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Abstract 
Motivation: Matrix factorization methods are widely exploited in order to reduce dimensionality 
of transcriptomic datasets to the action of few hidden factors (metagenes). Applying such meth-
ods to similar independent datasets should yield reproducible inter-series outputs, though it was 
never demonstrated yet. 
Results: We systematically test state-of-art methods of matrix factorization on several tran-
scriptomic datasets of the same cancer type. Inspired by concepts of evolutionary bioinformat-
ics, we design a new framework based on Reciprocally Best Hit (RBH) graphs in order to 
benchmark the method’s reproducibility. We show that a particular protocol of application of In-
dependent Component Analysis (ICA), accompanied by a stabilisation procedure, leads to a 
significant increase in the inter-series output reproducibility. Moreover, we show that the signals 
detected through this method are systematically more interpretable than those of other state-of-
art methods. We developed a user-friendly tool BIODICA for performing the Stabilized ICA-
based RBH meta-analysis. We apply this methodology to the study of colorectal cancer (CRC) 
for which 14 independent publicly available transcriptomic datasets can be collected. The result-
ing RBH graph maps the landscape of interconnected factors that can be associated to biologi-
cal processes or to technological artefacts. These factors can be used as clinical biomarkers or 
robust and tumor-type specific transcriptomic signatures of tumoral cells or tumoral microenvi-
ronment. Their intensities in different samples shed light on the mechanistic basis of CRC mo-
lecular subtyping. 
Availability: The BIODICA tool is available from https://github.com/LabBandSB/BIODICA . 
Contact: laura.cantini@curie.fr andrei.zinovyev@curie.fr  
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
Large-scale cancer genomics projects, such as The 
Cancer Genome Atlas (TCGA) and the International 
Cancer Genome Consortium (ICGC), are generating 
an overwhelming amount of omics data from multiple 
platforms and 10X Genomics released a scRNAseq 
dataset composed of 1.3 million mouse brain cells 
(Villani et al., 2017). The available data offer us the 
unpredicted opportunity to understand cancer, its 
phenotypic properties, onset, progression and re-
sponse to treatment. On the other hand, the massive 

sample size and high dimensionality of the current 
genomic data opens to all the computational and 
statistical challenges typical of “Big Data”. New com-
putational and statistical paradigms are thus essen-
tial to leverage the full power of high-throughput da-
ta, including bulk transcriptomic, epigenetic, proteo-
mic and single-cell data. 
 
The use of matrix factorization (MF) approaches, 
reducing the dimension of the high-dimensional data 
into low dimensional subspaces, represents a pow-
erful solution to this problem. The origins of MFs pre-
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date modern genomics. However, they are having a 
great success in biology because the state of a bio-
logical sample, such as a tumor sample, reflects 
multiple concurrent biological factors, from cell-type 
specific features to dynamic processes such as cell 
cycle. High-throughput data can be thus interpreted 
as a quantitative estimation of this mixture of biologi-
cal factors together with technical noise due to sam-
ples processing and data generation. The deconvo-
lution of these factors through matrix factorization 
approaches can thus provide an insightful interpreta-
tion of high-throughput data and increase our under-
standing of cancer. Also because each gene in MF 
has a chance to contribute to several hidden factors, 
unlike standard clustering methods. 
 
The current state-of-art in the field of matrix factori-
zation is represented by Principal Component Analy-
sis (PCA), Non Negative Matrix Factorization (NMF) 
and Independent Component Analysis (ICA). De-
spite similar formulation of the approximation prob-
lem, each algorithm constrained in its own way and 
being applied to the same dataset, can lead to dif-
ferent sets of hidden signals (Zinovyev et al., 2013). 
The existing differences among the various MFs im-
pede to perform a one-to-one mapping between the 
factors identified by the different methodologies. A 
more sophisticated solution is thus required to com-
pare state-of-art MFs in biology and, to our 
knowledge, no such framework has been developed 
till so far. 
 
In this manuscript we developed a new meta-
analysis method, based on exploiting Reciprocal 
Best Hit (RBH) relations between metagenes and 
clustering the RBH network. The method allows ex-
tracting robustly reproducible and biologically rele-
vant features without imposing thresholds on the 
correlation coefficients unlike standardly used corre-
lation networks. We also suggest a set of relevant 
criteria for benchmarking the matrix factorization 
methods used to produce the RBH network. We took 
advantage of multiple publicly available transcriptom-
ic datasets from the same cancer type to test the 
reproducibility of the results obtained by different 
approaches. The framework that we here proposed 
and our use of publicly available data guarantees 
that any future methodology can be easily compared 
against those considered in this paper. 
 
In general, we illustrated that there are marked dif-
ferences between the various MFs. Our main result 
is in that stabilized ICA, a particular protocol of ap-
plying ICA to transcriptomic data, drastically outper-
formed alternative approaches. Using this method, 
and taking advantage of transcriptomic data availa-
ble from tumor fragments, single-cells, Patient-
Derived CRC Xenograft Models (PDX) and Liver Me-
tastasis (LM), we mapped a landscape of independ-

ent hidden factors shaping colorectal cancer tran-
scriptomes. 

2 Methods 

2.1 Description of the considered state-of-art MF 
approaches 
The general idea behind Matrix factorization algo-
rithms is to reduce data dimensionality through a 
decomposition approach. Given the natural repre-
sentation of high-dimensional biological data as a 
matrix of measurements (expression counts, methyl-
ation levels, protein concentrations, etc) with differ-
ent samples represented in the columns and differ-
ent molecules of interest (genes, proteins, etc.) rep-
resented in the rows. MFs decompose such a matrix 
X (n x m) into the product of an unknown mixing ma-
trix A (n x k) and an unknown matrix of source sig-
nals S (k x m). In the following, we denote the col-
umns of the molecule-level matrix “metagenes” and 
the rows of the sample-level matrix “metasamples”. 
Metasamples and metagenes are learned based 
upon the assumption that the number k of biological 
factors occurring in the input dataset is smaller than 
either the number of rows or columns in the input 
matrix (X). Determining the optimal number k of bio-
logical factors to use in the factorization is critical to 
its interpretation. The appropriate selection depends 
upon the algorithm and is an active area of research 
(Kairov et al., 2017). 
 
