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Robust Design for Coalescent Model Inference

Kris V Parag and Oliver G Pybus

Abstract—The coalescent process models how unobserved changes in
the size of a population influence the genealogical patterns of sequences
sampled from that population. The estimation of these hidden population
size changes from reconstructed sequence phylogenies, is an important
problem in many biological fields. Often, population size is described by
a piecewise-constant function, with each piece serving as a parameter to
be estimated. Estimate quality depends on both the statistical inference
method used, and on the experimental protocol, which controls variables
such as the sampling or parametrisation, employed. While there is a
burgeoning literature focussed on inference method development, there
is surprisingly little work on experimental design. Moreover, these works
are largely simulation based, and therefore cannot provide provable
or general designs. As a result, many existing protocols are heuristic
or method specific. We examine three key design problems: temporal
sampling for the skyline demographic coalescent model; spatial sampling
for the structured coalescent and time discretisation for sequentially
Markovian coalescent models. In all cases we find that (i) working in the
logarithm of the parameters to be inferred (e.g. population size), and (ii)
distributing informative (e.g. coalescent) events uniformly among these
log-parameters, is provably and uniquely robust. ‘Robust’ means that
both the total and maximum uncertainty on our estimates are minimised
and independent of their unknown true values. These results provide the
first rigorous support for some known heuristics in the literature. Given
its persistence among models, this two-point design may be a fundamental
coalescent paradigm.

The coalescent process [1] is a popular population genetics model
that describes how past (unobserved) changes, in the size or structure
of a population, shape the reconstructed (observed) genealogy of
a sample of sequences, from that population. This genealogy is
also known as the coalescent tree or phylogeny. The estimation
of a function of the past population size from the sequences,
or reconstructed phylogeny, is important in many fields including
epidemiology, conservation and anthropology. Accordingly, there is
an extensive and growing literature [2] [3] [4] [5] [6] [7] [8]
[9] [10] [11] [12] [13], focussed on developing new statistical
methods for solving coalescent inference problems.

However, the power and accuracy of the resulting coalescent
estimates is not solely a function of the statistical method employed.
Design variables under the control of the experimenter, such as
choices of where and when sequences are sampled, or on how time
is discretised, can have a strong influence on the performance and
reliability of coalescent inference methods [14] [9] [11]. Good
designs can result in sharper inferences and sounder conclusions [14],
whereas bad designs, such as size-biased sampling strategies, can
often lead to overconfident or spurious estimates [15] [16]. The
best approach to coalescent inference will therefore jointly optimise
experimental design and statistical methodology.

Surprisingly, only a few studies have investigated optimal coales-
cent inference design. These works [14] [17] [12] [18] [15],
typically take a constructive, simulation based approach, in which
several alternate designs are numerically examined and compared.
While such studies can yield useful hypotheses about the components
of good designs, they can neither provide analytic insights nor
provably optimal directives. A more general and methodical analysis
is therefore needed.

Additionally, there has been little consideration of what data
or parameter transformations might aid experimental design. This
contrasts the development of inference theory in other fields. For
example, in regression or analysis of variance problems, research has
emphasised the benefits of power transformations and regularisation
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procedures [19]. While some coalescent inference methods have
used parameter transformations (e.g. the log transform), these are
usually justified by heuristic or method specific reasons, such as
algorithmic stability or ease of visualisation [12] [20]. As a result,
any transformations present in the coalescent literature are applied
inconsistently, and rigorous proof of their benefits is lacking.

Here we take a fully analytical approach and formally derive opti-
mal design directives for coalescent inference. As we are interested
in widely applicable theoretical insights, we do not construct specific
protocols, but instead define objectives which, if achieved, guarantee
joint inference and experiment optimality in a well-defined sense.
We examine three popular coalescent models. For each model we
describe a coalescent tree as being composed of lineages, with time
flowing from the present into the past. A coalescent event is said to
occur when two lineages merge into an ancestral lineage.

(1) Skyline demographic models. These approaches infer past pop-
ulation size changes using piecewise-constant time-varying functions
[21], and are widely used in epidemiology, where the population
is the infected class in an epidemic. The time-varying functions can
describe seasonal and growth dynamics. These models are at the core
of the popular ‘skyline’ family of inference methods [2]. The choice
of sequence sampling times, which is our design variable here, can
strongly impact on the quality of inference for a given epidemic.
Robust inferences could improve epidemic control strategies [4]
[14].

(2) Structured models. These processes describe spatial changes.
The population is divided into a number of distinct but connected
sub-populations (demes). Usually each deme has a constant (stable)
population size. Lineages may migrate between demes but can only
coalesce within demes. The parameters of interest include both the
population sizes and migration rates [22] [23]. The design variable
is the space-time sequence sample distribution, which is known to
affect the bias with which migration rates can be inferred [9]. This
model has been applied to describe the migration history of animal,
plant and pathogen populations [9].

(3) Sequentially Markovian coalescent (SMC) models. These are
typically applied to complete metazoan genomes, and consider many
independent coalescent trees (multiple unlinked loci), each containing
few (or two) samples. SMC processes involve recombination, and
event times are discretised to occur in finite intervals. Past population
size change is often assumed to be piecewise-constant and most
applications centre on human demographic history [10] [12].
The design variable is the time discretisation, which controls the
resolution with which populations are estimated. Poor discretisations
can lead to overestimation or runaway behaviour [11].

We examine these three types of models using Fisher information
and optimal design theory. Since the time between coalescent events
contains information about population size change, the total number
of observed coalescent events controls the amount of information
available. We show that, under this constraint, it is optimal to (i) work
in the logarithm of the parameters to be estimated, which usually
relate to effective population size, and (ii) sample or discretise such
that the coalescent events are divided evenly among each log scaled
parameter. If (i)-(ii) are both achieved, then the resulting experimental
design is provably robust and optimal for use with existing inference
methods. ‘Robust’ means that the design minimises the maximum
dimension and the total volume of the confidence ellipsoid that cir-
cumscribes asymptotic estimate uncertainty. Interestingly, these two
objectives hold across all the coalescent models we investigated and
therefore present simple, unifying principles for coalescent inference.

In the Preliminaries we provide mathematical background on
optimal experimental design. We use these concepts to derive our
main robust design theorem for piecewise coalescent inference, in
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Results. This is then applied to each of the three previously described
coalescent models, yielding new and specific insights. We close with
a Discussion of how our formally derived design principles relate to
existing heuristics in the coalescent inference literature.

PRELIMINARIES

Consider an arbitrary parameter vector ψ = [ψ1, . . . , ψp], which
is to be estimated from a statistical model. Let T represent data (a
random variable sequence) generated under this statistical model (the
tree in the case of coalescent inference) and let L(ψ) := log P(T |ψ)
be the log-likelihood of T given ψ. The p × p Fisher information
matrix, denoted I(ψ), is the appropriate measure for describing
how informative T is about ψ [24]. Since all the coalescent
models used here belong to an exponential family [25] (and so
satisfy certain necessary regularity conditions [26]) then the (ith, j th)

element of I(ψ) is defined as I(ψ)(i, j) := −ET
[

∂2L
∂ψi∂ψj

]
, with the

expectation taken across the data (tree branches).
Thus, the Fisher information is synonymous with the curvature of

the likelihood surface in our work. It is also sensitive to parametri-
sation choice. Eq. (1) provides the transformation between ψ and an
arbitrary alternate p-parameter vector σ = [h(ψ1), . . . , h(ψp)] =
[σ1, . . . , σp]. Here h is a continuously differentiable function, with
inverse f = inv[h] [25].

