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ABSTRACT. DNA sequence reads contain information about the genomic variants located on a sin-
gle chromosome. By extracting and extending this information (using the overlaps of the reads),
the haplotypes of an individual can be obtained. Adding parent-offspring relationships to the read
information in a population can considerably improve the quality of the haplotypes obtained from
short reads, as pedigree information can compensate for spurious overlaps (due to sequencing errors)
and insufficient overlaps (due to shallow coverage). This improvement is especially beneficial for
polyploid organisms, which have more than two copies of each chromosome and are therefore more
difficult to be haplotyped compared to diploids. We develop a novel method, PopPoly, to estimate
polyploid haplotypes in an F1-population from short sequence data by considering the transmission
of the haplotypes from the parents to the offspring. In addition, PopPoly employs this information
to improve genotype dosage estimation and to call missing genotypes in the population. Through
realistic simulations, we compare PopPoly to other haplotyping methods and show its better perfor-
mance in terms of phasing accuracy and the accuracy of phased genotypes. We apply PopPoly to
estimate the parental and offspring haplotypes for a tetraploid potato cross with 10 offspring, using
Illumina HiSeq sequence data of 9 genomic regions involved in plant maturity and tuberisation.

1. INTRODUCTION

Genetic polymorphism is the key to understanding inheritance patterns of traits and to identi-
fying genomic regions that affect a trait. Polymorphic genomic loci are used as markers to show
co-segregation of genetic variants (alleles) with traits such as resistance to diseases in pedigreed
populations, or to find out associations between alleles and the relative abundance of traits in nat-
ural populations. These markers can also be used to investigate the genetic components of quanti-
tative (continuous) traits such as height and weight. The sequence of marker alleles along a single
chromosome is called a haplotype, of which a diploid organism possesses k = 2 versions while a
polyploid has k > 2. To phase markers means to determine these k haplotypes, which might be
identical (harbouring the same alleles) or different (having different alleles at some or all of the
marker positions).

Among various types of genetic markers, Single Nucleotide Polymorphism (SNP) markers [1]
are the most abundant and are extensively used in genetic studies [2, 3]. While high-throughput
assays such as SNP arrays exist for efficient determination of SNP alleles at single loci, direct
determination of haplotypes usually requires laborious and expensive techniques such as bacte-
rial cloning, allele-specific PCR or chromosome microdissection [4–6]. However, unphased SNPs
provide less knowledge about an individual’s phenotype compared to phased SNPs, as both gene
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expression and protein function can be affected by an allele being in cis or trans with other alle-
les [7]. Moreover, haplotypes can be used as multi-allelic markers offering more statistical power
compared to single SNPs for genetic studies [8, 9].

Single individual haplotyping (SIH) methods use DNA-sequence reads to phase the SNPs of
a single organism at positions covered by the reads, using the fact that the sequence of called
alleles should be the same in the reads that originate from the same chromosome. To deal with
sequencing errors, which can cause spurious differences between reads of the same chromosome,
these methods use probabilistic models or cost functions to prefer a certain phasing to others based
on the observed reads [10–15].

Recently, algorithms have been proposed that apply the rules of Mendelian inheritance to com-
bine the information of reads and pedigree in a cost function for diploids [16] or in a probabilistic
model with arbitrary ploidy levels [17]. However, both of these approaches focus on trios, i.e. units
consisting of two parents and one offspring, and therefore ignore the information provided by larger
population, e.g. in the case of high occurrence of some haplotypes across a large set of progeny
which can ease the detection of those haplotypes. In addition, these methods accept recombinant
haplotypes in the phasing estimate of the offspring (with the recombination cost/probability being
preset as desired), while recombination events are biologically improbable between loci that are
only a few thousands nucleotides apart, i.e. in the typical range of haplotypes obtained from short
sequence reads. Sequencing and genotype calling errors can therefore be misinterpreted as recom-
bination events by these methods and thus result in spurious haplotypes, especially in polyploids.