We give here a brief summary of the MFs that we 
compare in the present work for detecting low-
dimensional biological factors from large-scale tran-
scriptomic data sets. For more detailed description 
the reader is referred to the original publications.  
 
Principal Component Analysis (PCA) 
PCA maximizes variance and it leads to orthogonal 
factors. Because PCA learns features that explain 
most of the variation in the data, it conflates multiple 
biological processes into single components and 
thus it is not the optimal approach to learn the specif-
ic genes co-regulated by a specific biological factor 
(Ochs and Fertig, 2012). In this regard, PCA may be 
of use in experimental paradigms in which the pro-
cesses or conditions of interest represent the 
strongest sources of variation, such as to remove 
technical artifacts (Parker et al., 2014; Martignetti et 
al., 2016). The limitations of PCA in application to 
transcriptomic data was highlighted in many publica-
tions (Saidi et al., 2004).  
 
Non Negative Matrix Factorization (NMF)  
NMF solves the minimum representation error under 
the constraint of having all the elements of the A and 
S matrix non-negative (Lee and Seung, 1999; Ochs 
et al., 1999). Such constraint of the factors learned 
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by NMF matches the non-negative nature of tran-
scriptomic data (e.g., read counts) it is thus consid-
ered as a natural approximation. Moreover NMF al-
lows existence of coupled factors thereby modeling 
coregulation (Moloshok et al., 2002). 
 
Independent Component Analysis (ICA) 
ICA has been originally proposed in the context of 
signal processing to decompose a multivariate signal 
into factors characterized by non-Gaussian distribu-
tions that are as independent as possible (Hyvärinen 
et al., 2001). Minimizing statistical dependence en-
sures that the patterns learned by ICA come from 
distinct biological processes. Different protocols to 
apply ICA exist and currently no standard approach 
exists. The main difference in the existing approach-
es concerns what is considered as source signal 
matrix in the decomposition. Indeed some aims at 
maximizing the non-gaussianity of metagenes (Biton 
et al., 2014; Kairov et al., 2017; Kong et al., 2008; 
Lee and Batzoglou, 2003), while others maximize 
non-gaussianity of metasamples (Meng et al., 2016; 
Barillot, 2013). We here compared both approaches. 
We will call in particular “Stabilized ICA” the protocol 
previously proposed by us that maximizes kurtosis of 
metagenes and searches for stable components by 
performing a bootstrap approach and thus is able to 
prioritize stable components (Biton et al., 2014; 
Kairov et al., 2017). We will instead denote with “ 
ICA' ” the application of ICA that maximizes kurtosis 
of metasamples, which corresponds to apply ICA to 
the transposed expression matrix, operation that in 
MATLAB is denoted with the symbol “ ' ”, from which 
the choice of the name is originated. For a typical 
transcriptomic dataset analysis, the advantages of 
Stabilized ICA are:  a) having the number of objects 
larger than the number variables improves conver-
gence of the algorithm and stability of the resulting 
components; b) resulting metasamples (unlike meta-
genes) might appear strongly correlated, reflecting 
coupling of certain biological mechanisms. The de-
tailed description of the stabilized ICA protocol with 
exact definition of the stability measure is provided in 
(Kairov et al., 2017). 
 
To compare such approaches we need to define a 
computational framework and to choose a biological 
context on which perform the comparison. These 
aspects are discussed in the next sections. 

2.2 Biological context and datasets chosen for 
the comparison  
We here chose colorectal cancer (CRC) as biological 
context for our comparison. The choice of working in 
a cancer context is due to the fact that cancer is 
characterized by wider transcriptomic variations. In 
addition, a lot of transcriptomic datasets are already 
available and carefully annotated in cancer biology. 
Our framework takes advantage from having several 

independent transcriptomic datasets for the same 
cancer type. Among the various cancers, CRC is 
one of the most common cancer both in men and 
women and it is the one for which 14 independent 
and large transcriptomic data sets could be easily 
downloaded. Indeed, strong efforts have been done 
by multiple research groups to identify CRC sub-
types, i.e. groups of CRC samples with homogene-
ous molecular and/or clinical characteristics. 
 
Recently a consensus CRC subtyping (CMS) has 
been proposed (Guinney et al., 2015). In this work a 
collection of all the transcriptomic datasets previous-
ly employed for subtyping has been made available 
to the public, this is the resource that we employed 
for our comparison. For details concerning the da-
tasets see Supplementary Table 1. 
 
Moreover, to test the effects of the platform on our 
analysis we also used 4 TCGA ovarian cancer da-
tasets profiled with various microarrays technologies: 
Affymetrix U133, Agilent and Affymetrix HuEx, plus 
RNAseq. These 4 datasets have a total of 418 com-
mon samples. They are thus the perfect resource to 
test how the choice of the platform affects the differ-
ent MFs.  

2.3 Computational framework for metagene com-
parison  
We defined a new framework to compare four state-
of-art MF algorithms: PCA, NMF, ICA' and stabilized 
ICA (see Figure 1 for a schematic representation of 
the framework). The challenge that we had to face 
here was to standardize the different methods in or-
der to make them comparable. First, the number k of 
components in which the expression matrix is de-
composed should be chosen for all the compared 
MFs. We overdecomposed the matrices and we 
fixed the same number of components for all the 
MFs (see Supplementary Table 1 for details). Over-
decomposition here stands for the fact that the se-
lected number of components is taken much larger 
than the estimation of the effective transcriptome 
dimension estimated used one of the existing ap-
proaches (Keiser rule, broken-stick distribution rule, 
Maximally Stable Transcriptomic Dimension ap-
proach).  
 
In our previous work, we have shown that in case of 
ICA, overdecomposition is not detrimental for the 
interpretability of the resulting components (Kairov et 
al., 2017). The same is evidently true for PCA, since 
the resulting components are orthogonal. For NMF 
the number k of components in which a dataset 
should be decomposed is frequently decided by 
looking at the last local maximum of the cophenetic 
coefficient, summarizing the results of a consensus 
over different runs of the algorithm (Brunet et al., 
2004). We thus chose to also compare our four algo-
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rithms against the version of NMF whose number of 
components is chosen based on the cophenetic co-
efficient, called in the following “cophNMF”. Such 
comparison is reported in Supplementary Table 2.  
 