I(σ)(i, j) =

(
∂ψi
∂σj

)2

I(f(σ))(i, j) (1)

The Fisher information lower bounds the best unbiased estimate pre-
cision attainable, and quantifies the confidence bounds on maximum
likelihood estimates (MLEs). For exponential families, these bounds
are attained so that if ψ̂ is the MLE then var(ψ̂j) = inv

[
I(ψ)(j, j)

]
is the minimum variance around the j th MLE achievable by any
coalescent model inference method [27]. Importantly, for any given
parametrisation, the Fisher information serves as a metric with which
we can compare various estimation schemes (e.g. different sampling
or discretisation protocols). Thus different estimators can be ordered
in performance by their Fisher information values. This ordering also
incorporates the quality of the data upon which we base our analyses.
Due to these ordering attributes, we propose Fisher information as
our design metric.

Although the most popular coalescent estimators use Bayesian
inference, it seems that we have taken a MLE or frequentist approach.
However, since all our statistical models are finite dimensional,
the Bernstein-von Mises theorem [28] [29] is valid. This states
that, asymptotically, any Bayesian estimate will have a posterior
distribution that matches that of the MLE, with equivalent confidence
intervals, for any ‘sensibly defined’ prior. Such a prior has some
positive probability mass in an interval around the true parameter
value. As a result, Bayesian credible intervals also depend on the
Fisher information and our designs remain applicable.

Optimal design theory aims to optimise experimental protocols,
based on statistical criteria that confer useful properties such as
minimum bias or maximum precision [30]. The theory centres on
the notion that some measurements are potentially more informative
than others. Within this context, we treat our sampling/discretisation
protocol problem as an experimental design on the distribution of
coalescent events. If our observed data T consists of a total of
n− 1 coalescent events (i.e. a tree with n tips) then we can express
our coalescent event distribution as {mj} for 1 ≤ j ≤ p with∑p
j=1 mj = n−1. Here mj is the count of coalescent events that are

informative of parameter ψj . This is illustrated for a two parameter
skyline demographic model in Fig. 1.

Optimality criteria are typically functions of I(ψ), which defines
our asymptotic uncertainty about ψ̂. Geometrically, this uncertainty

maps to a confidence ellipsoid centred on ψ̂ [31]. Designing the
Fisher information matrix is equivalent the controlling the shape and
size of this ellipsoid. We focus on two popular criteria, known as
D and E-optimality [31] [30], the definitions of which are given
in Eq. (2) and Eq. (3), with {m∗j} as the resulting optimal design.
As we have p design variables (the mj), our confidence ellipsoid
is p-dimensional. D-optimal designs minimise the volume of this
confidence ellipsoid while E-optimal ones minimise its maximum
diameter. Fig. 2 shows these ellipses for a skyline demographic design
problem.

{m∗j |D} = arg max
{mj}

det [I(ψ)] (2)

{m∗j |E} = arg max
{mj}

min eig [I(ψ)] (3)

Here arg, det and eig are short for argument, determinant, and
eigenvalues respectively. D-optimal designs therefore maximise the
total available information gained from the set of parameters while
E-optimal ones ensure that the worst estimate is as good as possible
[31] [30].

T : n = 6, p = 2

φ = [2, 1, 3]

φ1

φ2

φ3

t

N(t)

ε10 ε2

N1

N2

m1 = 2

m2 = 3

Fig. 1. Problem set-up for a two-parameter coalescent model. We consider
a a p = 2 design problem for a skyline demographic coalescent model
with population size parameters, N1 and N2. An n = 6 tip coalescent
phylogeny, T , is shown with the φk counting the samples introduced at the
kth sample time. The jth population parameter is only informed by the number
of coalescent events, mj , occurring within its period [εj−1, εj ], with ε0 = 0
as the present. Time flows into the past. We use experimental design theory to
choose an m1 and m2 subject to m1 +m2 = n− 1, that leads to desirable
properties on the resulting population size estimates. For a fixed n, we can
manipulate φ to achieve our optimal mj design.

The above optimisation problems can be solved using majorization
theory, which provides a way of naturally ordering vectors [32]. For
some p-dimensional vectors ~a and ~b, sorted in descending order to
form ~a ↓ and ~b ↓, ~a is said to majorize or dominate ~b if for all k ∈
{1, 2, . . . p},

∑k
j=1 ~a

↓ ≥
∑k
j=1

~b ↓ and
∑p
j=1 ~a =

∑p
j=1

~b = κ.
Here κ is a constant and this definition is written as ~a � ~b for short.
The total sum equality on the elements of the vectors is called an
isoperimetric constraint. Conceptually, the majorization of a vector
preserves its mean but increases its variance.

We will make use of Schur concave functions. A function g that
takes a p-dimensional input and produces a scalar output is called
Schur concave if ~a � ~b =⇒ g(~a) ≤ g(~b). Importantly, it is known
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that the p-element uniform vector ~u = [κ
p
, κ
p
, . . . κ

p
] is majorized by

any arbitrary vector of sum κ and dimension p [32]. This means
that every ~a � ~u. As a result, ~u = arg max~a g(~a) for any Schur
concave function g. Thus if we can find a Schur concave function,
and an isoperimetric constraint holds, then a uniform vector will
maximise that function. This type of argument will underpin many
of the optimisations in subsequent sections.

RESULTS

Naive Coalescent Design

Let N = [N1, . . . , Np] be the parameter vector (usually effective
population size values) to be estimated from a reconstructed phy-
logeny, T . Defining γ = [N−1

1 , . . . , N−1
p ], we will find that the

piecewise-constant coalescent models examined in this work admit
log-likelihoods, L(γ) = log P(T | γ), of the form of Eq. (4).

L(γ) =

p∑
j=1

mj log γj −Ajγj +Bj (4)

Here Aj and Bj are constants, for a given T , and γj = N−1
j . Taking

partial derivatives we get ∂L
∂γj

= mjγ
−1
j − Aj and observe that

the MLE of γj , γ̂j = mjA
−1
j . The second derivatives follow as:

∂2L
∂γ2j

= −mjγ
−2
j , ∂2L

∂γj∂γi6=j
= 0. This leads to a diagonal Fisher

information matrix I(γ) = [m1γ
−2
1 , . . . , mpγ

−2
p ] Ip, with Ip as a

p×p identity matrix. Using Eq. (1) we obtain the Fisher information
in our original parametrisation as Eq. (5).

I(N) = [m1N
−2
1 , . . . , mpN

−2
p ] Ip (5)

Several key points become immediately obvious. First, the achievable
precision around N̂j = γ̂−1

j depends on the square of its unknown
true value. This is a highly undesirable property, since it means
our estimate confidence is not only largely out of our control, but
also will rapidly deteriorate as Nj grows. Second, if our inference
method directly estimated γ instead of N (which is not uncommon
for harmonic mean estimators [2]), then the region in which we
achieve good γ precision is exactly that in which we obtain poor N
confidence.

Third, the design variables we do control, {mj}, only inform on
one variable of interest. This means that good designs must achieve
mj ≥ 1 for all j. Failure to attain this will result in a singular
Fisher information matrix and hence parameter non-identifiability
[33], which can lead to issues like poor algorithmic convergence.
This is particularly relevant for coalescent inference methods that
feature pre-defined parameter grids of size comparable to the tree
size n [34]. Thus, naive implementations of coalescent inference
methods and ad-hoc design protocols can easily result in potentially
serious computational and methodological issues.

