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Abstract  

Background: Large-scale collaborative precision medicine initiatives (e.g., The Cancer Genome Atlas (TCGA)) 
are yielding rich multi-omics data. Integrative analyses of the resulting multi-omics data, such as somatic 
mutation, copy number alteration (CNA), DNA methylation, miRNA, gene expression, and protein expression, 
offer the tantalizing possibilities of realizing the potential of precision medicine in cancer prevention, diagnosis, 
and treatment by substantially improving our understanding of underlying mechanisms as well as the discovery 
of novel biomarkers for different types of cancers. However, such analyses present a number of challenges, 
including the heterogeneity of data types, and the extreme high-dimensionality of omics data.  

Methods: In this study, we propose a novel framework for integrating multi-omics data based on multi-view 
feature selection, an emerging research problem in machine learning research. We also present a novel multi-
view feature selection algorithm, MRMR-mv, which adapts the well-known Min-Redundancy and Maximum-
Relevance (MRMR) single-view feature selection algorithm for the multi-view settings.  

Results: We report results of experiments on the task of building a predictive model of cancer survival from an 
ovarian cancer multi-omics dataset derived from the TCGA database. Our results suggest that multi-view 
models for predicting ovarian cancer survival outperform both view-specific models (i.e., models trained and 
tested using one multi-omics data source) and models based on two baseline data fusion methods. 

Conclusions: Our results demonstrate the potential of multi-view feature selection in integrative analyses and 
predictive modeling from multi-omics data.  
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Background  
The advent of “big data” offers enormous potential for understanding and predicting health risks and 
intervention outcomes, as well as personalizing treatments, through integrative analysis of clinical, biomedical, 
behavioral, environmental, and even socio-demographic data. For example, recent efforts in cancer genomics 
under the Precision Health Initiative offer promising ways to diagnose, prevent, and treat many cancers [1]. 
Recent advances in high-throughput omics technologies offer cost-effective ways to acquire diverse types of 
genome-wide multi-omics data. For instance, Large-scale collaborative efforts such as the Cancer Genome Atlas 
(TCGA) and the International Cancer Genome Consortium (ICGC) are collecting multi-omics data for tumors 
along with clinical data for the patients. An important goal of these initiatives is to develop comprehensive 
catalogs of key genomic alterations associated for a large number of cancer types [2, 3].  

Computational analyses of multi-omics data offer an unprecedented opportunity to deepen our understanding of 
complex underlying mechanisms of cancer that is essential for advancing precision oncology (See for example, 
[4-7]). Because different types of omics data have been shown to complement each other [8], there is a growing 
interest in effective methods for integrative analyses of multi-omics data [9-11]. The resulting methods have 
been successfully used to predict molecular abnormalities that affect clinical outcomes and therapeutic targets 
[5, 10, 12-16]. In general, computational approaches to multi-omics data integration have to address three major 
challenges [5]: i) the curse of dimensionality (i.e., the number of features p is very large compared to the  
number of samples n); ii) the differences in scales as well as sampling/collection bias and noise present in 
different omics data sets; iii) extracting  and optimally combining, for the prediction task at hand,  features that 
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provide complementary information across different data sources. Unfortunately, baseline approaches of 
integrating multiple data sources by simply concatenating their features or analyzing data from each data source 
separately and combining the predictions fail to satisfactorily address these challenges. Therefore, there is an 
urgent need for more sophisticated methods for integrative analysis and predictive modeling from multi-omics 
data [16].  

Multi-view learning offers a promising approach to developing predictive models by leveraging complementary 
information provided by multiple data sources (views) [17]. Multi-view learning algorithms attempt to learn one 
model from each view while jointly optimize all the view-specific models to improve the generalization 
performance. Some examples of multi-view learning algorithms include: multi-view support vector machines 
[18], multi-view Boosting [19], multi-view k-means [20], and clustering via canonical correlation analysis [21]. 
The problem of learning predictive models from multi-omics data can be naturally formulated as a multi-view 
learning problem where each omics data source constitutes a view. However, the vast majority of existing multi-
view learning algorithms are not equipped to effectively cope with the high-dimensionality of omics data [22]. 
Hence, predictive modeling from multi-omics data calls for effective methods for multi-view feature selection or 
dimensionality reduction.   