As shown in Figure 1 our new framework is com-
posed of 4 main steps to be separately performed for 
each MF algorithm. The only inputs required to per-
form the comparison are as many independent tran-
scriptomic datasets as possible for the same biologi-
cal context. In our case, these were the 14 CRC 
transcriptomic datasets from (Guinney et al., 2015).  
 

Fig.1. Schematic representation of MF comparison 
framework.  

 
At step 1, each dataset is decomposed into a set of 
metagenes and metasamples. One of the main 
methodological novelties of this work is represented 
by step 2, where the graph of univocal correspond-
ences between the metagenes obtained from the 
various independent datasets is reconstructed. Con-
sidering two transcriptomic datasets (T1 and T2), we 
define as best-hit of a metagene (M1

i) of dataset T1 
the metagene (M2

n) of datasets T2 if the absolute 
correlation between M1

i and M2
n is maximal in re-

spect to the correlations of M1
i with all the meta-

genes of dataset T2. Therefore, to have a link in our 
graph between M1

i and M2
n we require such condi-

tion to be verified in both directions, meaning that 
M2

n has to be the best-hit for M1
i among all the met-

agenes of dataset T2 and M1
i has to be the best-hit 

for M2
n among all the metagenes of dataset T1. Here 

and in the following we will refer to the obtained 
graph as Reciprocal Best Hit (RBH) graph. This 
name is chosen in analogy with the namesake most 
common working definition of orthology in compara-
tive genomics. Essentially, when the proteins encod-
ed by two genes, each in a different genome, find 
each other as the best scoring match in the other 
genome the two genes are considered to be ortholo-
gous according to the RBH procedure (Tatusov et 
al., 1997; Bork et al., 1998). The idea behind our 

approach is thus to identify orthologous biological 
factors across different transcriptomic datasets. This 
approach is conceptually very different from the fre-
quently used approach of constructing a correlation 
graph. Indeed when using correlation a complete 
graph is reconstructed. To extract information from it 
some links need to be filtered out. Different filtering 
approaches exist, going from a simple thresholding 
to more sophisticated strategies (Serrano et al., 
2009). Moreover, once the optimal filtering algorithm 
has been chosen, also the value of the threshold 
needs to be selected. The obtained results are thus 
dependent on both the chosen filtering approach and 

threshold value. On the opposite, RBH is free of 
threshold choice and it leads to relatively sparse 
graphs. In Supplementary Figure 1 we compare the 
number of RBHs and the dimension of the largest 
connected component of the correlation network for 
various thresholds vs. the RBH network in all the 
MFs.  
 
Following the reconstruction of the RBH graph, we 
observed that the components detected by NMF 
were strongly biased toward the genes’ average ex-
pression (see Supplementary Figure 2), i.e. the vec-
tor containing in each row the average expression of 
a gene across all the samples of the dataset. This 
resulted in a RBH graph where most of the meta-
genes are strongly correlated with each other, which 
makes the comparison with other MFs impossible. 
As a further standardization, we thus corrected the 
metagenes obtained with all the MFs for the genes’ 
average expression before constructing the RBH 
graph. We performed this task by regressing the 
metagenes over the genes’ average expression and 
using the residues of such regression to compute the 
RBHs.  
 
At step 3, RBH graph communities are detected us-
ing Markov Clustering algorithm (MCL), this is an-
other novelty in respect to previous works (Biton et 
al., 2014; Kairov et al., 2017). The communities re-
flect existence of biological factors strongly repro-

Step1. Decomposition of each dataset Step2. Construction of RBH network 

Step3. Community detection Step4. Tests for quality comparison 

Reproducibility of the identified components 

Presence of a cluster graph-like topology in the RBH network 

Control in the number of false discoveries 

Metagene 

Metasample 

Biological content and selectivity of the identified components Community 1 
Community 2 

Community 3 

Transcriptomic data 

ge
ne

s 

samples 

= ge
ne

s 

Metagenes 

x 

Metasamples 

samples 
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duced across different CRC transcriptomes. Finally, 
at step 4 different objective measures are computed 
to compare the results obtained by the various MFs. 
The idea in this last step is to evaluate the perfor-
mances of the different algorithms focusing on 
measures that are of practical interest to researchers 
when analyzing high-throughput data. In particular, 
we evaluated the ability of the different MFs to (i) 
control the number of false discoveries; (ii) deter-
mine reproducible components; (iii) derive an RBH 
graph characterized by tight community structure 
and (vi) identify biologically meaningful and selective 
components, meaning components able to accurate-
ly and univocally predict known biological signals. 
The results of these tests are extensively discussed 
in the results section. 

2.4 Interpretation of the communities obtained in 
the RBH graph 
Once defined the best performing MF algorithm, we 
investigated which already known and new insights 
could be obtained using our newly proposed frame-
work . With this aim we added to the analysis other 
four datasets: single-cell RNAseq from normal and 
tumoral CRC tissue (Li et al., 2017), Patient-derived 
Xenograft (PDX) CRC Models transcriptomic data 
and liver metastasis (LM) transcriptomic data (Isella 
et al., 2017). Given the heterogeneity of such data in 
respect to the previous 14 we only employed them 
for the biological characterization and not in the as-
sessment of MF algorithm performances. We char-
acterized the communities obtained in the RBH 
graph with all the available biological annotations: 
MsigDB signatures(Liberzon et al., 2011), cell types 
signatures (Aran et al., 2017), tissue-specific Tran-
scription Factor (TF)-target associations (Marbach et 
al., 2016), ToppGene (Chen et al., 2009), the clinical 
annotations available for the various transcriptomic 
datasets, the CMS and CRIS subtypes (Guinney et 
al., 2015; Isella et al., 2017) and finally the cell types 
associations available from the single-cell RNAseq 
data (Li et al., 2017). 
 
We employed the metasamples of all the compo-
nents contained in a community to test the associa-
tion with clinical, CMS and CRIS annotations. We 
tested the significance of such annotation by per-
forming a two-sided Wilcoxon or Kruskal-Wallis de-
pending if the comparison was involving two classes 
(such as gender) or more than two (such as the 4 
CMS subtypes), respectively. If a community con-
tained a single-cell derived component we tested its 
association with a specific cell type with a Kruskal-
Wallis test. We considered as significant those tests 

having a Benjamini-Hochberg corrected p-value low-
er than 0.05. 
 