Using either the N or γ parametrisation further creates issues
even when it comes to optimal design. Consider the N parametri-
sation which has det [I(N)] =

∏p
j=1 mjN

−2
j . We let the constant

c =
∏p
j=1 N

−2
j . D-optimality is the solution to max{mj} c

∏p
j=1 mj

subject to
∑p
j=1 mj = n − 1. Our objective function is therefore

g({mj}) =
∏p
j=1 mj which is known to be Schur concave when all

mj > 0. The optimal design is uniform and is the first equality in
Eq. (6) below.

m∗j |D =
1

p
(n− 1), m∗j |E =

N2
j∑p

i=1 N
2
i

(n− 1) (6)

The E-optimal design solves: max{mj}minjmjN
−2
j . The objective

function is now g({mj}) = min(m1N
−2
1 , . . . , mpN

−2
p ) and is

also Schur concave. The E-optimal solution satisfies m∗1N
−2
1 =

m∗2N
−2
2 = . . . = m∗pN

−2
p [32], and is the second equality in

Eq. (6). This optimal design assigns more coalescent events to larger
populations with a square penalty. The equivalent D and E-designs
for inverse population size follow by simply replacing Nj with γj in
Eq. (6) above.
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Fig. 2. D and E-optimal designs for a two-parameter model. We provide
asymptotic 99% confidence ellipses for a p = 2 skyline demographic design
problem (see Fig. 1) with n − 1 = 100 = m1 + m2, N1 = 100
and N2 = 2N1. The ellipses depict the confidence region of the two
dimensional asymptotic normal distribution that has covariance matrix equal
to the inverse of the Fisher information. Each light grey ellipse indicates a
different [m1, m2] distribution. D and E-optimal designs are in red and dark
grey respectively. Panel (a) shows the design space in absolute population size,
Nj with m∗1 |D = 50 and m∗1 |E = 20. Panel (b) uses the log population
size, logNj . The log parametrisation results in a symmetrical, robust design
space that has coincident D and E-optimal ellipses with m∗1 |D = 50.

Thus, naive D-optimal designs could result in some parameters
being poorly estimated while E-optimal ones could allocate all the
coalescent events to a single parameter, and hence increase the
possibility of non-identifiability. Additionally, for a given criterion,
optimal Nj and γj designs can be contradictory. A robust design that
is insensitive to both the parameter values and optimality criteria is
needed.

These points are illustrated in the top panel of Fig. 2, which
presents D and E-optimal confidence ellipsoids under N , for the
example model in Fig. 1. These ellipsoids, for some parameter
vector σ, with diagonal Fisher information matrix I(σ), are given by∑p
j=1 (xj − σj)2 I(σ)(j, j) = Ω. Here Ω controls the significance
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level according to a p degree of freedom χ2 distribution and xj is
some coordinate on the j th parameter axis [35]. Here, the D and E-
optimal designs are notably different, and sensitive to the true values
of N1 and N2.

Robust Coalescent Design

We define a robust design as being (i) insensitive to the true (un-
known) parameter values and (ii) minimising both the maximum and
total uncertainty over the estimated parameters. The latter condition
means that a robust design is also insensitive to choice of optimality
criteria. We formulate our main results as the following two-point
theorem. In subsequent sections we will apply this robust design to
the three aforementioned coalescent models.

Theorem 1. If the p-parameter vector σ admits a diagonal Fisher
information matrix, I(σ) = [m1σ

−2
1 , . . . , mpσ

−2
p ]Ip, under an

isoperimetric constraint
∑p
j=1 mj = κ, then any design that (i)

works in the parametrisation [log σ1, . . . , log σp] and (ii) achieves
the distribution m∗1 = · · · = m∗p = 1

p
κ over this log σ space, is

provably and uniquely robust.

Theorem 1 guarantees that inference is consistent and reliable
across parameter space. We derive point (i), by maximising how
distinguishable our parameters are within their space of possible
values. ‘Distinguishability’ is an important property that determines
parameter identifiability and model complexity [36]. Let ψ be some
parametrisation with space Ψ such that h(ψ) = σ. Two vectors in Ψ,
ψ(1) and ψ(2), are distinguishable, if, given T , we can discriminate
between them with some confidence. Distinguishability is therefore
intrinsically linked to the quality of inference. More detail on these
information geometric concepts can be found in [37] [36].

The number of distinguishable distributions in Ψ is known to be

given by the volume, V =
∫

Ψ
det
[

1
n−1
I(ψ)

] 1
2 dψ [36]. The n− 1

comes from the number of informative events in T . While V is invari-
ant to the parametrisation choice h [36], different h functions control
how parameter space is discretised into distinguishable segments. For
example, under ψ = σ poor distinguishability will result when any
σj becomes large.

We therefore pose the problem of finding an optimal bijective
parameter transformation h(ψj) = σj , which maximises how distin-
guishable our distributions across parameter space are, or equivalently
minimises the sensitivity or our estimates to the unknown true values
of our parameters. Note that we can always recover MLEs in our
original parameters as σ̂j = h(ψ̂j) [25], whilst taking advantage
of the better estimate confidence properties less sensitive and more
evenly distinguishable parametrisations provide.

Applying Eq. (1), with h′ := ∂h
∂ψj

, we get that I(ψ)(j, j) =

mjh
−2 (h′)

2. The orthogonality of the diagonal Fisher information
matrix means that ψj only depends on σj . Using the properties of
determinants, we can decompose the volume as V =

∏p
j=1

mj
n−1
Vj .

Since V is constant for any parametrisation, our parameters are
orthogonal and our transformation bijective, then Vj is also constant.
If σj ∈ [σj(1), σj(2)], then h(ψj(1)) = σj(1) and h(ψj(2)) = σj(2).
Using these endpoints and the invariance of V we obtain Eq. (7).

Vj =

∫ ψj(2)

ψj(1)

h−1h′ dψj =

∫ σj(2)

σj(1)

σj
−1 dσj (7)

This equality defines the conserved property across parametrisa-
tions of the piecewise-constant coalescent. We can maximise both
the insensitivity of our parametrisation, h, to the unknown true
parameters and our ability to distinguish between distributions across
parameter space by forcing h−1h′ to be constant irrespective of

ψj . This is equivalent to solving a minimax problem. We choose
a unit constant and evaluate Eq. (7) to obtain: ψj(2) − ψj(1) =
log σj(2) − log σj(1). Due to the bijective nature of h, this implies
that our optimal parametrisation is ψj = log σj and hence proves (i).

Point (ii) follows by solving optimal design problems under the
log σ parametrisation. For consistency with Eq. (6), we set σ = N .
This gives ∂Nj

∂ψj
= eψj and results in the Fisher information matrix,

I(logN), in Eq. (8).

I(logN) = [m1, . . . , mp] Ip =⇒ m∗j |D =
1

p
(n− 1) (8)

Let D be an optimal design criterion, with resulting distribution
m∗j |D. When D ≡ D, we maximise det [I(logN)] to obtain the
uniform coalescent distribution in Eq. (8). The D-optimal design
for N , N−1 and logN are therefore the same. However, we see
interesting behaviour under other design criteria. When D ≡ E, we
maximise min eig [I(logN)] to again obtain Eq. (8). This is very
different from analogous designs under N and N−1. Additional T
and A-optimal designs (which maximise the trace of I(logN) and
its inverse respectively) also yield the same result or are satisfied
under it.