Against this background, we describe an approach to predictive modeling from multi-omics data based on a 
novel multi-view feature selection algorithm and a two-stage framework for multi-omics data integration. To the 
best of our knowledge, this is the first attempt to apply multi-view feature selection in the integrative analyses of 
multi-omics data. We evaluated our approach on the task of predicting ovarian cancer survival [13] using a 
TCGA multi-omics dataset composed of three omics data sources,  copy number alteration (CNA), DNA 
methylation, and gene expression RNA-Seq. Our results show that: (i) the predictive models developed from 
multi-omics data (multiple views) outperform their single view counterparts; and that (ii) the predictive models 
developed using the proposed multi-view feature selection algorithm outperform those developed using two 
baseline methods that combine multiple views into a single view. These results demonstrate the viability of 
multi-view feature selection for multi-omics data integration and lay the ground for developing effective multi-
omics data integration models using multi-view feature selection. 

 

Methods  

Datasets  
Normalized and preprocessed multi-omics ovarian cancer datasets (most recently updated on August 16, 2016), 
including gene-level copy number alteration (CNA), DNA methylation, and gene expression (GE) RNA-Seq 
data, were downloaded from UCSC Xena cancer genomic browser [23]. Table 1 summarizes the number of 
samples and features (e.g., genes) in each dataset. Clinical data about vital status and survival for the subjects 
were also downloaded from Xena server. Only the patients with CNA, methylation, RNA-Seq, and survival data 
were retained. Patients with survival time ≥ 	3 years were labeled as long-term survivors while patients 
with survival time < 3 years and vital status of 0 were labeled as short-term survivors. The resulting multi-
view dataset consists of 215 samples, 127 of them are classified as long-term survivors. Each view was then pre-
filtered and normalized as follows: i) features with missing values were excluded; ii) feature values in each 
sample were rescaled to lie in the interval [0,1]; iii) features with variance less than 0.02 were removed. 

 
Table 1. TCGA ovarian cancer omics data used in this study 

Data source Platform Number of 
samples 

Number of features No of features with 
high variance 

CNA Affymetrix SNP 6 579 24,777 7,355 

Methylation Illumina Infinium 
HumanMethylation27k 

616 27,579 6,206 

GE RNA-Seq Illumina HiSeq 308 30,531 283 
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Notations  
Table 2 summarizes convenient notations used in this work. For simplicity, we assumed a binary label for each 
sample.  Note however, that Algorithms 1 and 2, described below, are also applicable to multi-class as well as 
numerically labeled data. 

 

Table 2. Notations 

Symbol Definition and Description 

𝐷 =< 𝑋, 𝑦 > Labeled dataset where 𝑋 ∈ 𝑅-×/ is a matrix of m instances and n features, and 
𝑦 ∈ {0,1}- is the binary class labels of the instances 

𝑥5 ith feature in 𝑋 

𝑔(𝑥5, 𝑥8) Function that returns the redundancy between two features 𝑥5 and 𝑥8 

𝑓(𝑥5, 𝑦) Function that returns the relevance between a feature 𝑥5 and class labels 𝑦 

𝑆 Indices of selected features 

Ω Indices of all features  

Ω= Indices of candidate features Ω − S 

𝑘 Number of features to be selected 

𝑣 Number of views in a multi-view dataset  

𝑀𝑉𝐷 =< 𝑋D, … , 𝑋F , 𝑦 > Labeled multi-view dataset where 𝑋5 ∈ 𝑅-×/G is a matrix of 𝑚 samples and 
𝑛5 features and 𝑦 ∈ {0,1}- is the binary class labels of the instances in all 
views 

𝐷5 =< 𝑋5, 𝑦 > ith view in a multi-view dataset 

𝑥85 jth feature in 𝑋5 

𝑆5 Indices of selected features from ith view 

Ω5 Indices of all features in ith view 

Ω=G Indices of candidate features Ω5 − S5 in ith view 

 

Minimum redundancy and maximum relevance feature selection  
Unlike univariate feature selection methods [24] that return a subset of features without accounting for 
redundancy between the selected features, the minimum redundancy and maximum relevance (MRMR) based 
feature selection algorithm [25] iteratively selects features that are maximally relevant for the prediction task 
and minimally redundant with the set of already selected features. MRMR has been successfully used for feature 
selection in a number of applications including microarray gene expression data analysis [25, 26], prediction of 
protein sub-cellular localization [27], epileptic seizure [28], and protein-protein interaction [29]. 