Here we propose a new haplotype estimation algorithm, “PopPoly”, that specifically targets
larger F1-populations, consisting of two parents and several offspring sequenced by short read
sequencing technologies. Considering the short length of the reads, and hence the limitation of
read-based phasing to a few hundreds to thousands of nucleotides, PopPoly is based on the as-
sumption that all of the population haplotypes must be present in the parents. Therefore, all of the
population reads are combined to estimate the parental haplotypes using a Bayesian probabilistic
framework in the first step, and the offspring haplotypes are selected from the estimated parental
haplotypes using the minimum error correction (MEC) criterion [18]. In addition, PopPoly uses
the pedigree information to detect and correct wrongly estimated SNP dosages and to estimate
missing genotypes in the population.

Through extensive simulations, we compare PopPoly to other haplotype estimation methods and
show that it improves phasing and variant calling accuracy. Also, we apply PopPoly to estimate
haplotypes of plant maturity and tuberisation loci in a cross of tetraploid potato with 10 offspring
sequenced with Illumina HiSeq X Ten technology.

2. MATERIAL AND METHODS

Short-read sequencing technologies, such as Illumina, produce high-quality sequence reads of
up to a few hundred bases in length, which are randomly positioned over the target genomic region
and together cover each target position multiple times. By aligning the reads to some consensus
reference, genomic variations can be detected and the variant alleles can be specified within each
read. To resolve the succession of genomic variants on each chromosome, haplotype estimation or
"haplotyping" methods aim to group the reads that have the same variants at the same positions as
originating from the same chromosome. This approach requires overlap of the reads at the variation
sites and the inclusion of at least two variation sites in a read, so that the flanking positions can be
connected by the overlaps at the position(s) in between.
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However, some of the reads do not meet the criterion of containing at least two variation sites,
and the connection between the variation sites can be therefore broken at some positions. For
this reason, current haplotyping algorithms start by detecting positions connected to each other
through the sequence reads and aim to resolve the haplotypes over each obtained set of connected
positions, i.e. the so-called "haplotype blocks" or solvable islands. With short sequence reads,
haplotype blocks often include a few hundred up to a few thousand bases.

In our approach, we use the fact that recombination events are usually extremely unlikely over
the short distances covered by the haplotype blocks obtained from short reads. Therefore we
combine all of the reads in an F1-population to estimate the parental haplotypes, and determine the
haplotypes of each offspring by selecting the phasing the most compatible with its reads from the
set of phasings possible by the transmission of the (already estimated) parental haplotypes.

To implement this method, we follow a greedy SNP-by-SNP extension approach (Figure 1),
extending the base phasings Hbm and Hbf (for the mother and father, respectively) at each step by
one SNP and choosing the most likely phasing extensionsHem andHef to continue with as the base
phasings of the next step until all of the l SNPs within a haplotype block have been phased. Starting
by the first two SNP positions in the block, the probabilities of the base and extended phasings,
conditional on the reads and taking offspring genotypes into account, are calculated using the
Bayes formula. Finally, the offspring haplotypes are chosen from the estimated parents using the
minimum error correction (MEC) criterion, so that the phasing selected for each offspring have
the maximal compatibility with its individual reads (Section 2.1). A natural advantage of such
an approach is that the uncalled SNP genotypes of an offspring are imputed in its haplotypes if
those SNPs are included in the parental phasings. In addition, the Bayesian framework for phasing
extension can be used to detect erroneous SNP genotypes, which result in zero probabilities for all
extensions at a SNP position. We use a similar Bayesian approach to re-estimate these erroneous
genotypes, as well as the uncalled SNP genotypes of the parents, by assigning probabilities to the
possible genotypes at a SNP position conditional on the reads and the parent-offspring relationships
from which the most likely genotype is chosen as the estimate (Section 2.2).

