analysis1084

presented in this study. Note that all commands should be provided as a single line in a1085

terminal (or command prompt), i.e. line breaks used below for graphical reasons should be1086

ignored when reproducing the analyses. All datasets and input data listed below are1087

available at https://github.com/dsilvestro/PyRate in the dataPimientoEtAl2017NEE1088

directory.1089

Generate input data (in R)1090

Load the pyrate utilities script in R (the script is available in the GitHub1091

repository) and use it to convert the tab-separated table of fossil occurrences,1092

named“fossil occs.txt”, (from Pimiento et al., 2017) into a PyRate-formatted input file:1093

source(pyrate_utilities.r)1094

extract.ages(‘fossil_occs.txt’, replicates = 10)1095

This command produces a file named “fossil occs PyRate.py”, which can be used for1096

analysis in Pyrate. We renamed the file to “occs.py” to shorten the commands below.1097

Test among preservation models (in a command-line console)1098

We first test between three preservation models (HPP, NHPP, TPP), where the1099

TPP model was set to assume independent preservation rates within each geological epoch.1100

The boundaries of the epochs are based on http://www.stratigraphy.org and given in a1101

text file named “epochs q.txt”:1102

python PyRate.py occs.py -qShift epochs_q.txt -PPmodeltest1103

-filter_taxa mammals.txt1104

This command launches the maximum likelihood algorithm and the results are printed on1105

screen, providing the maximum likelihood values under each model, and the AICc scores1106

that can be used for model testing (see main text). The screen output also shows which1107

model is preferred and its level of significance compared with other models, based on the1108

AICc thresholds derived from simulations (see main text). Note that, since the original1109

dataset contained other marine megafauna organisms whereas here we decided to focus on1110

mammals only, we used the command -filter taxa mammals.txt to provide a list of1111

mammalian taxa that we want to include in the analysis (whereas all other lineages are1112

dropped).1113
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Run main analysis (in a command-line console)1114

python PyRate.py occs.py -j <rep_n> -A 4 -n 50000000 -s 100001115

-filter_taxa mammals.txt1116

-qShift epochs_q.txt -mG -pP 1.5 01117

where: rep n is the replicate number (here ranging from 1 to 10 in ten replicated analyses),1118

-A 4 specifies that the RJMCMC algorithm should be used, -n specifies the number of1119

iterations, -s specifies the sampling frequency, -qShift specifies that preservation is1120

modeled by a TPP process with independent rates for each epoch, -mG specifies that the1121

TPP model should be coupled by a Gamma model of rate heterogeneity across lineages,1122

and -pP 1.5 0 specifies the shape and rate parameters of the gamma prior on the1123

preservation rates. By setting the rate parameter to 0 we define the parameter as unknown,1124

meaning that PyRate will estimate it after assigning it a hyper-prior (see main text).1125

This analysis produces four output files for each replicate: a summary text file with1126

all the settings used in the analysis and three log files containing the posterior parameter1127

values sampled by the RJMCMC. More details are provided in the online tutorial1128

Combine mcmc log files into one (excluding burnin)1129

PyRate includes a utility function to combine output files from different runs into1130

one file. Assuming that all output files form the previous analyses are in the same1131

pyrate mcmc logs directory, the log files are combined using:1132

python PyRate.py -combLog /pyrate_mcmc_logs -b 1000 -tag mcmc -resample 1001133

python PyRate.py -combLog /pyrate_mcmc_logs -b 1000 -tag sp_rates -resample 1001134

python PyRate.py -combLog /pyrate_mcmc_logs -b 1000 -tag ex_rates -resample 1001135

where: -combLog /pyrate mcmc logs provides the full path to the log files, -b 10001136

specifies that the first 1,000 samples should be removed as burn-in, -tag x specifies that1137

all files containing x in the file name should be combined, and -resample 100 specifies1138

that 100 random samples should be taken from each replicate and saved into the combined1139

log files. These commands generate output files named “combined 10mcmc.log”,1140

“combined 10sp rates.log”, and “combined 10ex rates.log”.1141

Summarize and plot the results1142

The “sp rates.log” and “ex rates.log” files can be used to generate1143

rates-through-time plots using the function:1144

python PyRate.py -plotRJ /pyrate_mcmc_logs -tag combined -grid_plot 0.51145
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where -plotRJ /pyrate mcmc logs specifies the full path to the log files, -tag combined1146

specifies that only files containing “combined” in the file name should be plotted (by1147

default all log files are plotted individually in a single PDF file), and -grid plot 0.51148

defines an arbitrarily small bin size used for plots and to compute Bayes factors.1149