While the exact solution to the problem of MRMR selection of 𝑘 = 𝑆  features from a set of n candidates 
requires Ο(𝑛K) searches, it is possible to obtain an approximate solution using a simple heuristic algorithm (see 
Algorithm 1) [25]. Algorithm 1 accepts as input:  a labeled dataset 𝐷; a function 𝑔:	 𝑥5, 𝑥8 → 𝑅N that 
quantifies the redundancy between any pair of features (e.g., the absolute value of Pearson’s correlation 
coefficient); a function 𝑓: 𝑥5, 𝑦 → 𝑅N that quantifies the relevance of a target feature for predicting the labels 
𝑦 (e.g., mutual information or F-statistic); and the number of features 𝑘 to be selected using the MRMR 
criterion. In lines 1 and 2, the algorithm creates an empty set 𝑆 and the feature with the maximum relevance for 
predicting 𝑦 is added to 𝑆. In each of the subsequent 𝑘 − 1 iterations (lines 3-5), the features that greedily 
approximate the MRMR criterion in Eq. 1 are successively added to 𝑆. Eq. 1 has two terms: the first term 
maximizes the relevance condition, whereas the second term minimizes the redundancy condition.  

argmax
8∈TU

(𝑓 𝑥8, 𝑦 − D
|=|W

𝑔(𝑥8, 𝑥X))X∈=                 (1) 
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Algorithm 1. MRMR 

Require: 𝐷 =< 𝑋, 𝑦 >, 𝑔, 𝑓, 𝑘  

1: Φ → S 

2: add 𝑥5 = argmax
8∈T

𝑓(𝑥8, 𝑦) to 𝑆 

3: for 𝑡	 = 	1 ∶ 	𝑘 − 1 do 

4:   add the index of the feature that satisfies Eq. 1 to 𝑆 

5: end for 

6: return S 

 

Multi-view minimum redundancy and maximum relevance feature selection  
MRMR, or any single-view feature selection algorithm, can be trivially applied to multi-view data as follows to 
yield two baseline methods: i) Apply MRMR separately to each view and then concatenate view-specific 
selected features. The major limitation of this approach is that it ignores the redundancy and complementarity of 
features across views [30]; ii) Apply MRMR to a single-view dataset obtained by concatenating all the views. A 
key limitation of this approach is that it fails to explicitly account for the prediction task specific differences in 
the relative utility or relevance of the features extracted from the different views.  

We propose a novel multi-view feature selection algorithm, MRMR-mv, an adaptation of MRMR, to the multi-
view setting. The proposed MRMR-mv algorithm is shown in Algorithm 2. MRMR-mv accepts as input: a 
labeled multi-view dataset, 𝑀𝑉𝐷 , with 𝑣 ≥ 2 views; a redundancy function 𝑔; a relevance function 𝑓; 
number of features to be selected 𝑘; and a probability distribution 𝑃 = {𝑝D ⋯𝑝F} that models the relative 
importance of each view (or the prior probability that a view contributes a feature to the set of features selected 
by MRMR-mv). If all of the views are considered equally important, 𝑃 should be a uniform distribution. 
MRMR-mv proceeds as follows. First, 𝑆` is initialized for each view 𝑡 to keep track of selected features from 
that view (lines 1-3). Second, the procedure choice, implemented in NumPy python library [31],  is invoked, to 
sample with replacement, 𝑘 − 1 times, according to the selection probability distribution 𝑃 and the list of 
sampled views is kept in 𝐶 (lines 4 and 5). Third, the maximally relevant feature across all of the views is 
retrieved, and added to 𝑆5, where 𝑖 is the view index of the retrieved feature 𝑥85 (line 6). Fourth, at each 
iteration 𝑡, the feature from the sampled view 𝐶[𝑡] that satisfies the MRMR criterion with respect to the 
previously selected features from all the views examined during the preceding iterations is added to 𝑆e[`] (lines 
7-10). Finally, the algorithm returns selected view-specific feature indices, S.   