For all the other biological annotations involving 
genes we employed the metagenes contained in 
each community. We thus associated to each com-
munity of the RBH graph a “meta-metagene” corre-
sponding to the average of all the metagenes con-
tained in the community, paying attention to first 
concordantly orientate all the metagenes of the 
community based on the signs of their correlations. 
We then used Preranked GSEA with MsigDB signa-
tures to test the association of our metagenes with 
specific pathways and biological functions (Subra-
manian et al., 2005). We then defined as top-
contributing genes of a community those genes hav-
ing a weight in the meta-metagene higher than 3 
standard deviations in absolute value. We tested for 
the intersection of the top-contributing genes with 
cell types specific signatures using a Fisher’s exact 
test and we applied ToppGene to them. Finally, to 
detect possible TFs regulating the communities we 
used the tissue-specific TF-target associations in 
(Marbach et al., 2016) and tested for the presence of 
a TF and a significant number of its targets (accord-
ing to a Fisher’s exact test) in the top-contributing 
genes of each meta-metagene. 

 2.5 BIODICA tool for computing and interpreting 
the stabilized independent components  
We have developed and released to public BIODICA 
(ICA applied to BIOlogical Data) tool, available from 
https://github.com/LabBandSB/BIODICA. BIODICA 
implements the protocol of Stabilised ICA to tran-
scriptomic and other omics data. BIODICA provides 
both a command line and a user-friendly Graphical 
User Interface (GUI) for high-performance ICA anal-
ysis, including bootstraping and further stability anal-
ysis. BIODICA is based on previous high-performing 
implementations of fastICA and icasso algorithms, 
allowing to boost the ICA computation time by an 
order of magnitude compared to the existing fastICA 
implementation in R. BIODICA provides the possibil-
ity to run ICA decomposition of several orders and it 
computes the Maximally Stable Transcriptome Di-
mensionality (MSTD) measure, which can be used to 
determining the optimal number of independent 
components (Kairov et al., 2017). 
Moreover, BIODICA provides several tools for down-
stream interpretation of the resulting metagenes and 
metasamples. This interpretation includes standard 
functional analyses such as Preranked Gene Set 
Enrichement Analysis (Subramanian et al., 2005) 
and hypergeometical tests using automated 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 25, 2018. ; https://doi.org/10.1101/318154doi: bioRxiv preprint 

https://doi.org/10.1101/318154
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

ToppGene web-service (Chen et al., 2009), but also 
a built-in database of previously computed meta-
genes whose biological interpretation was already 
established. The results of this comparison are 
summarized in interactive html-based tables and 
JavaScript-based plots, which greatly facilitate explo-
ration of the results. BIODICA also provides some 
original ways to analyze the metagenes using pro-
jection on top of molecular maps (such as InfoSig-
Map,(Cantini et al., 2018)). Finally, BIODICA imple-
ments the algorithm for constructing RBH graphs, 
used in the current study. 

3 Results 
Once steps 1 and 2 have been performed as dis-
cussed in the Methods section, we obtained the RBH 
graphs visualized in Figure 2. The nodes of these 
graphs are the metagenes obtained by the different 
MFs (A. Stabilized ICA, B. NMF, C. PCA and D. ICA' 
), different shapes and colors are used to distinguish 
the different transcriptomic datasets. The topological 
structure of the obtained graphs is substantially dif-
ferent.  
 
The RBH graph of Stabilized ICA (Figure 2a) is 
characterized by clearly pronounced pseudo-cliques 
and less disconnected nodes in respect to the oth-
ers. NMF (Figure 2b) has some areas of densely 

connected nodes but overall this topological aspect 
is less pronounced in the graph of NMF in respect to 
the one of Stabilized ICA. The graph of PCA (Figure 
2c) reflects the hierarchical structure of the principal 
components (PC). A densely connected area can be 
indeed identified in the lower part of the graph, 
where the first, second and third PCs are localized. 
This topological organization is lost when going to-
ward higher-order components. 

Finally, the graph of ICA' (Figure 2d) has a surpris-
ingly divergent structure in respect to the one of Sta-
bilized ICA, with a much lower number of pseudo-
cliques. This last result suggests that the protocol 
used to apply ICA has a strong impact in the ob-
tained RBH graph.  

 
Fig.2. RBH graphs of state-of-art MFs. The RBH graphs ob-
tained in CRC by a) Stabilized ICA; b) NMF; c) PCA and d) ICA' 
are here reported. 
 

The qualitative characteristics discussed above will 
be extensively tested in the next sections, devoted to 
the comparison of the measures defined as step 4 of 
our framework. 

3.1 Controlling the number of false discoveries 
First, we want to assess the ability of the different 
MFs in producing false positives, or equivalently we 
want to evaluate how many components identified by 
the various MFs are prone to noise. Having multiple 
independent transcriptomic datasets from the same 
biological condition (in our case CRC), we can ex-
pect the same biological factors to be dominating the 
MF results in at least few datasets. As a conse-
quence, a metagene should find a RBH in at least 
one other dataset. We thus considered that, if this 
does not happen, that metagene/node is with high 
probability a false positive result.  
 
To measure the number of false positive results in 
the outputs of the different MFs we evaluated the 
number of disconnected nodes/metagenes. As 
shown in Figure 3A, Stabilized ICA with 65 discon-
nected metagenes outperforms other approaches. In 
particular, both NMF and PCA obtained respectively 
129 and 173 disconnected nodes indicating that ap-
proximately 13-18% of the signals identified by these 
MFs are false positives results. Finally, concerning 
cophNMF, it obtained 12% of disconnected nodes 
against the 6.7% obtained by Stabilized ICA (see 
Supplementary Table 2). 
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Fig.3. Comparison performances MFs. Different measures are 
here plotted for the comparison of the various MFs: Stabilized ICA 
(red), ICA' (green), NMF (blue) and PCA (violet). 
 