This will generate an R script and a PDF file with the RTT plots showing1150

speciation and extinction rates through time. It will also show histograms with the inferred1151

times of rate shifts and calculate Bayes factors to help determining the time when a rate1152

shift is supported by significant posterior probability. The histograms include two1153

horizontal dashed lines showing the thresholds for positive evidence of a rate shift (bottom1154

line: logBF = 2) and for strong evidence of a rate shift (top line: logBF = 6). Thus, any1155

point in the histogram showing sampling frequencies for a rate shift exceeding the1156

thresholds indicate a time of significant rate change.1157

To quantify the estimated the number of shifts we use:1158

python PyRate.py -mProb pyrate_mcmc_logs/combined_10mcmc_files.log1159

with the results (printed on screen) providing a summary of the most likely numbers of1160

shifts in origination and extinction rates, as inferred by RJMCMC.1161
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Figure S1: Results of model testing when the true model is HPP. Differences in AICc scores
are calculated against alternative models NHPP (in orange) and TPP (in green) and plotted
against several parameters used in the simulations. Scatter plots show that the ability
to statistically distinguish HPP from NHPP increases with the size of the dataset, with
increasing preservation rates, and with decreasing extinction rates. The two histograms
(arbitrarily truncated at dAICc = -20) show the difference in AICc between HPP and the
alternative models. Solid lines indicate the estimated thresholds that yield less than 5%
error rate, dashed lines indicate the 1% thresholds (see main text).
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Figure S2: Results of model testing when the true model is NHPP. Differences in AICc
scores are calculated against alternative models HPP (in purple) and TPP (in green) and
plotted against several parameters used in the simulations. The two histograms (arbitrarily
truncated at dAICc = -20) show the difference in AICc between NHPP and the alternative
models. Solid lines indicate the estimated thresholds that yield less than 5% error rate,
dashed lines indicate the 1% thresholds (see main text).
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Figure S3: Results of model testing when the true model is TPP. Differences in AICc scores
are calculated against alternative models HPP (in purple) and NHPP (in orange) and plotted
against several parameters used in the simulations. The two histograms (arbitrarily trun-
cated at dAICc = -20) show the difference in AICc between TPP and the alternative models.
Solid lines indicate the estimated thresholds that yield less than 5% error rate, dashed lines
indicate the 1% thresholds (see main text).
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Figure S4: Marginal rates through time inferred for scenario 1. The dataset were simulated
under constant rates origination and extinction rates (true values shown as dashed lines).
Estimates are averaged across 100 simulations with the shaded areas showing 95% credible
intervals. The top row shows origination and extinction rates inferred using the BDMCMC
algorithm, whereas the bottom row shows the results of the RJMCMC.
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Figure S5: Marginal rates through time inferred for scenario 3. The dataset were simulated
under variable rates origination and extinction rates (true values shown as dashed lines).
Estimates are averaged across 100 simulations with the shaded areas showing 95% credible
intervals. The top row shows origination and extinction rates inferred using the BDMCMC
algorithm, whereas the bottom row shows the results of the RJMCMC.
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Table S1: Identified variation in species name spelling. Lower rank indicate higher confidence
that a pair of species names in fact refer to a single taxonomic entity. Although we report
here only pairs of names ranking 0 and 1, our algorithm returns results at higher ranks
as well, which are however more likely to group names with some degree of similarity, but
referring to different taxa.