We note that MRMR-mv is different from the first baseline approach of separately applying MRMR to each 
view since MRMR-mv expands the minimum redundancy condition to include selected features from all views 
while in the former approach redundancy is determined using view-specific features only. Unlike the second 
baseline approach of applying MRMR to concatenated views, MRMR-mv enables views to be treated unequally 
(using user’s beliefs about the relative importance of the views for a given prediction task) and jointly performs 
feature selection in a view-aware manner that allows features from all views to be present in the set of selected 
features.       

A two-stage feature selection framework for integrating multi-omics data  
Figure 1 shows our proposed two-stage framework for integrating multi-omics data for virtually any prediction 
task (e.g., predicting cancer survival and predicting clinical outcome). The input to our framework is a labeled 
multi-view dataset in the form 𝐷5 =< 𝑋5, 𝑦 >. Stage I includes view-specific filters that can be used to 
encapsulate any traditional single-view feature selection method (e.g., Lasso [32] or MRMR). Each filter has a 
gating signal that could be used to disable that filter in which case the disabled filter passes on no data to the 2nd 
stage. A special view-specific filter, called AllFilter, passes the data from all of the input features without 
performing any feature selection. Stage II has a single filter that can encapsulate either a single-view or multi-
view feature selection algorithm. If the 2nd stage filter encapsulates a single-view feature selection method, the 
feature selection method will be applied to the concatenation of the Stage II input. On the other hand, if the 2nd 
stage filter encapsulates a multi-view feature selection method (e.g., MRMR-mv), then the multi-view feature 
selection method will be applied to the multi-view input of Stage II. The framework supports two modes of  
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Algorithm 2. MRMR-mv 

Require: 𝑀𝑉𝐷 =< 𝑋D, … , 𝑋F , 𝑦 >, 𝑔, 𝑓, 𝑘, 𝑃 = (𝑝5, … , 𝑝F)  

1: for 𝑡	 = 	1: 𝑣 

2:   𝑆` Φ 

3: end for 

4: 𝑉 {1, … , 𝑣} 

5: 𝐶 𝑐ℎ𝑜𝑖𝑐𝑒(𝑉, 𝑘 − 1, 𝑃) 

6: add 𝑥85 = argmax
5∈{D,..,F}

argmax
8∈TG

𝑓(𝑥85, 𝑦) to 𝑆5 

7: for 𝑡	 = 	1:	𝑘 − 1 do 

8:   𝑙 𝐶[𝑡] 

9:   add 𝑥5X = argmax
8∈Tlm

(𝑓 𝑥8X, 𝑦 − D
(`)W

𝑔(𝑥8X, 𝑥n
o))n∈=po∈{D,..,F}  to 𝑆X 

10: end for 

11: return 𝑆 = {𝑆D, … , 𝑆F} 

 

 

operations: i) training mode, where each enabled filter will be trained using the input so as to produce the 
filtered version of the input; ii) test (or operation) mode, where test multi-view dataset is provided as input and 
the trained filters will output the selected features of the input data. 

The framework can be easily customized so as to allow evaluation of different approaches of predictive 
modeling from multi-omics data. For example, to build a single view model by applying the Lasso method to 
the  ith view, we: set 𝐸5 to 1 and disable all other filters; pass Lasso feature selection method to the ith filter; 
use AllFilter as Stage II filter. Similarly, to apply MRMR to concatenated views, we: enable Stage I filters and 
use either AllFilter (to pass the input as is) or any single-view filter; and deploy MRMR as the Stage II filter. 

 

Implementation  
We implemented Algorithms 1 and 2 and the two-stage feature selection framework in Python using the scikit-
learn machine learning library [33]. We will release the code as part of sklearn-fuse, a python library for data 
and model-based data fusion that is currently under development. In the mean time, the code for the methods 
described above will be available to interested researchers upon request. 