Thus, under a log parametrisation we see an important con-
vergence of optimality criteria to the uniform design of Eq. (8).
This results in parameter confidence ellipsoids that are invariant to
optimality criteria. This is shown in the bottom panel of Fig. 2
for our example model. This desirable design insensitivity emerges
from the independence of I(logN) from N , for piecewise-constant
coalescent models, and proves (ii). We will now apply Theorem 1
to the skyline demographic, structured and sequentially Markovian
coalescent models.

Skyline Demographic Models

We consider a coalescent process with piecewise-constant time-
varying population size, N(t), for t ≥ 0, that features sequences
sampled at different times. The coalescent tree always starts from
the present, t = 0, with positive time going into the past. This model
is often applied to epidemiological inference problems [21] [38],
and is central to the popular ‘skyline’ family of estimation methods
used in this field [2] [3] [4] [20]. We can describe N(t) with
p ≥ 1 population sizes as N(t) :=

∑p
j=1 Nj1(εj−1 ≤ t < εj)

with ε0 = 0 and εp = ∞. Nj is the constant population size of
the j th segment which is delimited by times [εj−1, εj). The indicator
function 1(a) = 1 when a is true and 0 otherwise.

We start by assuming that this process has generated an observable
coalescent tree, T , with n ≥ ns+ 1 tips, with ns ≥ 1 as the number
of distinct sampling times. Each tree tip is a sample and the tuple
(sk, φk) defines a sampling protocol in which φk tips are introduced
at time sk with 1 ≤ k ≤ ns and

∑ns
k=1 φk = n. Since trees always

start from the present then s1 = 0 and φ1 ≥ 2. In keeping with the
literature, we assume that sampling times are independent of N(t)
[4]. The choice of sampling times and numbers (i.e. the temporal
sampling protocol) is what the experimenter has control over in this
coalescent inference problem. Fig. 1 explains this notation for a p = 2
skyline demographic model.

The observed n tip tree has n − 1 coalescent events. We use ci
to denote the time of the ith such event with 1 ≤ i ≤ n − 1. We
define l(t) as a piecewise-constant function that counts the number
of lineages in T at t and let α(t) :=

(
l(t)
2

)
. At the kth sample

time l(t) increases by φk and at every ci it decreases by 1. The
rate of producing coalescent events can then be defined as: λ(t) =∑p
j=1 γjα(t)1(εj−1 ≤ t < εj) with γj = N−1

j as the inverse
population in segment j. We initially work in γ = [γ1, . . . , γp] as
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it is the natural parametrisation of the coalescent process, and then
transform to N space.

The log-likelihood L(γ) = log P(T | γ) follows from Poisson pro-
cess theory as [39] [5]: L(γ) = −

∫ cn−1

0
λ(t) dt+

∑n−1
i=1 log λ(ci).

Splitting the integral across the p segments we get:
∫ cn−1

0
λ(t) dt =∑p

j=1 γj
∫ εj
εj−1

α(t) dt =
∑p
j=1 γjωj . Here ωj is a constant for a

given tree and it is independent of γ. Similarly,
∑n−1
i=1 log λ(ci) =∑p

j=1

∑n−1
i=1 log(γjα(ci)1(εj−1 ≤ ci ≤ εj)). Expanding yields

Eq. (9) with Γj as a constant depending on α(ci) for all i falling
in the j th segment. The count of all the coalescent events within
[εj−1, εj ] is mj .

L(γ) =

p∑
j=1

mj log γj − γjωj + log Γj (9)

Eq. (9) is an alternate expression of the skyline log-likelihood given in
[4], except that N(t) is not constrained to change only at coalescent
times. Importantly, sampling events do not contribute to the log-
likelihood [4]. As a result we can focus on defining a desired
coalescent distribution across the population size intervals, {m∗j}. An
optimal sampling protocol would then aim to achieve this coalescent
distribution.

Since Eq. (9) is equivalent to Eq. (4), Theorem 1 applies, and
the relevant robust design is exactly given by Eq. (8). Note that the
lineage scaling, α(t), the timing of the mj events falling within
[εj−1, εj ], and the wait between the last of these and εj are all
non-informative. As an illustrative example, we solve a skyline
demographic design problem in the Supporting Text. There we apply
Theorem 1 to a square wave approximation of a cyclic epidemic
with known period, and determine what sampling protocols map to
robust designs. The example conforms to the descriptions in Fig. 1
and Fig. 2.

Lastly, we comment on the impact of priors. More recent skyline
inference methods use smoothing priors that ease the sharpness of
the inferred piecewise constant population profile [20] [34]. While
these do embed extra implicit information about Nj , they do not
alter the optimal design point, even at small n. This follows as the
informativeness of these priors do not change with {mj}, so that the
robust design proceeds independently of the benefits they provide.

Structured Models

The structured coalescent models the genetic relationships between
samples from interconnected sub-populations, or demes. Sampled
lineages in a given deme may either coalesce with others in the
same deme, or migrate to any other deme [23]. When applied
to empirical data, the structured model typically assumes a stable
(constant) population in each deme with constant rates of migration
[9]. Here, our parameters of interest are both the migration rates and
population sizes in each deme, and the variables under our control
are the choice of sampling times and locations.

Let T be an observed structured coalescent tree with p ≥ 1 demes
that have been sampled through time (branches are labelled with
locations). We set T as the number of intervals in this tree, with
each interval delimited by a pair of events, which can be sampling,
migration or coalescent events. The ith interval has length ui and∑T
i=1 ui gives the time to the most recent common ancestor of T .

We use lji to denote the number of lineages in deme j during interval
i. Lineage counts increase on sampling or immigration events, and
decrement at coalescent or emigration events.

We define the migration rate from deme j into i as ζji.
Nj and γj = N−1

j are the absolute and inverse popu-
lation size in deme j. Our initial p2 parameter vector is
σ = [γ1, . . . , γp, {ζ11̄}, . . . , {ζpp̄}] = [γ, ζ], with {ζkk̄} =

[ζk1, ζk2, . . . ] as the p−1 sub-vector of all the migration rates from
deme k. The log-likelihood L(σ) = log P (T | γ, ζ) is then adapted
from [22] and [40]. We decompose L(σ) =

∑p
j=1 Lj(γ) + Lj(ζ)

into coalescent and migration sums with j th deme components given
in Eq. (10) and Eq. (11). Here mj and wjk respectively count the
total number of coalescent events in sub-population j and the sum of
migrations from that deme into deme k, across all T time intervals.
The factor αji :=

(
lji
2

)
. We constrain our tree to have a total of n−1

coalescent events so that
∑p
j=1 mj = n− 1.

Lj(γ) = mj log γj −
T∑
i=1

uiαjiγj (10)

Lj(ζ) =

p∑
k=1, k 6=j

wjk log ζjk −
T∑
i=1

uiljiζjk (11)

The log-likelihoods of both Eq. (10) and Eq. (11) are generalisa-
tions of Eq. (4) and lead to diagonal (orthogonal) Fisher information
matrices like Eq. (5). This orthogonality make sense, since migration
events do not inform on population size and coalescent events tell
nothing about migrations. While migrations do change the number
of lineages in a deme that can then coalesce, the lineage count
component of the coalescent rate, αji, does not affect the Fisher
information for piecewise-constant coalescent models. Importantly,
the Fisher information is independent of the spatio-temporal sampling
procedure. The sampling protocol does, however, affect the time and
location of coalescent and migration events and will serve as our
means of achieving optimal directives.