3.2 Reproducibility of the identified components 
In order to evaluate the reproducibility of the meta-
genes output of the different MFs we computed the 
number of links in their RBH graphs. Indeed, working 
with 14 CRC datasets, in an optimal scenario a met-
agene should find 13 RBHs corresponding to the 
metagenes that reflect the same biological factor in 
all the remaining 13 CRC transcriptomic datasets. In 
reality, this is not always the case given that a bio-
logical factor can be underrepresented in some da-
tasets due to the choice of the samples or to their 
number. However, higher is the number of RBHs 
lower is the deviation of the performances of a MF 
approach in respect to the optimal scenario. As 
shown in Figure 3B, Stabilized ICA with 2900 RBHs, 
identifies approximately 1000 more RBHs in respect 
to the alternative approaches, strikingly outperform-
ing them. Finally, concerning cophNMF, it obtained a 
246 RBHs against the 2900 obtained by Stabilized 
ICA (see Supplementary Table 2). 

3.3 Presence of a cluster graph-like topology in 
the RBH graph 
Concerning then the topological structure of the RBH 
graph, the best MF algorithm should derive a cluster-
graph like graph, i.e. a disjoint union of cliques. In-
deed as discussed above an optimal MF algorithm 
should find a component for each relevant biological 
factor underlying the transcriptome. Working with 

various transcriptomic datasets obtained from the 
same disease (CRC), those components associated 
to the same biological factor should cluster together 
forming a pseudo-clique. The final structure of the 
optimal RBH graph should be thus composed of var-
ious pseudo-cliques sparsely connected one to each 
other.   
 
In order to verify how the RBH graphs resulting from 
the different MF approaches are close to this optimal 
topology, we considered four well-established 
measures: (i) clustering coefficient; (ii) modularity; 
(iii) number of communities and (iv) average size of 
the communities. The first two measures evaluate 
how evident is the presence of communities in the 
graph. The average size and number of the commu-
nities are instead used to evaluate how consistently 
each MF algorithm merges components obtained 
from different datasets. From the results reported in 
Figure 3C-F the superior performances of Stabilized 
ICA with respect to alternative approaches can be 
clearly appreciated. Especially the clustering coeffi-
cient and modularity are strikingly higher in Stabi-
lized ICA in respect to ICA', NMF and PCA. Only for 
the number of communities NMF obtains a similar, 
even if slightly lower, value in respect to Stabilized 
ICA. As shown in Supplementary Table 2, also con-
cerning the topology of the RBH graph the perfor-
mances of NMF do not improve if considering 
cophNMF. 

3.4 Biological content and selectivity of the iden-
tified components 
Finally, we checked if the communities identified in 
the RBH graph were effectively associated to specif-
ic biological factors. In particular, we tested the abil-
ity of the communities of the different MFs in predict-
ing three biological factors that are expected to influ-
ence transcriptomic profiles of CRC: patient gender, 
proliferation status of a tumor and the level of stro-
mal infiltration. For this test we performed a regres-
sion analysis of the metasamples obtained from the 
different MFs.  

The gender annotation is composed of discrete val-
ues M/F obtained from the available clinical annota-
tions: in this case, we thus performed a logistic re-
gression. Proliferation was evaluated averaging the 
expression of the genes belonging to a well-known 
proliferation signature (Giotti et al., 2017) and it is 
thus a vector of continuous weights. Finally, stromal 
infiltration was estimated using the average expres-
sion of the genes belonging to the stromal signature 
of ESTIMATE tool (Yoshihara et al., 2013).  

The results of this first test are summarized in Figure 
3 G-I. We focused on the community that predicted 
the best the specified biological signal. The commu-
nity was selected as the one with the highest per-
centage P of metasamples whose regression on the 
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biological signal was significant. We used three pa-
rameters commonly used to evaluate the quality of a 
linear regression: R2, Bayesian information criterion 
(BIC) and Akaike's information criterion (AIC). We 
finally define a score to combine them in a single 
value as (P*R2) / (BIC*AIC). The higher this score 
the stronger is the association between the commu-
nity and the biological factor. Indeed a good regres-
sion would correspond to R2 value near to 1 and low 
BIC and AIC values. Such scores are reported in 
Figure 3 G-I.  The specific values obtained by the 
single scores are reported in Supplementary Table 
3. As shown in Figure 3 G-I and Supplementary Ta-
ble 2, Stabilized ICA is the approach that better ap-
proximates all three tested biological factors. In par-
ticular, NMF does not identify any component that 
can significantly predict the gender signal.   

We then investigated the selectivity of such predic-
tions, meaning the ability of the MF approach to de-
fine a clear one-to-one association between a biolog-
ical signal and a component. To test for the selectivi-
ty of the different MFs we focused on the compo-
nents obtained on the GSE39582 dataset (see Sup-
plementary Table 1) and considered the R2 obtained 
in the previously computed regressions by all the 
100 components. As shown in Supplementary Figure 
3, Stabilized ICA resulted to be far more selective 
than the alternative MFs. In particular for all the three 
biological factors (gender, proliferation and stromal 
infiltration) Stabilized ICA found only one component 
strongly associated to them. On the opposite, NMF 
and ICA' identified multiple components with similar 
regression performances. Finally PCA resulted to be 
selective in stromal infiltration and proliferation pre-
diction. However, PC1 was the component predicting 
simultaneously both signals, confirming the already 

observed limitation of PCA of conflating multiple bio-
logical processes into a single component.  

3.5 Impact of the technical platform on the re-
sults obtained by the different MFs 
To finally test the impact of the transcriptome profil-
ing platforms on the results of the various MF algo-
rithms we took advantage of four ovarian cancer 
transcriptomic datasets available from TCGA (Bell et 
al., 2011). These four datasets have been profiled 
with four different platforms: Affymetrix U133, Agilent 
and Affymetrix HuEx, plus RNAseq. 418 samples are 
in common among all four datasets. This resource is 
optimal to evaluate if the profiling platform affects the 
results of the various MFs. Indeed having four da-
tasets composed of the same samples we are sure 
that no biological variability is present across them. 
In the optimal scenario, all the metagenes of an MF 
algorithm should find a RBH with a metagene of the 
other three datasets. To thus assess which MF algo-
rithm is less prone to technical noise, we applied to 
each MF step 1 and 2 of our new framework. We 
thus decomposed the four ovarian cancer datasets 
in 100 components and we then reconstructed the 
RBH graph. We finally checked the number of RBH 
links of the different MFs and their average absolute 
correlation. Stabilized ICA resulted to perform better 
than alternative approaches also in this case, with 
390 links and average correlation of 0.396 (see Sup-
plementary Table 4 for all the results).  