2.1. Estimation of parental haplotypes. Inspired by the approach of Berger et al. [12], we start at
the first SNP position in the target region (s = 1), and extend the maternal and paternal genotypes
of this SNP,G1

m = H1
m andG1

f = H1
f , respectively, to two-SNP phasings,H2

m andH2
f . We consider

every possible phasing between H1
m and H1

f and SNP position s = 2 in the region, and obtain the
joint conditional probability of each extension pair, (Hs

m, H
s
f ), at s = 2 given the sequence reads

of the population and the parental genotypes, (Gs
m, G

s
f ), as well as the offspring genotypes Gs

ci
for

i = 1, . . . , n (with n representing the number of offspring). Keeping only those parental extensions
whose conditional probability exceeds or equals a pre-set branching threshold, ρ ∈ (0, 1], we
eliminate further the extensions whose probability is less than κPmax, where κ ∈ [0, 1] is a pre-
set pruning threshold and Pmax is the maximum probability assigned to the candidate parental
extensions. The surviving extensions at s = 2 are used in the next step as base phasings to obtain
the extensions at s = 3 in a similar manner, and this procedure is continued until the last SNP
s = l has been added to the parental extensions.

As it is not straightforward to directly calculate the conditional extension probabilities [17], we
calculate instead the probability of the sequence reads conditional on each possible phasing and
convert these probabilities to the desired extension probabilities using Bayes’ formula:
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P (Hs
m, H

s
f |Hs−1

m , Hs−1
f , Gs

m, G
s
f , G

s
c1
, . . . , Gs

cn ,Rset, εset) = (1)

P (Rset|Hs
m, H

s
f , εset)P (Hs

m, H
s
f |Gs

m, G
s
f , G

s
c1
, . . . , Gs

cn , H
s−1
m , Hs−1

f )∑
(Hs

m,H
s
f )
′
P
(
Rset|(Hs

m, H
s
f )
′, εset

)
P
(
(Hs

m, H
s
f )
′
∣∣Gs

m, G
s
f , G

s
c1
, . . . , Gs

cn , H
s−1
m , Hs−1

f )

where Rset denotes the set of all of the reads in the population and εset stands for the set of base-
calling error vectors, εj , associated with each rj ∈ Rset (1 6 j 6 |Rset|). P (Rset|Hs

m, H
s
f , εset)

denotes the conditional probability of observing the reads given a pair of maternal and paternal
extensions at s, (Hs

m, H
s
f ), and the base-calling error probabilities given by εset.

To calculate P (Rset|Hs
m, H

s
f , εset), we assume conditional independence of each read, rj ∈ Rset,

from the other reads in Rset given εset, and use the fact that each read is either directly obtained
from one of the parental samples or belongs to an offspring ci (i = 1, ..., n), in which latter case
the read may have originated from either parent with equal probability. Under these assumptions,
P (Rset|Hs

m, H
s
f , εset) is determined according to:

Base phasing solution 
(Hbm , Hbf) for 
SNPs: 1,..., s-1

Parental phasing extensions (Hem , Hef) 
using Rm ,Rf ,Rci (i = 1,...,n) 

for SNPs: 1,..., s-1, s

Filter the most likely extensions (Hem , Hef)

s=l

No

Yes Determine all possible 
offspring phasings from the 

most likely (Hem , Hef) 

s ← s +1
(Hbm , Hbf) ← (Hem , Hef)

For each offspring, ci (i =1,...,n), 
use Rci to choose the phasing 
with the lowest MEC as Hci

Sequence reads of  the 
parents: Rm ,Rf

Sequence reads of  the 
offspring: Rci (i = 1,...,n) 

Figure 1. Summary of the “PopPoly” method to estimate haplotypes in an F1-population
with two parents, (m, f ), and n offspring, ci (i = 1, ..., n), using the sequence reads for a
connected region including l SNPs.
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P (Rset|Hs
m, H

s
f , εset) =

|Rset|∏
j=1

P (rj|Hs
m, H

s
f , εset) =

|Rset|∏
j=1

P (rj|Hs
m, εj)U

(
δ(rj),m

)
+ (2)

P (rj|Hs
f , εj)U

(
δ(rj), f

)
+

1

2

(
P (rj|Hs

m, εj) + P (rj|Hs
f , εj)

) n∑
i=1

U
(
δ(rj), ci

)
U(x, y) =

{
1 x = y
0 x 6= y

δ : Rset −→ {m, f, c1, ..., cn}

where the function δ(rj) returns the origin of read rj: mother (m), father (f ), or one of the n
offspring (c1, ...., cn).