Experiments  
We report results of experiments on the task of building a predictive model of cancer survival from an ovarian 
cancer multi-omics dataset derived from the TCGA database. The resulting data set is comprised of three views, 
namely, CNA, methylation, and gene expression RNA-Seq for each patient along with the corresponding 
clinical outcomes (short-term versus long-term survival). Our first set of experiments consider single-view 
classifiers based on each of the 3 views to obtain view-specific models for comparison with the proposed multi-
view models; The second set of experiments compare some of the representative instantiations of the two-stage 
multi-view feature selection framework in combination with some representative choices of (single-view) 
supervised algorithms for training the classifiers. In both cases, we experimented with three widely used 

 
 
Figure 1. Two-stage framework for integrating multi-omics data. Ei refers to the enable signal for the ith view-
specific filter. SFi refers to the set of features selected from the ith view using the ith filter. 
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machine learning algorithms for developing cancer survival predictors: i) Random Forest (RF) [34] with 500 
trees; ii) eXtreme Gradient Boosting (XGB) [35] with 500 weak learners; ii) Logistic Regression (LR) [36] with 
L1 regularization. We used the implementations of these algorithms available in the Scikit-learn machine 
learning library [33]. 
For Stage I feature selection, we experimented with several feature selection methods implemented in Scikit-
learn including: RF feature importance [34]; Lasso [32]; ElasticNet [37]; and Recursive Feature Elimination 
(RFE) [38]. However, due to space limitation, we describe only the results of the best performing method, Lasso 
with L1 regularization parameter set to 0.0001. In Stage II feature selection, we used MRMR as a baseline 
method and MRMR-mv for multi-view feature selection 

For both MRMR and MRMR-mv feature selection, we used the absolute value of Pearson’s correlation 
coefficient as the redundancy function, 𝑔. For the relevance function, 𝑓, we experimented with three functions 
Chi2, F-Statistic (F-Stat), and Mutual Information (MI). All functions are implemented in Scikit-learn.  

We estimated the performance of the resulting classifiers on the task of predicting cancer survival using the 5-
fold cross-validation (CV) procedure. Briefly, the dataset is randomly partitioned into five equal subsets. Four of 
the five subsets are collectively used to select the features and train the classifier and the remaining subset is 
held out for estimating the performance of the trained classifier. This procedure is repeated 5 times, by setting 
aside a different subset of the data for estimating model performance. The 5 results from all the folds are then 
averaged to report a single performance estimate. In our experiments we used the area under ROC curve (AUC) 
[39] to assess the predictive performance of classifiers. With small size (in terms of the number of samples) 
datasets, the estimated classifier performance might vary for different random partitioning of the data into 5 
folds (see Section 3.1 for details). To obtain a more robust estimate of performance, we ran the 5-fold cross-
validation procedure 10 times (each using different partitioning of the data into 5 subsets) and reported the 
average AUC estimated from the 10 5-fold CV experiments.  

 

Results and Discussion 

Single-view models for predicting ovarian cancer survival 
We evaluated RF, XGB, and LR classifiers trained using each of the individual views with the top k features 
selected using Lasso feature selection algorithm for choices of 𝑘 = 10,20,30, … ,100.	Tables 3-5 report the 
performance of the resulting classifiers averaged over 10 different 5-fold cross-validation experiments.  

We observed that models built using only the methylation view performed marginally better than random 
guessing (i.e., the best observed average AUC in Table 5 is 0.55). In contrast, single view models using CNA or 
RNA-Seq achieved higher average AUC scores of up to 0.66. These results are in agreement with those of 
previously reported studies (e.g., [13]). It should be noted that when the performance of single view models is 
estimated using a single 5-fold cross-validation experiment (as opposed to average over 10 different cross-
validation experiments), the best observed AUC scores were 0.70, 0.55, and 0.69 for models built from the CNA, 
methylation, and RNA-Seq views, respectively.  The observed variability in performance among different 5-
fold cross-validation experiments is expected because of the relatively small size of the ovarian cancer survival 
dataset. This finding underscores the importance of using multiple CV experiments to obtain robust estimates 
and comparisons of classifier performance. Next, we show how integrating data sources (i.e., views) can further 
improve the predictive performance of the cancer survival predictors. 
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Table 3. Average AUC scores of RF, XGB, and LR models estimated using 10 runs of 5-fold cross validation 
experiments and CNA data. 

# Features RF XGB LR 

10 0.57 0.56 0.58 

20 0.61 0.61 0.61 

30 0.61 0.61 0.61 

40 0.63 0.62 0.61 

50 0.64 0.64 0.62 

60 0.65 0.65 0.63 

70 0.65 0.65 0.63 

80 0.65 0.65 0.62 

90 0.66 0.66 0.63 

100 0.66 0.66 0.62 

Max 0.66 0.66 0.63 

Avg. 0.63 0.63 0.62 
 

Table 4. Average AUC scores of RF, XGB, and LR models estimated using 10 runs of 5-fold cross validation 
experiments and methylation data.  