3.6 Stabilized ICA identifies consistent biological 
insights on CRC in respect to previous 
knowledge 
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In previous sections we showed that Stabilized ICA 
performs better than alternative approaches accord-
ing to multiple measures of practical interest for high-
throughput data analysis. We thus now concentrate 
more deeply on the biological insights that can be 
derived from the RBH graph of this MF algorithm. To 
this aim we added to the analysis other four da-
tasets: single-cell RNAseq from normal and tumoral 
CRC tissue (Li et al., 2017), Patient-derived Xeno 

Fig.4. RBH graph of Stabilized ICA with the main biological 
annotations. The node colors indicate the dataset from which the 
components have been computed. The edge thickness indicates 
the magnitude of the correlation. Communities with more than six 
elements are marked with an integer number. For details on the 
community annotations see Supplementary Table 5. 

 
graft (PDX) CRC Models and liver metastasis (LM) 
(Isella et al., 2017). We then biologically annotated 
the communities of the RBH graph by using meta-
metagenes and  
metasamples according to the procedure described 
in the Methods section. The meta-metagenes ob-
tained for the communities of Stabilized ICA are re-
ported in Supplementary Table 5 and represent a 
useful resource for further analyses.  
 
Figure 4 and Supplementary Table 5 report the RBH 
graph of Stabilized ICA and the main biological in-
formations extracted from it. Four main categories of 
biological factors can be distinguished in the graph: 
factors intrinsic to the tumor, microenvironment sig-
nals, technical signals, effects of small groups of 
genes and finally unknown factors. Concerning the 
tumor-specific factors, some communities were 

found to be associated to core tumoral functions, 
such as proliferation, inflammation, stemness, inter-
feron response and mitochondria. Other tumor-
specific communities resulted instead to be associ-
ated to CRC-specific tumoral signals, such as 
MSI/MSS (microsatellite instability/microsatellite sta-
ble), goblet cells (a differentiated cell of the colon) 
and KRAS mutation. Finally, one community was 
found to be related to chromatin silencing and his-

tones. The stromal communities instead include mi-
croenvironment signals, such as cancer-associated 
fibroblasts (CAFs), smooth muscle, immune, com-
plement system and B-cells. Of particular interest is 
the identification of a community related to B-cells 
whose association to this cell type was evident not 
only using the MSigDB signatures (as discussed in 
Methods), but also from single-cell data. Looking 
indeed at the metasample of the component ob-
tained from single-cell data and associated to this 
community we could clearly see B-cells being the 
most contributing in this component. The technical 
factors included instead GC-content and gender. 
Finally, 10 communities have been found to be as-
sociated with small groups of genes. In this last 
case, the meta-metagenes associated to these 
communities contained few genes having a much 
higher weight than the others. 

Concerning the association with the predefined CRC 
Consensus Molecular Subtypes (CMS) we could 
clearly match CMS1 with our immune component, 
concordantly to what previously observed. Commu-
nities associated to CMS3 and CMS4 were also 
identified. Of note, the CMS4 subtype resulted from 
our analysis to be associated to both smooth mus-
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B-cells	Goblet	MAGE	

CAFs	

Smooth	
muscle	

Prolifera<on	
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cles and CAFs. A strong CAFs infiltration had been 
already observed in this CRC subtype (Isella et al., 
2015; Guinney et al., 2015).  

4 Discussion 
In this manuscript we compared the three most 
commonly used matrix factorization methods for their 
ability to detect reproducible and biologically inter-
pretable signals in independent transcriptomic da-
tasets of the same cancer type (CRC). For one of 
the methods, Independent Component Analysis, we 
also compared two protocols of its application to 
transcriptomic data, named ICA' and Stabilised ICA. 
We designed a new framework based on the con-
cept of Reciprocal Best Hit (RBH), borrowed from 
evolutionary bioinformatics. Applying our new 
framework to state-of-art MFs, we can definitively 
conclude that Stabilised ICA is able to deliver more 
reproducible and interpretable results compared to 
other methods on transcriptomic datasets.  
This advantageous features of Stabilised ICA can be 
explained by the fact that the statistical model lying 
behind ICA matches better the geometrical structure 
of transcriptomic datasets in the multi-dimensional 
gene expression space, compared to other methods. 
Minimizing independence of biological mechanisms 
represented by metagenes rather than independ-
ence of biological samples, results in better meta-
gene interpretability and matching between datasets. 
Using multiple runs of ICA for stabilisation and priori-
tizing stable components also significantly contrib-
utes to improving their reproducibility (see (Kairov et 
al., 2017). By contrast, PCA components appear to 
systematically mix multiple sources of transcriptome 
variability, reducing interpretability. Also, the higher-
order PCA components are regularly not reproduci-
ble. The main problem of the NMF metagenes is that 
in application to gene expression data, most of them 
are strongly correlated with average gene expres-
sion. As a result, even if NMF is able to delineate an 
important region of high level and variability in the 
gene expression space, the individual NMF compo-
nents are rarely specifically and selectively associat-
ed with biological factors, which ruins both their re-
producibility and interpretation. 
We demonstrated that the meta-analysis of the re-
sults of Stabilised ICA, based on constructing the 
RBH graph, provides a biologically rich image of the 
signals shaping tumoral transcriptomes and their 
interconnection. Pseudo-cliques, existing in the RBH 
graph, whose meaning can be compared to the 
Clusters of Orthologous Genes (COGs) in evolution-
ary bioinformatics, can be matched to previously 
known and/or expected highly reproducible biological 
signals (such as proliferation and immune infiltration) 
but also highlights novel biological mechanisms 
which require further investigation and interpretation. 
The metagenes obtained through application of MF 
methods can be compared to other methods, sharing 

similar spirit. In particular, attractor metagenes were 
suggested in order to serve as surrogates of cancer 
phenotypes (Cheng et al., 2013). Attractor meta-
genes were used as variables in the DREAM Chal-
lenge winning approach for predicting breast cancer 
clinical outcome (Margolin et al., 2013). We find ICA-
based framework for identifying metagenes more 
computationally elegant and potentially producing 
less false positive signatures; however, further study 
is required to compare the results of both approach-
es and their computational performances. INSPIRE 
method uses the latent variable approach to infer 
modules of co-expressed genes and the dependen-
cies among the modules from multiple expression 
datasets that may contain different sets of genes 
(Celik et al., 2016). Therefore, INSPIRE shares gen-
eral objectives of MF-based meta-analysis but signif-
icantly differs in terms of methodology. For example, 
INSPIRE is based on the assumption of Gaussianity 
in the data distributions and uses disjoint module 
definitions rather than metagenes, where each gene 
can contribute to several biological functions. 
Lastly, here we compared MF methods in application 
to cancer transcriptomic datasets. However, the 
suggested approach can be easily extrapolated to 
other data types (methylomic, proteomic) or other 
fields of research collecting massive transcriptomic 
datasets (such as drug screenings).  
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Dataset	code number	of	samples
number	of	
components