Assuming independence of the sequencing errors at the SNP positions within each read, P (rj|Hs
m)

and P (rj|Hs
f ) in Equation 2 can be calculated according to [17]:

P (rj|Hs
p , εj) =

1

kt

∑
h∈Hs

p

P (rj|h, εj) p ∈ {m, f}

P (rj|h, εj) =
s∏

τ=1

1

3
ετjd(rj, h, τ) +

1− ετj
1− 2

3
ετj

(
1− d(rj, h, τ)

)
(3)

d(rj, h, τ) =

{
1 rτj 6= hτ , rτj 6= "-", hτ 6= "-"
0 otherwise

where εj assigns a base-calling error probability to every SNP position in rj , and h stands for
each of the kt homologues in the phasing extension Hs

p (p ∈ {m, f}). In Equation 3, we use the
superscript τ in rτj and ετj to represent the called base at SNP position τ and its associated error
probability, respectively. Likewise, hτ denotes the allele assigned to homologue h at SNP position
τ . We use rτj = "-" and hτ = "-" to show that SNP position τ has not been called in rj or is missing
in h.

Equations 2 and 3 establish the procedure to calculate the likelihood in Bayes’ for-
mula in Equation 1. In order to solve Equation 1, one also needs to specify the prior,
P (Hs

m, H
s
f |Gs

m, G
s
f , G

s
c1
, . . . , Gs

cn , H
s−1
m , Hs−1

f ). While several ways can be thought of to specify
this prior, we obtain it as follows.

As the parental extensions (Hs
m, H

s
f ) are confined to those compatible with Gs

m and Gs
f , we set

this prior to zero for every incompatible extension. For the compatible extensions, we look into
the possible transmissions of the extended haplotypes (ignoring phenomena like aneuploidy [19],
preferential chromosome pairing [20], recombination and double reduction [21]) to the offspring
and for each offspring, ci, we count the number of transmissions that agree with its genotype at
s, Gs

ci
. Dividing this number by the total number of possible transmissions,

(
km
km
2

)
·
(kf
kf
2

)
, gives us
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P (Gs
ci
|Hs

m, H
s
f ). Calculating P (Gs

ci
|Hs

m, H
s
f ) for i = 1, . . . , n, we obtain the average likelihood of

an observed offspring genotype according to:

EHs
m,H

s
f
[P (Gs

c|Hs
m, H

s
f )] =

n∑
i=1

P (Gsci |H
s
m,H

s
f )

P (Gc1 |Hs
m,H

s
f )+···+P (Gcn |Hs

m,H
s
f )
P (Gs

ci
|Hs

m, H
s
f )

= 1
n∑
i=1

P (Gci )

n∑
i=1

(
P (Gs

ci
|Hs

m, H
s
f )
)2 (4)

where P (Gs
ci
|Hs

m, H
s
f ) is the likelihood and

P (Gsci |H
s
m,H

s
f )

P (Gc1 |Hs
m,H

s
f )+···+P (Gcn |Hs

m,H
s
f )

is the probabil-

ity of observing offspring ci.
So far, we set the prior for each (Hs

m, H
s
f ) to be proportional to EHs

m,H
s
f
[P (Gs

c|Hs
m, H

s
f )]. How-

ever, as changing the order of the homologues does not change a phasing, several permutations
of the alleles at s − 1 and s can yield the same (Hs

m, H
s
f ). Therefore, the prior should also be

proportional to the number of permutations that result in (Hs
m, H

s
f ). It can be thus set to:

P (Hs
m, H

s
f |Gs

m, G
s
f , G

s
c1
, . . . , Gs

cn , H
s−1
m , Hs−1

f ) = EHs
m,H

s
f
[P (Gs

c|Hs
m, H

s
f )]

(
km!

ωsm1 ! ...ωsmum !

)
Πm
s−1Π

m
s

(
kf !

ωsf1 ! ... ωsfuf !