Applying Theorem 1, we find that we should infer ψ =
[logN1, . . . logNp, {log ζ11̄}, . . . {log ζpp̄}] from structured mod-
els. This removes the dependence on both the unknown population
sizes and migration rates, and leads to a Fisher information of I(ψ) =
[m1, . . .mp, {w11̄}, . . . {wpp̄}]Ip2 . The robust design is given in
Eq. (12). The migration rate design, w∗ji |D, only holds if the total
number of migration events are fixed, i.e.

∑p
j=1

∑p
i=1, i6=j wji = M ,

for some constant M .

m∗j |D =
1

p
(n− 1), w∗ji |D =

1

p(p− 1)
M (12)

Distributing informative events uniformly among demes therefore
results in a robust design. The separation of {m∗j} and {w∗ji} is a
consequence of both the independent constraints on them and the
orthogonality of the Fisher information matrix. Two points become
clear from Eq. (12) . First, if all the migration rates are known, so
that only population sizes are to be estimated then the structured
model yields precisely the same robustness results as the skyline
demographic model. Second, the migration rate design is exactly the
same at both the strong and weak migration limits of the structured
model [41]. The migration rates therefore do not affect the optimal
design, provided log-migration rates are inferred.

Sequentially Markovian Coalescent Models

The previous coalescent models involved genealogies with many
samples from a few (usually one) loci [13]. The large sample size
of these trees meant that choice of sampling protocol was a critical
design variable. This is often the case for coalescent applications
in molecular epidemiology [38]. We now shift focus to coalescent
inference methods for human and animal genomes. Here a coalescent
model with recombination is applied along the genome, resulting in
many hidden trees (multiple loci) [10]. Each tree typically consists
of a small number of lineages. The most popular inference methods
in this field are based on an approximation to the coalescent with
recombination called the sequentially Markovian coalescent (SMC)
[42].
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These methods generally handle SMC inference by constructing a
hidden Markov model (HMM) over discretised coalescent time [10]
[43] [11]. If we partition time into p segments: 0 = ε0 < ε1 <
. . . < εp = ∞ then when the HMM is in state j it means that the
coalescent time is in [εj−1, εj) [11]. Recombinations lead to state
changes and the genomic sequence serves as the observed process
of the HMM. Expectation-maximisation type algorithms are used to
iteratively infer the HMM states from the genome [10] [43].

A central aspect of these techniques is the assumption that in each
coalescent interval the population size is constant [12]. If we use
the vector N = [N1, . . . , Np] to denote population size then it is
common to assign Nj for the [εj−1, εj) interval [10]. This not only
allows an easy transformation from the inferred HMM state sequence
to estimates of N [13] but also controls the precision of the SMC
based inference methods. For example, if too few coalescent events
fall within [εj−1, εj), then Nj will generally be overestimated [11].
Thus, the choice of discretisation times (and hence population size
change-points) is critical to SMC inference performance [12] [44].

Our experimental design problem involves finding an optimal
guideline for choosing these discretisation times. Currently, only a
number of heuristic strategies exist [11] [13] [12]. We define a
vector of bins β = [β1, . . . , βp] such that βj = εj−εj−1 and assume
we have T loci (and hence coalescent trees). In keeping with [10]
and [43] we assume that each tree only leads to a single coalescent
event, and hence we can neglect lineage counts. Since these counts
merely rescale time (piecewise) linearly, we do not lose generality.

Let mij be the number of coalescent events observed in bin
βj from the ith locus so that

∑p
j=1 mij = 1. We further use

mj :=
∑T
i=1 mij to count the total number of events from all

loci falling in βj . As before we constrain the total number of
coalescent events so that

∑p
j=1 mj = n − 1. Using Poisson

process theory we can write the log-likelihood of observing a
set of coalescent event counts {mij}, within our bins {βj} for
the ith locus as Li(γ, β) = log P(Ti | γ, β) = −

∫∞
0
λ(t) dt +∑p

j=1 mij log
(∫ εj

εj−1
λ(t) dt

)
[39]. Here λ(t) is the coalescent rate

at t so that λ(t) =
∑p
j=1 γj1(εj−1 ≤ t < εj) and

∫ εj
εj−1

λ(t) dt =

βjγj with γj = N−1
j . Using the independence of the T loci gives

the complete log-likelihood of Eq. (13).

L(γ, β) =

T∑
i=1

p∑
j=1

−γjβj +mij log γjβj (13)

Eq. (13) is an alternative form of the log-likelihood given in [45],
and describes a binned coalescent process that is analogous to the
discrete one presented in [44]. Interestingly, Eq. (13) is a function
of the product N−1

j βj so that we cannot identify both the bins and
the population size without extra information. This explains why
choosing a time discretisation is seen to be as difficult as estimating
population sizes [13].

Eq. (13) is analogous to Eq. (4), and so results in Fisher in-
formation matrices with square dependence on either Nj or βj
depending on what is known. Applying Theorem 1, we find that
robust designs work in ψ = [log β1, . . . , log βp], if population size
history is known (in keeping with discretisation results presented in
[44]), or in ψ = [logN1, . . . , logNp], if the bins are known. Under
either parametrisation we recover the expressions of Eq. (8) exactly.
We generally assume bin sizes are known since they can often be
controlled by the user [12]. However, in both scenarios, robust design
requires that bins capture an equal number of coalescent events.

DISCUSSION

Judicious experimental design can improve the ability of any
inference method to extract useful and usable information from

observed data [46]. In spite of these potential advantages, experi-
mental design has received little attention in the coalescent inference
literature [15]. We therefore defined and investigated robust designs
for three important and popular coalescent models. Theorem 1, which
summarises our main results, presents a clear and simple two-point
robust design.

The first point recommends inferring the logarithm and not the
absolute value or inverse of our parameters of interest. As this is
usually effective population size, N , then logN is the uniquely robust
parametrisation for piecewise coalescent estimation problems. While
methods using logN do exist [12] [20], their stated reasons for
doing so are heuristic, and centre around algorithmic convenience or
forcing estimates to be positive. To our knowledge, we have provided
the first firm theoretical backing for using logN in coalescent
inference.

It is worth noting that our result is closely linked to the theory
of variance stabilising transforms. These transforms are often used
in regression problems to make data more homoscedastic [19]. For
exponentially distributed data δ, this transform is log δ [19], and can
be shown to hold for the Kingman coalescent [1], if we set δ as the
coalescent inter-event times scaled by a binomial lineage count factor
[5]. Generalising this scaling to each piecewise-constant segment
should yield the log-transformation as optimal. Variance stabilising
transforms are usually applied to the observed data, while our work
focusses on the inherent parametrisation. We stabilise the estimator
variance instead of the tree variance, and homoscedasticity is achieved
as a by-product of maximising parameter distinguishability.

The second point of Theorem 1 requires equalising the number
of coalescent events informing on each parameter. This may initially
appear obvious as apportioning data evenly among the unknowns to
be inferred seems wise. In fact, [11] and [44], which focus on SMC
models, explicitly state that ideal time discretisations should achieve a
uniform coalescent distributions. However, this appears to simply be
a sensible assumption, since no proof or reference is given. Further,
no mention is made in these works about log-transforms. We not only
provide theoretical support for uniform coalescent distributions but
also stress that they are only robust if the log-parameter stipulation
is satisfied.

Several unifying insights, for piecewise-constant coalescent mod-
els, also emerge as corollaries of our robust design analysis. In
particular, because the precision with which we estimate a coalescent
parameter only depends of the number of coalescent events informing
on it, we can reinterpret all designs as simply means of allocating
events to effective ‘slots’. For the models we examined, these
slots represent skyline intervals, demes and time discretisation bins,
respectively. From this perspective, for example, extra demes in the
structured coalescent are equivalent to additional piecewise-constant
population intervals in the skyline demographic model. Knowing the
slot times (change-points) is crucial for inference [44].