# Features RF XGB LR 

10 0.52 0.51 0.50 

20 0.51 0.52 0.50 

30 0.52 0.52 0.49 

40 0.52 0.53 0.50 

50 0.52 0.53 0.51 

60 0.52 0.53 0.52 

70 0.53 0.54 0.51 

80 0.53 0.54 0.52 

90 0.53 0.55 0.52 

100 0.53 0.55 0.52 

Max 0.53 0.55 0.52 

Avg. 0.52 0.53 0.51 
 

Integrative analyses of multi-omics data sources using multi-view feature selection 
We used our two-stage feature selection framework (See Figure 1) to construct multi-view models (MV) with 
the following settings. The input to the framework is two views, CNA and RNA-Seq. We chose not to use the 
methylation view because the performance of single view models built using the methylation data performed 
marginally better than chance (see Section 3.1).   For the Stage I filters, we used Lasso with L1 regularization 
parameter set to 0.0001 to select the top 100 features from CNA and RNA-Seq views, respectively. For the 
Stage II filter, we used MRMR-mv with Pearson’s correlation coefficient as the redundancy function and a 
uniform distribution for the selection probability parameter, 𝑃. Finally, we experimented with different multi-
view models obtained using combinations of choices for the remaining MRMR-mv parameters, 𝑘	and 𝑓. 
Specifically, we experimented with 𝑘	 = 	10, 20, … , 100  and the relevance function 𝑓 ∈ {𝐶ℎ𝑖2, 𝐹 −
𝑆𝑡𝑎𝑡,𝑀𝐼, 𝑎𝑛𝑑	𝐶𝐹𝑀} where 𝐶𝐹𝑀 is the average of the other three relevance functions. 
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Table 5. Average AUC scores of RF, XGB, and LR models estimated using 10 runs of 5-fold cross validation 
experiments and RNA-Seq data. 

# Features RF XGB LR 

10 0.58 0.57 0.59 

20 0.60 0.58 0.61 

30 0.61 0.60 0.63 

40 0.62 0.61 0.64 

50 0.62 0.61 0.65 

60 0.63 0.60 0.66 

70 0.63 0.60 0.64 

80 0.64 0.60 0.65 

90 0.63 0.61 0.65 

100 0.64 0.61 0.65 

Max 0.64 0.61 0.66 

Avg. 0.62 0.60 0.64 
 

Figure 2 compares the performance of the different MV models described above. Interestingly, no single 
relevance function consistently outperforms other functions for different choices of the number of selected 
features, k, and machine learning algorithms. However, the best AUC of 0.7 is obtained using either 𝐶ℎ𝑖2 or 
𝑀𝐼 relevance functions and RF classifier trained using the top 100 features. Hence, our final MV models will 
use 𝐶ℎ𝑖2	as the relevance function and the remaining MRMR-mv settings stated in the preceding paragraph. 

 

 

 

 

 

 

The selection probability parameter, 𝑃, in MRMR-mv algorithm controls the expected number of selected 
features from each view. Results shown in Figure 2 have been produced using a uniform selection probability 
distribution. Although using a uniform distribution is reasonable since the best AUC score for the single-view 
models based on CNA or RNA-Seq is 0.66 (See Tables 3 and 5), it is interesting to examine the influence of 𝑃 
on the performance of our MV models. Let 𝑃	 = 	 (𝑝D, 𝑝v) be the probability distribution where 𝑝D and 𝑝v 
denotes the sampling probability for CNA and RNA-Seq, respectively. In this experiment, we considered 11 
different probability distributions obtained using 𝑝D = {0,0.1, 0.2, . . . ,1}.	 Then, for each choice of the number 
of selected features, k, we evaluated 11 MV models using RF algorithm and the same MRMR-mv settings 
described in the preceding subsection and the 11 different probability distributions for P. We used the percent 
relative range in the recorded AUC to assess the sensitivity of MV models to changes in P. Figure 3 shows the 
relationship between the number of selected MV features, k, and the sensitivity of MV models to changes in P. 
Interestingly, our results suggest that as the number of selected MV features increases, the resulting MV models 
become less sensitive to the selection probability distribution parameter P.  