)
Πf
s−1Π

f
s

(5)

where, for p ∈ {m, f}, Πp
s−1 and Πp

s are the number of possible permutations of the alleles at
s− 1 and s, respectively, up is the number of distinct homologues, i.e. haplotypes, in Hs

p regarding
only positions s − 1 and s, and ωspi for i ∈ {1, ..., up} denotes the number of times an identical
haplotype (regarding only positions s − 1 and s) is present in Hs

p . Although it is possible to
normalise the priors obtained this way over all of the possible extensions (to obtain a proper prior
mass function), one does not need to do so as the discrete posteriors are normalised anyway at the
end.

As an example, with tetraploid parents there will be
(
4
2

)
·
(
4
2

)
= 36 possible haplotype

transmissions to each offspring. With maternal and paternal extensions at s = 3 being equal

to H3
m =


h1 h2 h3 h4

SNP 1: 1 1 0 0
SNP 2: 1 0 0 1
SNP 3: 1 0 1 1

 and H3
f =


h5 h6 h7 h8

SNP 1: 0 1 0 0
SNP 2: 0 0 1 1
SNP 3: 0 0 0 1

, respectively, and two offspring c1

and c2 with G3
c1

= (1 0 0 0) and G3
c2

= (1 0 1 0), only 9 out of 36 transmissions will be compatible
with the genotype of c1, while 18 transmissions will be compatible with c2. This results in
EHs

m,H
s
f
[P (G3

c |H3
m, H

3
f )] = 1

3
4

(
( 9
36

)2 + (18
36

)2
)

= 5
12

for this extension. As km = kf = 4,

G2
m = (1, 0, 0, 1), G3

m = (1, 0, 1, 1), G2
f = (0, 0, 1, 1) and G3

f = (0, 0, 0, 1), we have Πm
2 =

Πf
2 =

(
4!
2!2!

)
= 6 and Πm

3 = Πf
3 =

(
4!
3!1!

)
= 4. Considering only SNPs at s − 1 = 2 and s = 3,

in each parent there is one haplotype present twice. The a priori probability of (H3
m, H

3
f ) is hence

determined from Equation 5 to be 5
12
·
(

4!
2!1!1!

)
24
·
(

4!
2!1!1!

)
24

= 5
48

.
From Equations 2 and 5, the conditional probabilities of parental extensions at position s can

be obtained using Equation 1 and the surviving extensions are used for the extension to s + 1, as
explained above.
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2.2. Estimation of missing and erroneous genotypes. The SNP-by-SNP extension of the
parental haplotypes using the sequencing reads of an F1-population was explained in the previ-
ous section, assuming the SNPs have been accurately called for all of the population members.
However, in practice every haplotyping algorithm has to handle missing and wrongly estimated
SNP genotypes caused by sequencing and variant calling errors.

In presence of wrongly estimated genotypes (wrong dosages), it can occur that all of the off-
spring genotypes are incompatible with the parental extensions at some SNP position s. At these
positions, the extension should either be skipped, as the prior weight of all candidate phasings will
be zero, or the genotypes must be estimated anew. The extension at s will also be impossible if one
or both of the parental genotypes are missing at s. To include these SNP positions in the extension,
it is necessary to impute the missing genotypes.

In order to estimate the population genotypes at the missing or incompatible positions, we as-
sume that the parents come from an infinite-size population at Hardy-Weinberg equilibrium. Lim-
iting the attention to bi-allelic SNPs, the reference and alternative allele frequencies of the parents
at position s can be estimated from the observed reads under the above assumption. Assuming a
fixed sequencing error rate for all of the reads and nucleotide positions, 0 6 ÊR < 0.5, the fre-
quency of the alternative allele can be obtained assuming a binomial model for the observed count
of the alternative allele according to:

ξ = |{rj ∈ Rset|rsj = 1 ∨ rsj = 0}|

ψ =
|{rj ∈ Rset|rsj = 1}|

ξ
(6)

p̂ =
ψ − ÊR
1− 2ÊR

where ξ is the total sequencing coverage of the population at s and ψ is the proportion of the
alternative allele among the observed alleles. As this observed frequency, ψ, depends on the latent
true frequency, p̂, through ψ = (1−ÊR)p̂+ÊR(1 − p̂), it is straightforward to show that ψ can be

obtained as shown in Equation 6, with a standard error equal to 1

(1−2ÊR)
·
√

ψ(1−ψ)
ξ

.
In case a specific base-calling error rate εsj is assigned at each position s to each read rj , e.g. by

using the integer-rounded Phred (quality) scores reported by the sequencer [22], one can assume
a Gaussian distribution for the probability of observing the alternative allele at s in each read,

fs
(
P (rj)|p̂, σ̂2

)
= 1√

2πσ̂2
e−

(P (rj)−p̂)
2

2σ̂2 , and obtain p̂ at each s according to:

p̂ =

∑
{rj∈Rset|rsj=1 ∨ rsj=0}

P (rj)

ξ
(7)

σ̂2 =

∑
(P (rj)− p̂)2

ξ − 1

P (rj) = (1− εsj)rsj + εsj(1− rsj)
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Having p̂, a prior probability can be assigned to each of the 2km and 2kf theoretically possible
genotypes for the mother and the father, respectively, assuming a binomial model according to:

P (Gs
p) =

(
kt
ν

)
p̂ν(1− p̂)(kt−ν) (8)

where p ∈ {m, f} and 0 6 ν 6 kt is the dosage of the alternative allele in the candidate
genotype, Gs

p. Assuming the parents have been independently chosen from a source population, a
prior can be assigned to each (Gs

m, G
s
f ) pair using P (Gs

p) obtained from Equation 8, according to:

P (Gs
m, G

s
f ) = P (Gs

m) · P (Gs
f ) (9)

Given (Gs
m, G

s
f ), a prior probability can be assigned to each specific offspring genotype,

Gs
ci

, by counting the number of allele transmissions that result in that Gs
ci

. For example, with
(Gs

m, G
s
f ) =

(
(0, 1, 1, 1), (1, 0, 0, 0)

)
, the prior P (Gc1|Gs

m, G
s
f ) will be equal to 0, 9

(4
2)(

4
2)

= 1
4
,

18

(4
2)(

4
2)

= 1
2
, 9

(4
2)(

4
2)

= 1
4

and 0 for the offspring genotypes: Gc1 = (0, 0, 0, 0), Gc1 = (1, 0, 0, 0),

Gc1 = (1, 1, 0, 0), Gc1 = (1, 1, 1, 0) and Gc1 = (1, 1, 1, 1), respectively.
To estimate the population genotypes, (Gs

m, G
s
f , G

s
c1
, · · · , Gs

cn), we use the prior probabilities
obtained as explained above, and assign a posterior probability to each population genotype by
taking the sequencing reads into account. Noting that:

P (Gs
m, G

s
f , G

s
c1
, · · · , Gs

cn|Rset, εset) = P (Gs
c1
, · · · , Gs

cn|G
s
m, G

s
f ,Rset, εset)P (Gs

m, G
s
f |Rset, εset) (10)

we separately obtain the posterior of the parental genotypes, P (Gs
m, G

s
f |Rset, εset), and the con-

ditional posterior of the offspring P (Gs
c1
, · · · , Gs

cn|G
s
m, G

s
f ,Rset, εset), from which the population

posterior is derived using Equation 10.
The posterior of (Gs

m, G
s
f ) can be directly obtained from Equations 1 and 2 by substituting

(Hs
m, H

s
f ) with (Gs

m, G
s
f ) in these equations. Assuming conditional independence of the offspring

genotypes given the parents, we obtain P (Gs
c1
, · · · , Gs

cn|G
s
m, G

s
f ,Rset, εset) by:

P (Gs
c1
, · · · , Gs

cn|G
s
m, G

s
f ,Rset, εset) = P (Gc1|Gs

m, G
s
f ,Rc1 , εc1) · . . . · P (Gcn|Gs

m, G
s
f ,Rcn , εcn)

Rci = {rj ∈ Rset| δ(rj) = ci} (11)

εci = {εj ∈ εset| δ(rj) = ci}

where P (Gci|Gs
m, G

s
f ,Rci , εci) is calculated according to:

P (Gci|Gs
m, G

s
f ,Rci , εci) =

P (Rci|Gs
ci
, εci)P (Gs

ci
|Gs

m, G
s
f )∑

G′sci

P (Rci|G′
s

ci
, εci)P (G′sci|Gs

m, G
s
f )

(12)

and:

P (Rci|Gs
ci
, εci) =

∏
(rj ,εj) ∈ Rci×εci

P (rj|Gs
ci
, εj) (13)
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where Rci × εci represents the Cartesian product of Rci and εci , and (rj, εj) denotes rj ∈ Rci

with its matched error rate vector, εj ∈ εci . In Equation 13, P (rj|Gs
ci
, εj) is obtained by replacing

Hs
p with Gs

ci
in Equation 3.