Throughout this work, we have assumed that these effective slot
times are known. This is reasonable as it is generally not possible
(without side information) to simultaneously infer parameters and
bin times [11] [44]. Often such low-information problems have a
circular dependence in which we need to know the coalescent time
distribution in order to estimate the parameters that determine that
distribution [13]. Methods that do manage to achieve such joint
estimates are usually data driven, iterative and case specific, allowing
no general design insights [12] [47]. This raises the question about
how to derive design benchmarks in such scenarios.

In the Supporting Text, we attempt to compute such benchmarks
for change-points, using Theorem 1. Interestingly, we show that it
is wise to assign end-points according to the 1

p
quantiles of the

normalised lineages through time plot of the observed phylogeny.
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This results in a maximum spacings estimator (MSE) that makes
the observed tree, from the perspective of the slots, as uniformly
informative as possible [48]. This means that if we wish to robustly
infer p log-parameters from a tree containing n−1 coalescent events,
we should define our parameter slots such that they change every
r = n−1

p
events. This has some interesting ramifications.

Optimal skyline population profiles were examined in [3], with
groupings made on the basis of time. We instead propose groupings
on event counts. If r = 1, we recover the classical skyline [2] as
the low information limit of this MSE strategy. Note that grouping
skyline intervals is equivalent to grouping demes in structured mod-
els. Interestingly, this MSE design provides a precise link to some
popular SMC discretisation protocols. Specifically, [10] based its
discretisation on a log spacing in time, while [43] used the quantiles
of an exponential distribution. Our MSE result neatly connects these
by recommending the use of quantiles in log-bin space.

Another unifying insight from Theorem 1 is that any parameter
entering the log-likelihood in a functionally equivalent way to γj
in Eq. (4), should be inferred in log-space. This maximises dis-
tinguishability in model space, and means that it is best to work
in log-migration rates for structured models. While working in log-
populations is not uncommon (albeit for heuristic reasons), using the
log of the migration matrix is essentially non-existent in the literature.
This could potentially improve current structured coalescent inference
algorithms. Similarly, for the SMC, this insight suggested that we
must trade between absolute bin sizes for inferring log-populations
and absolute population sizes for estimating log-bin widths. This
symmetry could influence discretisation procedures.

Theorem 1 is also useful for finding cases where robust designs are
unachievable. In the skyine demographic model, for example, short
intervals containing large populations would be difficult to estimate.
Large N implies long coalescent times, making it unlikely that n−1

p

events can be forced to occur in such regions. This hypothesis is
corroborated by [13]. A similar effect occurs for SMC models if
the bin size is small in a period of large population size [11]. For
the structured model, it is expected that the log-population criteria is
simpler to achieve than the log-migration rate one since the ability
to control p− 1 stochastic migration event types per deme could be
challenging, depending on how close the process is to the strong or
weak migration limits [49] [50].

While we have provided directives for robust design, their realis-
ability is not obvious. Existing analyses on this topic [14] [17] [49]
[12] tend to be simulation studies that examine a set of reasonable
protocols. However, since no optimal reference exists, they can only
compare performance within their chosen set. We therefore took an
analytical approach, and derived robust designs that could be used by
future studies for benchmarking. Since coalescent data is often noisy
and uncertain, we examined several coalescent models and optimised
on both the total and maximum parameter credibility to ensure that
our results were generalisable.

While Theorem 1 is a good first step towards defining optimal
experimental benchmarks, there is still much scope for development.
Future research would focus on examining the impact of parameter
dependence and prior genealogical knowledge, and testing how robust
design criteria deteriorate as coalescent models assumptions become
invalidated.

REFERENCES

[1] J. Kingman, On the Genealogy of Large Populations, Journal of Applied
Probability 19 (1982) 27–43.

[2] O. Pybus, A. Rambaut, P. Harvey, An Integrated Framework for the
Inference of Viral Population History from Reconstructed Genealogies,
Genetics 155 (2000) 1429–37.

[3] K. Strimmer, O. Pybus, Exploring the Demographic History of DNA
Sequences using the Generalized Skyline Plot, Mol. Biol. Evol 18 (12)
(2001) 2298–305.

[4] A. Drummond, A. Rambaut, B. Shapiro, O. Pybus, Bayesian Coalescent
Inference of Past Population Dynamics from Molecular Sequences, Mol.
Biol. Evol 22 (5) (2005) 1185–92.

[5] K. Parag, O. Pybus, Optimal Point Process Filtering and Estimation of
the Coalescent Process, Journal of Theoretical Biology (2017) 153–67.

[6] T. Vaughan, D. Kuhnert, A. Popinga, et al., Efficient Bayesian Inference
under the Structured Coalescent, Bioinformatics 30 (16) (2014) 2272–9.

[7] P. Beerli, J. Felsenstein, Maximum Likelihood Estimation of a Migration
Matrix and Effective Population Sizes in n Subpopulations by using a
Coalescent Approach, PNAS 98 (8) (2001) 4563–68.

[8] E. Volz, S. Kosakovsky Pond, M. Ward, et al., Phylodynamics of
infectious disease epidemics, Genetics 183 (2009) 1421–30.

[9] N. De Maio, C. Wu, K. O’Reilly, D. Wilson, New Routes to Phylogeog-
raphy: A Bayesian Structured Coalescent Approximation, PLoS Genetics
11 (8) (2015) e1005421.

[10] H. Li, R. Durbin, Inference of Human Population History from Individ-
ual Whole-genome Sequences, Nature 475 (7357) (2011) 493–6.

[11] S. Sheehan, K. Harris, Y. Song, Estimating Variable Effective Population
Sizes from Multiple Genomes: A Sequentially Markov Conditional
Sampling Distribution Approach, Genetics 194 (2013) 647–62.

[12] J. Palacios, J. Wakeley, S. Ramachandran, Bayesian Nonparametric
Inference of Population Size Changes from Sequential Genealogies,
Genetics 201 (2015) 281–304.

[13] L. Gattepaille, G. Torsten, M. Jakobsson, Inferring Past Effective Popu-
lation Size from Distributions of Coalescent Times, Genetics 204 (2016)
1191–206g.

[14] J. Stack, J. Welch, M. Ferrari, et al., Protocols for Sampling Viral
Sequences to Study Epidemic Dynamics, J. R. Soc. Interface 7 (2010)
1119–27.

[15] M. Hall, M. Woolhouse, A. Rambaut, The Effects of Sampling Strategy
on the Quality of Reconstruction of Viral Population Dynamics using
Bayesian Skyline Family Coalescent Methods: A Simulation Study,
Virus Evol. 2 (1).

[16] D. Hillis, Taxonomic Sampling, Phylogenetic Accuracy, and Investigator
Bias, Syst. Biol. 47 (1) (1998) 3–8.

[17] M. Karcher, J. Palacios, T. Bedford, et al., Quantifying and Mitigating
the Effect of Preferential Sampling on Phylodynamic Inference, PLoS
Computational Biology 12 (3).

[18] J. Kim, M. E, M. Racz, N. Ross, Can one Hear the Shape of a Population
History?, Theoretical Population Biology 100 (2015) 26–38.