Multi-view vs. single-view models for predicting ovarian cancer survival 
Figure 4 compares our final MV models with the following single-view models: i) SV_CNA, single-view 
models developed using CNA data source; ii) SV_RNA-Seq, single-view models developed using RNA-Seq 
data source; iii) SV_C, single-view models obtained by applying MRMR to the concatenation of the two views, 
CNA and RNA-Seq; iv) SV_S, single-view models obtained by applying MRMR separately to CNA and RNA-
Seq views, respectively. In addition, Figure 4 shows the results for a simple ensemble model that averages the 

 
Figure 2. Performance comparisons of multi-view models using four different relevance functions for 
MRMR-mv and three machine learning classifiers, a) RF, b). XGB, and c) LR 
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predictions from SV_CNA and MV models. In general, MV and Ensemble models outperform SV models in 
most of the cases. 

 

 

 

 

 

 

 

 

 

 

We noted some interesting observations from our experiments with each of the machine learning algorithms 
considered in our experiments. In the case of models developed using RF algorithm, MV and Ensemble models 
outperformed the four single-view models for all choices of the number of selected features, k. Ensemble 
models outperformed MV models for 𝑘 = 10, 20, and 80. Baseline single-view models outperformed SV_CNA 
and SV_RNA-Seq for 𝑘	 ≤ 40. The highest observed AUC was 0.7 and was obtained using the MV model and 
𝑘=100. In the case of XGB based models, SV_S, MV, and Ensemble models outperformed the remaining 
single-view models. Ensemble models outperformed MV models for 8 out of 10 choices of k. Finally, for 
models developed using LR algorithm, SV_S, MV, and Ensemble models outperformed the other three single-
view models. Regardless of which machine learning algorithm was used, SV_RNA-Seq and SV_C models had 
the lowest AUC in most of the cases reported in Figure 4. Our results suggest that the best single-view model is 
more likely to perform better than models developed using concatenated views. Our results also suggest that 
either applying feature selection to each individual view or selecting features jointly using multi-view feature 
selection consistently outperform the best single view model.  

Analysis of the top selected multi-view features   
In order to get insights into the most discriminative features selected by our framework, we considered the top 
100 features selected using MRMR-mv jointly from CNA and RNA-Seq views. To determine which features 
(genes) could serve as potential biomarkers for ovarian cancer survival, at each of the 50 iterations (resulting 
from running 5-fold procedure for 10 times), we scored each per-view input feature (input to our framework) by 
how many time it appears in the top 100 features. Table 6 summarizes the top 20 features from each view along 
with their normalized feature importance scores.  

To examine the interplay between the top selected features from each view, we constructed an integrated 
network of interactions among the features using the cBio portal by integrating the biological interactions from 
public databases including NCI-Nature Pathway Interaction Database, Reactome, HPRD, Pathway Commons, 
and MSKCC Cancer Call Map [40]. Examination of the resulting network (Figure 5) shows that RPS19, PNOC, 
SFRP1 and KCNJ16 are connected to other frequently altered genes, including MYC or EIF3E as oncogenes, 
from TCGA ovarian cancer dataset. In particular, ribosomal protein S19 (RPS19), which is known to be up-
regulated in human ovarian and breast cancer cells and released from apoptotic tumor cells, was found to be 
associated with a novel immunosuppressive property [41]. Furthermore, HTR3A is targeted by several FDA 
approved cancer drugs retrieved from PiHelper [42], an open source compilation of drug-target and antibody-
target associations derived from several public data sources. 

Finally, we performed a gene-set enrichment analysis to identify overrepresented GO terms in the two sets of 
top 20 features from CNA and RNA-Seq views. Specifically, we used the gene-batch tool in GOEAST (Gene 
Ontology Enrichment Analysis Software Toolkit) [43] with default parameters to import the gene symbols and 
to identify significantly overrepresented GO terms, for Biological Processes, Cellular Components and 
Molecular Function categories, in the CNA and RNA-Seq features sets. We found that the selected CNA gene 
set was enriched with 220 GO terms whereas the selected RNA-Seq gene set was enriched with 40 GO terms 
(See additional files 1 and 2). Analysis of the GO terms enriched in the CNA gene set showed a significant 

 
 

Figure 3. Relationship between No of selected MV features and sensitivity of MV models to changes 
in selection probability distribution P in terms of percent relative range in AUC. 