After calculating P (Gs
m, G

s
f , G

s
c1
, · · · , Gs

cn| Rset, εset) from Equation 10, the most likely popu-
lation genotypes at s can be assigned to the population members as genotype estimates.

2.3. Estimation of the offspring haplotypes. Having the set of all possible offspring phasings
obtained by the possible transmissions of the parental haplotypes (Section 2.1), we assign to each
offspring ci the phasing estimate Ĥci that yields the smallest number of required base-calling
changes in the sequence reads, Rci , in order to assign each rj ∈ Rci to some homologue in Ĥci .
For each possible offspring phasing, Ĥ , this required number of base-calling changes equals the
so-called minimum error correction (MEC) score, defined as [18]:

MEC(Ĥ , Rci) = Σrj ∈ Rci

min
ĥ∈Ĥ

D(rj, ĥ) (14)

D(rj, ĥ) is the Hamming distance between read rj ∈ Rci and homologue ĥ ∈ Ĥ defined ac-
cording to:

D(rj, ĥ) =
l∑

τ=1

d(rj, ĥ, τ) (15)

where τ and l represent the SNP positions and the number of SNPs in the target region,
respectively, and d(rj, ĥ, τ) is defined in Equation 3. Thus, for each ci we have Ĥci =

argmin
Ĥ

MEC(Ĥ,Rci). If Ĥci is the same as the true phasing of ci, its MEC score is expected

to be close to the number of actual base-call errors in Rci .
In case more than one set of parental haplotypes has the maximum probability (Section 2.1), we

infer the offspring haplotypes for each of them as explained above and finally choose the family
whose offspring MEC score is the smallest.

2.4. Performance evaluation by simulation. To evaluate the performance of PopPoly and com-
pare it to other haplotyping methods, we simulated genomic regions of length 1 kb for F1-
populations of tetraploid potato, as described in Motazedi et al. (2017) [17], introducing on average
one SNP per 50 bp in each parental sequence. For the potato genome, typical genetic distances
have been reported to be in the range of 3 to 8 cM/Mb [23] [21]. Therefore, the assumption of
improbable recombination holds for the simulated genomic regions.

We simulated different scenarios varying the number of offspring from 1 to 30, and for each
scenario generated in silico paired-end Illumina HiSeq 2000 reads, with an average insert-size of
350 bp and single read length of 125 bp, using the sequencing simulator ART [24]. The simulated
sequencing depth was 5× per homologue for each parent and 2× per homologue for the offspring.
We also conducted simulations of families with 2, 6 and 10 offspring with higher sequencing
depths, up to 30× per homologue for each individual, in order to evaluate the performance at
higher coverages.

After mapping the simulated reads to their reference regions using BWA-MEM [25] and calling
SNPs using FreeBayes [26], we estimated the phasing of the parents and the offspring in each
F1-population using SIH methods: SDhaP [13] and H-PoP [15] (shown to perform better than
other SIH methods such as HapCompass [11], HapTree [12] and SDhaP), as well as the trio based
method available for polyploids: TriPoly [17].
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We used several measures to compare the accuracy of haplotype estimation with the used meth-
ods. These include the pair-wise phasing accuracy rate (PAR), defined as the proportion of cor-
rectly estimated phasings for SNP-pairs [27], as well as the reconstruction rate (RR) defined to
measure the similarity between the original haplotypes and their estimates at each SNP site [17].