[19] M. Bartlett, The Use of Transformations, Biometrics 3 (1) (1947) 39–52.
[20] V. Minin, E. Bloomquist, M. Suchard, Smooth Skyride through a Rough

Skyline: Bayesian Coalescent-Based Inference of Population Dynamics,
Mol. Biol. Evol 25 (7) (2008) 1459–71.

[21] R. Griffiths, S. Tavare, Sampling Theory for Neutral Alleles in a Varying
Environment, Phil Trans R Soc B 344 (1994) 403–10.

[22] P. Beerli, J. Felsenstein, Maximum Likelihood Estimation of Migration
Rates and Effective Population Numbers in Two Populations using a
Coalescent Approach, Genetics 152 (1999) 763–73.

[23] M. Notohara, The Coalescent and the Genealogical Process in Geograph-
ically Structured Population, J Math Biol 29 (1990) 59–75.

[24] R. Fisher, Statistical Methods and Scientific Induction, Edinburgh: Oliver
and Boyd, 1956.

[25] E. Lehmann, G. Casella, Theory of Point Estimation, 2nd Edition,
Springer-Verlag, 1998.

[26] G. Reinert, Statistical Theory, Tech. rep., University of Oxford (2009).
[27] S. Kay, Fundamentals of Statistical Signal Processing: Estimation The-

ory, Prentice Hall, 1993.
[28] Asymptotic Methods in Statistical Decision Theory, Springer Verlag,

New York.
[29] D. Freedman, On the Bernstein-Von Mises Theorem with Infinite

Dimensional Parameters, The Annals of Statistics 27 (4) (1999) 1119–
40.

[30] A. Atkinson, A. Donev, Optimal Experimental Designs, Oxford Univer-
sity Press, 1992.

[31] H. Banks, M. Davidian, Generalized Sensitivities and Optimal Experi-
mental Design, Tech. rep., North Carolina State University (2009).

[32] A. Marshall, I. Olkin, B. Arnold, Inequalities: Theory of Majorization
and its Applications, 2nd Edition, Springer Science + Business Media,
2011.

[33] T. Rothenburg, Identification in Parametric Models, Econometrica 39 (3).
[34] M. Gill, P. Lemey, N. Faria, et al., Improving Bayesian Population

Dynamics Inference: A Coalescent-Based Model for Multiple Loci, Mol.
Biol. Evol 30 (3) (2012) 713–24.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/317438doi: bioRxiv preprint 

https://doi.org/10.1101/317438
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

[35] M. Friendly, G. Monette, J. Fox, Elliptical insights: Understanding sta-
tistical Methods through Elliptical Geometry, Statistical Science 28 (1)
(2013) 1–39.

[36] P. Grunwald, The Minimum Description Length Principle, The MIT
Press, 2007.

[37] I. Myung, V. Balasubramanian, M. Pitt, Counting Probability Distribu-
tions: Differential Geometry and Model Selection, Proceedings of the
National Academy of Science 97 (21) (2000) 11170–5.

[38] A. Rodrigo, J. Felsenstein, Coalescent Approaches to HIV-1 Population,
The Evolution of HIV, Johns Hopkins University Press, 1999.

[39] D. Snyder, M. Miller, Random Point Procresses in Time and Space, 2nd
Edition, Springer-Verlag, 1991.

[40] G. Ewing, G. Nicholls, A. Rodrigo, Using Temporally Spaced Sequences
to Simultaneously Estimate Migration Rates, Mutation Rate and Popu-
lation Sizes in Measurably Evolving Populations, Genetics 168 (2004)
2407–20.

[41] M. Nordborg, Handbook of Statistical Genetics: Coalescent Theory, John
Wiley and Sons, 2001.

[42] G. McVean, N. Cardin, Approximating the Coalescent with Recombina-
tion, Phil Trans R Soc B 360 (2005) 1387–93.

[43] S. Schiffels, R. Durbin, Inferring Human Population Size and Separation
History from Multiple Genome Sequences, Nature Genetics 46 (8)
(2014) 919–25.

[44] P. Tataru, J. Nirody, Y. Song, diCal-IBD: Demography-Aware Inference
of Identity-by-Descent Tracts in Unrelated Individuals, Bioinformatics
30 (23) (2014) 3430–1.

[45] D. Weissman, O. Hallatschek, Minimal-assumption Inference from
Population-genomic Data, eLife 6 (2017) e24836.

[46] J. Liepe, S. Filippi, M. Komorowski, et al., Maximizing the Informa-
tion Content of Experiments in Systems Biology, PLoS Computational
Biology 9 (1) (2013) e1002888.

[47] R. Opgen-Rhein, L. Fahrmeir, K. Strimmer, Inference of Demographic
History from Genealogical Trees using Reversible Jump Markov Chain
Monte Carlo, BMC Evolutionary Biology 5 (6).

[48] B. Ranneby, The Maximum Spacing Method: An Estimation Method
Related to the Maximum Likelihood Method, Scandinavian Journal of
Statistics 11 (1984) 93–112.

[49] R. Heller, L. Chikhi, H. Siegismund, The Confounding Effect of Pop-
ulation Structure on Bayesian Skyline Plot Inferences of Demographic
History, PLoS ONE 8 (5) (2013) e62992.

[50] P. Sjodin, I. Kaj, S. Krone, et al., On the Meaning and Existence of an
Effective Population Size, Genetics 169 (2005) 1061–70.

[51] R. Cheng, N. Amin, Estimating Parameters in Continuous Univariate
Distributions with a Shifted Origin, J. R. Statist. Soc. B 45 (3) (1983)
394–403.

SUPPORTING TEXT

Robust Coalescent Interval Spacing

In the main text we examined how to optimise experimental design
for robustness, given p orthogonal parameters that need to be inferred.
The log-likelihoods used in these designs have presumed some knowl-
edge about the change-points of these parameters. This corresponds
to knowing the piecewise-constant switch times, the deme number
and the bin sizes (or population history) in the skyline demographic,
structured and SMC models respectively. Such assumptions are
reasonable since simultaneously inferring both change-points and
parameter values is an ill-conditioned problem. For example, if we do
not know anything a-priori about either bin or population size then
it is impossible to derive optimal SMC discretisations [11] [44].
Similar identifiability problems emerge in trying to simultaneously
infer interval limits and population sizes or deme number, population
size and migration rates. Usually the best one can do in these cases is
to use some data driven iterative procedure [12] [47]. These methods
will optimise these unknowns in turn and produce sensible results but
will be very case specific, allowing no general design insight to be
derived.

A main reason for this difficulty is that, often, such low infor-
mation problems require us to know the coalescent time distribution
in order to estimate the parameters of interest, which themselves
influence the coalescent times. This circular dependence creates a

fundamental limit [11] [13]. While this general problem is outside
the scope of our work, here we explore what change-point choices
our robust design recommends. Theorem 1 suggests that all of our
piecewise coalescent models can be viewed as allocations of events
to ‘slots’ (which can represent bins, switch intervals or even deme
demarcations). Given this perspective, we will examine change-points
explicitly for the SMC model, but observe that the same results apply
to the other models as they all possess analogous log-likelihoods.
Note that for this analogy we only consider the deme population
sizes as parameters in the structured model. A similar type of result
is, however, expected to hold for migration rate inference.