	GSE23878 35 18
	GSE35896 62 31
	GSE13067 74 37
	GSE33113 90 45
	GSE20916 100 50
	GSE37892 130 65
	GSE13294 155 78
GSE59857	 155 78
	GSE17536 177 89
GSE41258 187 94
TCGA	GA 264 100
	GSE2109 277 100
TCGA	HI 332 100
	GSE39582 566 100

Supplementary	Table1:	List	of	CRC	datasets	considered	in	this	
comparison.	For	each	dataset,	the	GEO	identifier,	the	number	of	samples	

and	the	number	of	computed	components	is	here	reported

Test Parameter Stabilized	ICA cophNMF
Control	in	the	
number	of	

false	
discoveries

fraction	of	

disconnected	

nodes	in	RBH	

network

6.70% 12%

Reproducibilit
y	of	the	
identified	

components

number	of	

RBHs
2900 246

clustering	

coefficient
0.412 0.321

modularity 0.54 0.32

number	of	

communities
119 8

average	size	

communities
4.91 4.8

Score	gender 4.23E-05 0

Score	

proliferation
1.92E-05 1.38826E-06

Score	stromal	

infiltration
3.19E-06 2.09813E-07

Presence	of	a	
cluster	graph-
like	topology	
in	the	RBH	
network

Supplementary	Table2: 	Comparison	between	the	performances	

of	Stabilized	ICA	and	cophNMF.	The	Results	of	Stabilized	ICA	and	

cophNMF	in	the	different	tests	reported	in	the	results	are	here	

summarizedIn	the	first	columns	the	names	of	the	main	results	

sections	are	reported.

Biological	
content		of	

the	identified	
components
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Supplementary	Table3:	Comparison	performances	in	the	
regression	of	the	three	biological	signals:	gender,	

proliferation	and	stromal	infiltration	by	Stabilized	ICA,	ICA',	
NMF	and	PCA.	The	table	reports	the	values	summarized	in	
Figure	4:	R^2,	BIC,	AIC,	P	percentage	of	components	in	the	
community	with	a	significant	regression	and	dimension	of	

the	corresponding	community.	

Biological	
factors	 MD	methods	 Measures	 Obtained	

values	

Gender	

Stabilized	
ICA	

R^2	 0.2821	

BIC	 247.9609076	

AIC	 242.0628387	

P	 100%	

dimension	
community	 9	

Standard	ICA	

R^2	 0.01630423	

BIC	 683.2430333	

AIC	 675.3284902	

P	 50%	

dimension	
community	 2	

NMF	

R^2	 0.026687787	

BIC	 693.3745408	

AIC	 685.4119292	

P	 50%	

dimension	
community	 2	

PCA	

R^2	 0.026382754	

BIC	 500.5333028	

AIC	 493.1132276	

P	 50%	

dimension	
community	 2	

Proliferation	

Stabilized	
ICA	

R^2	 0.484015869	
BIC	 96.88158808	
AIC	 96.70039699	
P	 100%	

dimension	
community	 3	

Standard	ICA	

R^2	 0.053230912	
BIC	 97.43893833	
AIC	 98.24755138	
P	 50%	
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dimension	
community	 4	

NMF	

R^2	 0.096373113	
BIC	 99.43300303	
AIC	 97.54240941	
P	 67%	

dimension	
community	 3	

PCA	

R^2	 0.468665784	

BIC	 155.5635168	

AIC	 164.4646444	

P	 75%	

dimension	
community	 4	

Stromal	
Infiltration	

Stabilized	
ICA	

R^2	 0.323594384	

BIC	 310.7943047	

AIC	 303.1421585	

P	 93%	

dimension	
community	 14	

Standard	ICA	

R^2	 0.116338383	

BIC	 434.5273362	

AIC	 424.5127827	

P	 100%	

dimension	
community	 3	

NMF	

R^2	 0.094013146	

BIC	 611.661916	

AIC	 600.307362	

P	 100%	

dimension	
community	 2	

PCA	

R^2	 0.322452775	

BIC	 329.0525257	

AIC	 326.9100968	

P	 100%	

dimension	
community	 12	
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MF	
algorithm

Number	of	
across-
platform	
edges

Mean	absolute	
across-platform	
correlation

Stabilized	
ICA

390 0.396101979

ICA' 387 0.34094478
PCA 308 0.353386655
NMF 281 0.297912352

Supplementary	Table4:	Comparison	of	across-
platform	reproducibility	of	the	components	
obtained	by	the	different	MF	algorithms.	For	
each	MF	reported	in	the	first	column,	the	
number	of	RBHs	connecting	metagenes	from	
different	platforms	(second	column)	and	the	
average	correlation	of	such	links	(third	
column)	is	reported.
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COMMUNITY SHORT	NAME SOURCE ASSOCIATION	TO	
MUTATIONS

ASSOCIATION	TO	
SUBTYPE

ASSOCIATION	
TO	TF REMARK Found	in	single-cell,	PDX,	

Liver	metastasis	(LM)
1 Metallothioneins Tumor	Cells

8 Goblet Tumor	Cells FAT4 LM,	PDX

9,13 Proliferation Tumor	Cells

Both	

communities	

are	

associated	

to	

proliferation	

and	colon	

crypt

14,45 Early	response Tumor	Cells CRIS-C
FOS,	JUN,	
JUND

11 Histones/MSI/MSS Tumor	Cells

Namaed	by	

GO	

signatures:	

histones,	

chromatine	

silencing

17 ECM Tumor	Cells

18 CAGE Tumor	Cells

21 CMS3-associated Tumor	Cells TP53 CMS3,	CRIS-A MOYEF2,	SOX7
colon	crypt,	

goblet	and	

enterocypes

30 Inflammation Tumor	Cells ZIC2 Correlated	

to	CIT14

32 CRIS-B Tumor	Cells APC CRIS-B

43 Interferon Tumor	Cells IRF1,STAT2 Correlated	

to	CIT5
all

68 Stemness Tumor	Cells

97 Mitochondria Tumor	Cells

114 MAGE Tumor	Cells
SOX8,	

TFAPC2C
156 KRAS	mutation Tumor	Cells KRAS
169 APC	mutation Tumor	Cells APC

4

Blood	

microparticle/Hep

atocytes

Stroma

Named	by	

enriched	

GO:0072562

,	also	

contain	

highly	

specific	liver	

genes	

(hepatocytes

?)