taxon 1 taxon 2 rank
Aaptorcytes ivyi Aaptoryctes ivyi 0
Aepycamelus proceras Aepycamelus procerus 0
Agnotherium antiquum Agnotherium antiquus 0
Agriotherium sivalense Agriotherium sivalensis 0
Amblonyx cinerea Amblonyx cinereus 0
Anatolostylops Zhaii Anatolostylops zhaii 0
Anchitheriomys fluminis Anchitheriomys fluminus 0
Anomalomys aliverensis Anomalomys aliveriensis 0
Arvicola cantiana Arvicola cantianus 0
Barytherium grave Barytherium graves 0
Capra aegagrus Capra aegargus 0
Conacodon harbourae Conacodon harbouri 0
Crocidura kornfeldi Crocidura kronfeldi 0
Damaliscus dorcas Damaliscus dorcus 0
Deinotherium laevius Deinotherium levius 0
Democricetodon vindobonensis Democricetodon vindoboniensis 0
Diacodexis ilicis Diacodexis ilicus 0
Dichodon cervinum Dichodon cervinus 0
Dissacus praenuntis Dissacus praenuntius 0
Elephas nawataensis Elephas nawatensis 0
Enginia djampolati Enginia djanpolati 0
Esthonyx spatularis Esthonyx spatularius 0
Eucricetodon collatum Eucricetodon collatus 0
Felis libyca Felis lybica 0
Gigantocamelus spatula Gigantocamelus spatulus 0
Glossotherium garbani Glossotherium garbanii 0
Hexaprotodon imaguncula Hexaprotodon imagunculus 0
Hipparion aethiopicum Hipparion ethiopicum 0
Hyaenodon brevirostris Hyaenodon brevirostrus 0
Hypsamasia seni Hypsamasia senii 0
Hystrix brachyura Hystrix brachyurus 0
Kenyapotamus coryndonae Kenyapotamus coryndoni 0
Khirtharia inflata Khirtharia inflatus 0
Lantanotherium sansaniense Lantanotherium sansaniensis 0
Lycaon picta Lycaon pictus 0
Macaca robustus Macacus robustus 0
Macaca sylvana Macaca sylvanus 0
Maremmia haupti Maremmia hauptii 0
Mesohippus bairdi Mesohippus bairdii 0
Microtia magna Mikrotia magna 0
Microtia maiuscula Mikrotia maiuscula 0
Microtia parva Mikrotia parva 0
Miocochilius federicoi Miocochilus federicoi 0
Mookomys altifluminis Mookomys altifluminus 0
Muntiacus muntjac Muntiacus muntjak 0
Mustela eversmanni Mustela eversmannii 0
Mustela sibirica Mustela sibiricus 0
Myotis bechsteini Myotis bechsteinii 0
Nannodectes gidleyi Nannodectes gildeyi 0
Pachyacanthus suessi Pachyacanthus suessii 0
Pakilestes lathrius pakilestes lathrius 0
Palaeogale minuta Palaeogale minutus 0
Pantolambda cavirictum Pantolambda cavirictus 0
Paradelomys spaeleus Paradelomys spelaeus 0
Paraenhydrocyon josephi Parenhydrocyon josephi 0
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Table S2: Identified variation in species name spelling - continued