It is known that if we condition on n − 1 events from an inho-
mogeneous Poisson process occurring in [0, εp], with intensity λ(t),
then the event times are identically and independently distributed
according to density f(t) = λ(t)∫ εp

0 λ(u) du
[39]. If we let λ(t)

be our piecewise-constant SMC rate we find that
∫ εp

0
λ(u) du =∑T

i=1

∑p
j=1 γjβj =

∑p
j=1(n − 1)γjβj with γj = N−1

j as the
inverse population size over the region [εj−1, εj ] and slot width
βj = εj − εj−1. Here T is the number of loci. Note that, for
example, in the skyline demographic model, we would have a single
loci and the βj would correspond to scaled interval times (see ωj in
the derivation of the skyline demographic log-likelihood in the main
text).

We can define the cumulative distribution function (CDF) at the
slot endpoints as: F (εj) =

∫ εj
0
f(t) dt and denote the consecutive

spacing of this CDF as ∆j = F (εj) − F (εj−1). Empirically, this
CDF corresponds to the lineage through time plot (LTT) of the
observed phylogeny, normalised by its total number of coalescent
events. Solving for ∆j using the piecewise-constant coalescent rate
gives the left part of Eq. (14). This expression is precisely the same
for the skyline and structured models (loci based constants cancel).
If we substitute the MLE for either βj or γj (depending on what is
known) then we derive ∆̂j . Applying the m∗j design from Theorem
1 produces the rest of Eq. (14).

∆j =
γjβj∑p
i=1 γjβj

=⇒ ∆̂j =
mj

n− 1
=⇒ ∆̂∗j |D =

1

p
(14)

The robust coalescent interval spacing, ∆̂∗j |D, is therefore fixed by
the number of slots (and hence parameters). This has two important
ramifications. First, as quantiles are defined as inverse cumulative
distribution values, it means that the optimal choice of slots is such
that their endpoints form 1

p
quantiles of the normalised LTT. Thus,

robust coalescent spacing leads to a uniform histogram of coalescent
event counts, with p controlling the histogram resolution. Second,
since the spacing at the MLE is constant, robustness is achieved by
the maximum spacings estimate (MSE) [51] [48]. For a given set
of observations, drawn from the CDF of a parameter σ, the MSE is
the estimate of σ that maximises the geometric mean of the spacing
of the CDF, evaluated at each observed random sample. Our results
suggest that if we view the endpoints as binned draws from f(t)
then, given a robust design, the MSE of σ results in optimal spacing.
Here σ is the effective coalescent rate with density f(t).

It is not difficult to prove that robust designs for the skyline
demographic and structured models also imply equivalent 1

p
MSEs.

We conjecture such quantile designs may be important for low
information change-point problems, and propose MSE theory as a
possible direction for future research into optimal binning or change-
point problems in coalescent models. Note that under this MSE
design, the observed tree, from the (information) perspective of the
slots, will appear as uniform as possible. Lastly, we observe that the
quantile design clearly suggests that the largest admissible number
of change-points occur when p = n − 1. This limit, for skyline
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demographic inference problems, corresponds to the formulation of
the classical skyline [2].

Simulation Study: Square Wave Populations

We show how to apply Theorem 1 to a simple skyline demographic
coalescent model. Consider a population, N(t), defined by a square
wave with period T . N(t) models the harmonic mean [2] of the
fluctuating number of infected individuals across time, in a seasonal
epidemic. N1 recurs on odd half periods and N2 on even ones ([0, T

2
)

is the first (odd) half period). Given n total samples (n−1 coalescent
events) we want to optimally infer N(t). Fig 1 of the main text
illustrates the experimental set-up and notation for a similar design
problem.

The precision with which N1 and N2 are estimated is an increasing
function of the number of coalescent events falling within their
intervals. Let m1i be the number of events in the ith recurrence of
N1 and m2i be the equivalent for N2. Theorem 1 stipulates that
the robust sampling schemes distribute 1

2
of all coalescent events

to N1 intervals (Eq. (15)). Thus, if m1 is the observed count of
coalescent events falling within N1 intervals, the performance of
any sampling scheme can be measured by the size of the scalar
d(m1) :=

∣∣I(logN1)
n−1

− 1
2

∣∣ =
∣∣ m1
n−1
− 1

2

∣∣. Note that d(m∗1) = 0
and it grows in size as the Fisher information becomes more skewed
(higher I(logN1) means lower I(logN2)).

I(logN1) = m1 =
∑
i≥0

m1(i+1) =⇒ m∗1 = m∗2 =
1

2
(n− 1)

(15)

If we define, p1, as the probability that a sampled tip is introduced
in an N1 interval then a robust sampling strategy achieves p∗1 =
arg minp1 d(m1). We assume p1 is constant with time. Thus, we
focus on the mapping p1 → d(m1) with p2 = 1 − p1. A sampling
protocol involves the tuple (sk, φk) with sk as the time of the kth

sampling event at which φk lineages are introduced. We will always
introduce our φk samples all at once and only at the change-points
so that sk = (k − 1)T

2
. This procedure maximises the probability

that samples will coalesce within their (desired) half-period.
We examine a range of deterministic sampling strategies in order

to explore how p1 controls d(m1). For a given p1, we set the number
of samples introduced in N1 and N2 half periods as fractions f1 =
round [p1(n− 1)] and f2 = n − 1 − f1. Here round indicates the
nearest integer. Note that maxpj fj = n − 1 as we assume that
there is always an initial sample to allow the first coalescent event.
We allocate the f1 and f2 samples uniformly across N1 and N2

half periods respectively, so that φi = a or 0 depending on whether
samples are introduced or not. Here p1 = 0 means we have placed
all n samples uniformly on N2 half periods while p1 = 1 means that
they are all on N1 ones. Intermediate p1 values compromise between
these two extremes.

Fig. 3 shows the sampling protocol performance under these
schemes with φi = 1 or 0 at different N1 values relative to T ,
and N2 = 2N1. We find that as N1 becomes smaller relative to T ,
the optimal protocol p∗1 gets closer to 1

2
. This makes sense since in

this region the population changes are slow relative to the coalescent
times so that we have the greatest chance of any sample falling within
its desired half period. As N1 increases, coalescent times lengthen
and we get samples falling outside their desired half period. This
leads to a weaker, less discernible minimum with larger uncertainty.
Further p∗1 < 1

2
in this regime. If we made N2 = 1

2
N1 we would get

curves skewed in the opposite direction so that p∗1 > 1
2

. Robust
sampling therefore favours placing more samples in regions with
larger population size.

This performance is not surprising because we cannot estimate
fluctuations in population size that are fast compared to our informa-
tion carrying events [50]. Note that if we increase φi then even at
these larger population sizes p1 gets closer to 1

2
due to the reduced

average coalescent times (increased speed of information). Moreover,
as biological population changes are usually assumed slower than
coalescent events [3], we can safely conclude that square wave
robustness is achieved by protocols which assign equal sampling
proportions to each population segment.

Fig. 3. Uniform sampling protocols for a square wave population. We
apply a deterministic and uniform sampling strategy with φi = 1 or 0
to a square wave population that fluctuates between N1 and N2 = 2N1.
We observe how the absolute difference between the Fisher information and
optimally robust directive, d(m1), changes with p1, the probability that a
sampled tip lands in N1. We set n = 100 and repeat this simulation 5000
times. The black, red, green and magenta curves are for N1 = [T

8
, T

4
, T

2
, T ]

respectively. Each curve gives the mean of d(m1) across the repeated runs
(solid line) and the 95% confidence interval around that mean. As N1

decreases relative to T , d(m1) becomes more symmetrical and maximal
performance (defined as min d(m1)) improves (gets closer to 0 and has
sharper confidence). The uniquely robust sampling protocol in each N1 case,
is visualised with a grey, filled circle.
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