19 CAFs Stroma CMS4 MYC

Strong	

association	

with	CMS4,	

correlated	to	

CIT19

single-cell,	LM

22 B-cells Stroma single-cell

26 Smooth	muscle Stroma CMS4 RUNX2 Colon	crypt

61
Complement	

system
Stroma FAT4,	LRP1B CRIS-C

Complement	

system

38 Immune Stroma CMS1 STAT1 Correlated	

to	CIT8

50 Chemokines Stroma

Among	top	

contributing	

CXCL1-3,	

CCL20,	

CCL28

25 GC-content Technical	factors

Identified	by	

correlation	

to	CIT2	

metagene	

from	Biton	

et	al,	2014

53 Gender Technical	factors all

110 PLA2G2A
Driven	by	small	

group	of	genes

Half	of	the	

top	genes	

are	among	

M5890	

Genes	

regulated	by	

NF-kB	in	

response	to	

TNF	

[GeneID=71

24].

113 Mucins
Driven	by	small	

group	of	genes

33 H19
Driven	by	small	

group	of	genes

123 TACSTD2
Driven	by	small	

group	of	genes

Supplementary	Table5:	The	table	reports	the	main	biological	annotations	available	for	the	communities	of	Figure	5.	Communities	have	been	obtained	

using	MCL	on	the	Stabilized	ICA	PBH	network,	these	communities	are	numbered	with	integer	values	and	their	number	is	reported	in	the	first	column.	The	

second	column	reports	the	short	name	of	each	community,	corresponding	to	the	biological	process	most	significant	in	the	community.	In	the	third	column,	

the	four	main	sources	of	the	identified	biological	factors	are	reported.		Several	biological	factors	strongly	associated	with	a	community	corresponded	to	

mutations	found	in	colorectal	cancer	(column	4).	Several	communities	were	strongly	associated	with	a	subtype	of	colorectal	cancer	described	in	(Guinney	

et	al.	2015)	(CMS1,	CMS3,	CMS4)	or	in	(Isella	et	al.	2016)	(CRIS-A,	CRISB,	CRIS-C,	CRIS-D,	CRIS-E)	(column	5).	For	several	communities,	the	most	

contributing	genes	correspond	to	target	genes	of	a	transcription	factor	(column	6).	Several	communities	have	been	found	in	other	cancers	and	described	

in	(Biton	et	al.	2014).	In	this	paper,	the	communities	were	named	CIT-X.	Finally,	in	column	8	the	presence	of	the	community	also	in	single-cell,	PDX	and	

liver	metastasis	is	annotated.
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85 NPTX2/BNIP3 Driven	by	small	
group	of	genes

140 OLFM4	 Driven	by	small	
group	of	genes

80 PRAC Driven	by	small	
group	of	genes CRIS-A

131 WDR72 Driven	by	small	
group	of	genes

20 Defensins Driven	by	small	
group	of	genes

Top	
contributing	
genes	DEFA5	
and	DEFA6,	
separated	by	
4-fold	gap	
(36	vs	9)

217 PCSK1 Driven	by	small	
group	of	genes

78 ? Unknown CRIS-A
90 Enterocytes? Unknown CRIS-C
36 ? Unknown
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Supplementary	Figure	1.	Comparison	between	RBH	graph	(red)	and	
correlation	graph	(black)	using	different	correlation	thresholds.	For	each	of	the	
four	MFs	the	behavior	of	the	number	of	RBHs	(top)	in	the	network	and	the	
dimension	of	the	largest	connected	component	(bottom)	are	reported	for	
different	values	of	the	correlation	threshold.		
	

	
	
Supplementary	Figure	2.	Distribution	of	the	correlations	of	the	MF	metagenes	
in	the	four	bigger	transcriptional	datasets	A)	GSE39582	B)	GSE2109	C)	TCGA-GA	
D)	TCGA	Hi-seq.	Different	colors	denote	the	different	MD	methods:	red	for	
Stabilized	ICA,	green	for	ICA',	blue	for	NMF	and	violet	for	PCA.	
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Supplementary	Figure	1.	Distribu.on	of	the	correla.ons	of	the	MF	metagenes	in	the	four	
bigger	transcrip.onal	datasets	A)	GSE39582	B)	GSE2109	C)		TCGA-GA	D)	TCGA	Hi-seq.	
Different	colors	denote	the	different	MD	methods:	red	for	Stabilized	ICA,	green	standard	
ICA,	blue	NMF	and	violet	PCA.	
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Supplementary	Figure	3.	R2	values	of	the	regression	of	the	100	metagenes	
computed	in	GSE39582	on	the	gender	(A-D),	proliferation	(E-H)	and	stromal	
infiltration	(I-L)	signals.	Different	colors	denote	the	various	MF	algorithms	used	
to	compute	the	100	metagenes:	red	for	Stabilized	ICA,	green	for	ICA',	violet	for	
PCA	and	blue	for	NMF.	The	x-axis	reports	the	metagenes	in	ascending	order,	
while	y-axis	reports	the	R2	value.		
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Supplementary	Figure	2.	R2	values	of	the	regression	of	the	100	metagenes	computed	in	GSE39582	on	the	gender	(A-D),	proliferaEon	(E-
H)	and	stromal	infiltraEon	(I-L)	signals.	Different	colours	denote	the	various	MF	algorithms	used	to	compute	the	100	metagenes:	red	
Stabilized	ICA,	green	Standard	ICA,	violet	PCA	and	blue	NMF.	The	x-axis	reports	the	metagenes	in	ascending	order,	while	y-axis	reports	
the	R2	value.		
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