taxon 1 taxon 2 rank
Paraenhydrocyon robustus Parenhydrocyon robustus 0
Paraenhydrocyon wallovianus Parenhydrocyon wallovianus 0
Parvicornis occidentalis Parvicornus occidentalis 0
Peratherium africanum Peratherium africanus 0
Petenyia concisa Petenyia concise 0
Phlaocyon multicuspis Phlaocyon multicuspus 0
Pliocervus pentelici Pliocervus pentelicus 0
Pliopetaurista rugosa Pliopetaurista rugosus 0
Presbytis cristata Presbytis cristatus 0
Prolagus aeningensis Prolagus oeningensis 0
Prolapsus sibilatoris Prolapsus sibilatorius 0
Protapirius obliquidens Protapirus obliquidens 0
Protapirius simplex Protapirus simplex 0
Pseudhipparion curtivallum Pseudohipparion curtivallum 0
Pseudhipparion gratum Pseudohipparion gratum 0
Pseudhipparion hessei Pseudohipparion hessei 0
Pseudhipparion retrusum Pseudohipparion retrusum 0
Pseudhipparion simpsoni Pseudohipparion simpsoni 0
Pseudhipparion skinneri Pseudohipparion skinneri 0
Scapanus schultzi Scapanus shultzi 0
Serengetilagus praecapensis Serengetilagus precapensis 0
Sinopa aethiopica Sinopa ethiopica 0
Sivameryx palaeindicum Sivameryx palaeindicus 0
Spermophilinus turolensis Spermophilinus turoliensis 0
Spurimus scotti Spurimus scottii 0
Telmatherium validum Telmatherium validus 0
Tethytragus koehlerae Tethytragus koehleri 0
Thryptacodon orthogonius Thyrptacodon orthogonius 0
Thylogale billardieri Thylogale billardierii 0
Tragelaphus angasi Tragelaphus angasii 0
Trigonictis cooki Trigonictis cookii 0
Utahia carina Utahia carini 0
Absarokius ganzini Absarokius gazini 1
Absarokius meteocus Absarokius metoecus 1
Adilophontes brachykolos Adilophontes brackykolos 1
Adunator fredericki Adunator fredricki 1
Aelurodon aesthenostylus Aelurodon asthenostylus 1
Aframonius diedes Aframonius diedies 1
Agnotocastor coloradenesis Agnotocastor coloradensis 1
Aguascalientia wilsoni Aquascalientia wilsoni 1
Allosminthus diconjugatus Allosminthus uniconjugatus 1
Amphicynodon teilhardi Amphicyonodon teilhardi 1
Amphimoschus ponteleviensis Amphimoschus pontileviensis 1
Anchitherium clarencei Anchitherium clarenci 1
Apatasciuravus bifax Apatosciuravus bifax 1
Apatasciuravus jacobsi Apatosciuravus jacobsi 1
Archaeocyon falchenbachi Archaeocyon falkenbachi 1
Archaeohippus penultimatus Archaeohippus penultimus 1
Ardynomys saskatchewaensis Ardynomys saskatchewanensis 1
Asiaparamya schevyrevae Asiaparamys shevyrevae 1
Asoriculus gibberodon Soriculus gibberodon 1
Avunculus didelphodonti Avunculus didelphodontidi 1
Bassaricyonoides stewartae Bassicyonoides stewarti 1
Buhakia mogharensis Buhakia moghraensis 1
Capricamelus gettryi Capricamelus gettyi 1
Chilotherium chabereri Chilotherium habereri 1
Cosoryx cerroensis Cosoryx cerrosensis 1
Cosoryx ilfonensis Cosoryx ilfonsensis 1
Cricetulus migratorius Cricetus migratorius 1
Cricetus barrierei Cricetus barrieri 1
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Table S3: Identified variation in species name spelling - continued