 
Figure 4. Performance comparisons of final multi-view models with single-view models using three 
machine learning classifiers, a) RF, b) XGB, and c) LR. 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/317982doi: bioRxiv preprint 

https://doi.org/10.1101/317982
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

overrepresentation of the molecular function GO terms related to hydrolase activity, oxidoreductase activity, and 
ion binding. Analysis of the GO terms enriched in the RNA-Seq gene set showed a significant over-
representation of the molecular function GO terms related to transmembrane and substrate-specific transporter 
activity. We also used the Multi-GOEAST tool to compare the results of enrichment analysis of CNA and RNA-
Seq gene sets. The graphical outputs of the Multi-GOEAST analysis results for top selected genes in CNA and 
RNA-Seq in Biological Processes, Cellular Components and Molecular Function categories are provided in 
additional files 3-5. In these graphs, red and green boxes represent enriched GO terms only found in CNA and 
RNA-Seq, respectively. Yellow boxes represent commonly enriched GO terms in both sets of genes. The 
saturation degrees of all colors represent the significance of enrichment for corresponding GO terms. 
Interestingly, GO:0003777~microtubule motor activity term is only shared GO term between CNA and RNA-
Seq enriched terms (see additional file 5). We concluded that the CNA and RNA-Seq features selected by the 
proposed multi-view feature selection algorithm are non-redundant not only in terms of the genes selected from 
the CNA and RNA-Seq views but also in terms of their significantly overrepresented GO terms. 

 

Table 6. List of top 20 selected features from CNA and RNA-Seq views 

CNA Score RNA-Seq Score 

TBX18 0.44 OVGP1 0.56 

TSHZ2 0.42 TOX3 0.54 

RN7SL781P 0.42 SIX3 0.52 

MAN1A2 0.42 HTR3A 0.50 

KIF13B 0.40 FLG 0.48 

DKFZP667F0711 0.36 SOSTDC1 0.48 

CD70 0.36 EPYC 0.48 

PRDM1 0.36 OBP2B 0.48 

ZNF471 0.34 FBN3 0.46 

RPS19 0.34 COL6A6 0.46 

snoU13 0.34 NKAIN4 0.46 

IRX1 0.32 LY6K 0.44 

MIA 0.32 FABP6 0.44 

LYPLA1 0.30 KIF1A 0.44 

SHROOM3 0.30 KCNJ16 0.44 

USP13 0.30 PNOC 0.42 

SFRP1 0.28 TKTL1 0.42 

CYP11A1 0.28 HLA-DRB6 0.42 

ZMYM4 0.28 KRT14 0.42 

APCDD1L 0.28 DPP10 0.40 
 

 

 
Figure 5. Integrative network view of selected features from CNA and RNA-Seq views. Selected features 
are highlighted by a thicker black outline. The remaining nodes are frequently altered neighbor genes with 
known interactions with the highlighted genes and were derived from public interaction databases. Each 
node in the network is gradient color-coded according to the alteration frequency based on CNA and RNA-
Seq data derived from the TCGA ovarian cancer dataset via cBio Portal. 
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Conclusions 
Developing multi-omics data-driven machine learning models for predicting clinical outcome, including cancer 
survival, is a promising cost-effective computational approach [44]. However, the heterogeneity and extreme 
high-dimensionality of omics data present significant methodological challenges in applying the state-of-the art 
machine learning algorithms to training such models from multi-omics data. In this paper, we have described, to 
the best of our knowledge, the first attempt at at applying multi-view feature selection to address these 
challenges. We have introduced a two-stage feature selection framework that can be easily customized to 
instantiate a variety of approaches to integrative analyses and predictive modeling from multi-omics data. We 
have proposed MRMR-mv, a novel maximum relevance and minimum redundancy based multi-view feature 
selection algorithm. We have applied the resulting framework and algorithm to build predictive models for 
ovarian cancer survival using multi-omics data derived from the Cancer Genome Atlas (TCGA). We have 
demonstrated the potential of integrative analysis and predictive modeling of multi-view data in ovarian cancer 
survival prediction. Work in progress is aimed at further development of multi-view feature selection and 
predictive modeling methodologies and their application in translational biomedical data sciences. 
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