taxon 1 taxon 2 rank
Diacronus anhuiensis Diacronus wanghuensis 1
Didymictis protenus Didymictis proteus 1
Dilophodon minisculus Dilophodon minusculus 1
Dimylechinus bernouillii Dimylechinus bernoullii 1
Distylomys qianlinshanensis Distylomys qianlishanensis 1
Domninoides mimcus Domninoides mimicus 1
Dorcatherium peneckei Dorcatherium penekei 1
Elephas maghrebiensis Elephas moghrebiensis 1
Elphidotarsius shotgunensis Elphidotarsius shotgunesis 1
Enhydrocyon pahinisintewakpa Enhydrocyon pahinsintewakpa 1
Eomys minor Geomys minor 1
Eomys orientalis Heomys orientalis 1
Eporeodon major Leptoreodon major 1
Euoplocyon spissidens Euplocyon spissidens 1
Eutypomys hibernodus Eutypomys hybernodus 1
Gaillardia thompsoni Gaillardia thomsoni 1
Geomys caranzai Geomys carranzai 1
Hesperidoceras merlae Hesperoceras merlae 1
Holmesina septentriolalis Holmesina septentrionalis 1
Homotherium crusafonti Homotherium crusifonti 1
Hylomeryx annectans Hylomeryx annectens 1
Hyopsodus minisculus Hyopsodus minusculus 1
Hyopsodus walcottianus Hyopsodus wolcottianus 1
Hystrix arayanensis Hystrix aryanensis 1
Juxia sharamurenensis Juxia sharamurense 1
Kamoyapithecus hamiltoni Kamoyopithecus hamiltoni 1
Kobus ancesrocera Kobus ancystrocera 1
Lantanotherium dehmi Lanthanotherium dehmi 1
Lantanotherium sanmigueli Lanthanotherium sanmigueli 1
Lantanotherium sansaniense Lanthanotherium sansaniensis 1
Lantanotherium sansaniensis Lanthanotherium sansaniensis 1
Leakeytherium hiwegi Leakitherium hiwegi 1
Macrognathomys gemmacolis Macrognathomys gemmacollis 1
Mammuthus lamarmorae Mammuthus lamarmorai 1
Marfilomys aewoodi Marlomys aewoodi 1
Megantereon hesperus Meganteron hesperus 1
Microdyromys aegercii Miodyromys aegercii 1
Microdyromys alter Miodyromys alter 1
Microdyromys biradiculus Miodyromys biradiculus 1
Miophiomys arambourgi Myophiomys arambourgi 1
Mirabella anatolica Mirrabella anatolica 1
Mirabella tuberosa Mirrabella tuberosa 1
Muscardinus avellanarius Muscardinus avellanus 1
Myomimus multicrestatus Myomimus multicristatus 1
Myomimus persanatus Myomimus personatus 1
Myotis aemulus Myotis gemulus 1
Nakusia shahrigensis Nakusia sharigensis 1
Navahoceros lacruensis Navahoceros lascrucensis 1
Neotragocerus lindgreni Neotragocerus lingreni 1
Nimravides pediomus Nimravides pedionomus 1
Nyctitherium christopheri Nyctitherium cristopheri 1
Oregonomys pebblespringensis Oregonomys pebblespringsensis 1
Osbornodon sesnoni Osbornodon sesoni 1
Paenepetenyia zhudingi Paeneptenyia zhudingi 1
Pantolambda intermedium Pantolambda intermedius 1
Paracamelus agguirrei Paracamelus aguirrei 1
Paracynarctus kelloggi Paracynarctus kellogi 1
Paralactaga andersoni Paralactaga anderssoni 1
Parapliosaccomys oregonensis Parapliosaceomys oregonensis 1
Paratapirus helveticus Paratapirus helvetius 1
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Table S4: Identified variation in species name spelling - continued

taxon 1 taxon 2 rank
Pareumys guensbergi Pareumys guensburgi 1
Parutaetus chicoensis Parutaetus chilensis 1
Phenacodus intermedius Phenacomys intermedius 1
Pipestoneia douglassi Pipestonia douglassi 1
Platygonus brachirostris Platygonus brachyrostris 1
Pleurolicus selardsi Pleurolicus sellardsi 1
Pliohoca etrusca Pliophoca etrusca 1
Plionictis oaxacaenis Plionictis oaxacaensis 1
Pogonodon platycopis Pogonodon platycopsis 1
Potamotherium vallentoni Potamotherium valletoni 1
Prolagurus aeningensis Prolagus aeningensis 1
Promartes vantassalensis Promartes vantasselensis 1
Proscalops intermedius Proscalops internedius 1
Prosiphneus ericksoni Prosiphneus eriksoni 1
Prosthennops xiphidonticus Prosthennops xiphodonticus 1
Pseudocylindrodon texanus Pseudocylindrodon textanus 1
Repomys panacaenensis Repomys panacaensis 1
Rhinoceros philippensis Rhinoceros philippinensis 1
Sciurion campestre Sciurion capestre 1
Sifrhippus sandrae Sifrihippus sandrae 1
Spermophilus howelli Spermophilus shotwelli 1
Spermophilus johnsoni Spermophilus johnstoni 1
Stratimus strobeli Stratimus strobelli 1
Suleimania ruemkae Suleimania ruemkeae 1
Synaptomys mogoliensis Synaptomys mongoliensis 1
Systemnodon tapirinus Systemodon tapirinus 1
Tayassu edensis Tayassu endensis 1
Theridomys golpae Theridomys golpei 1
Theriodictis floriadanus Theriodictis floridanus 1
Todralestes variabilis Todralestes variablis 1
Trogomys rupimenthae Trogomys rupinimenthae 1
Wellsiana toricornuta Wellsiana torticornuta 1
Zodiolestes daemonelixensis Zodiolestes daimonelixensis 1
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