As the quality of haplotype estimation depends not only on the accuracy of the estimated hap-
lotypes, but also on the ability of haplotyping method to phase as many SNPs as possible and to
efficiently handle missing SNPs and wrong dosages, we used SNP missing rate (SMR) and in-
correct dosage rate (IDR) in the estimated haplotypes to get insight about these aspects for each
method. Finally, to show the continuity of phasing we measured the average number of phasing
interruptions, i.e. the number of haplotype blocks minus one, in the estimates of each method and
normalised it by the number of SNPs, l, as number of gaps per SNP (NGPS).

2.5. Haplotype estimation of tuberisation and maturity loci in potato. We used PopPoly to
estimate haplotypes of the tuberisation and maturity loci reported by Kloosterman et al. [28], in
an F1-population with 10 offspring obtained from the cross of two S. tuberosum cultivars: Altus ×
Colomba (A × C). The nine investigated loci (Table 1) belong mainly to the potato cycling DOF
factor (StCDF) gene family, but also include other genes, such as CONSTANS (CO) genes CO1
and CO2, that are shown to be involved in StCDF regulation [28].

Sequence data for the A × C population was obtained by whole genome sequencing (WGS)
using Illumina HiSeq X Ten technology. Paired-end sequences were obtained with an average
insert size of 380 bp (single read length of 151 bp) and aligned to PGSC-DM-v4.03 reference
genome [29] using BWA-MEM [25]. Genomic variation within the boundaries of the selected
genes was detected from the aligned reads using FreeBayes [26], with an average read depth of
85× (sd=30×) at the target loci. The paired-end sequence reads were used by PopPoly to estimate
the phasing of the detected bi-allelic SNP sites (including SNPs obtained by collapsing FreeBayes
complex variants).

3. RESULTS AND DISCUSSION

3.1. Simulation study. To evaluate the performance of PopPoly, we simulated potato F1-
populations with 1 to 30 offspring and estimated the population haplotypes using PopPoly as well
as SDhaP, H-PoP and TriPoly. The estimated haplotypes were compared to the original haplotypes
by hapcompare [27], using the measures introduced in Section 2.4. The results are summarised
below.

PopPoly yields more accurate offspring haplotypes. The comparison of the reconstruction rates
(RR) reported for the phasing estimates of the offspring showed that RR, which is a measure
of overall phasing accuracy, is around 4% higher for PopPoly compared to the to the next most
accurate method, TriPoly (Figure 2-a). The second measure of accuracy, the pairwise-phasing
accuracy rate (PAR) which is especially sensitive to the accuracy of phasing between distant SNPs,
was around 12% higher for the offspring estimates obtained by PopPoly (Figure 2-b) compared to
the next method (TriPoly). Together, these two measures show that PopPoly improves the accuracy
of phasing in the offspring compared to the other methods.

However, the accuracy of PopPoly depends on the population size, especially for distant phasing
evaluated by PAR. As seen in Figure 2-b, PAR increases rapidly for PopPoly with an increase in
the number of offspring from 1 to 3. In fact, the highest offspring score for a trio, i.e. with only one
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Gene DNA sequence id Chromosome: Boundary coordinates Segregating bi-allelic SNPs

StCDF1 PGSC0003DMG400018408 chr05: 4538880-4541736 38

StCDF2 PGSC0003DMG400025129 chr02: 25588000-25591776 63

StCDF3 PGSC0003DMG400001330 chr02: 46143998-46147444 75

StCDF4 PGSC0003DMG400033046 chr06: 51598497-51601151 51

StCDF5 PGSC0003DMG400019528 chr03: 55882564-55885296 100

StCO1 PGSC0003DMG401010056 chr02: 45098374-45101578 57

StCO2 PGSC0003DMG402010056 chr02: 45088023-45092647 66

StFKF1 PGSC0003DMG400019971 chr01: 531784-536380 89

StGI1 PGSC0003DMG400001110 chr03: 14265390-14266279 40

Table 1. List of the S. tuberosum genes selected for haplotyping
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Figure 2. Haplotyping accuracy measures: (a) RR, (b) PAR in the offspring against the
number of offspring in the population using PopPoly (light grey), TriPoly (grey), H-PoP
(dark grey) and SDhaP (black) for simulated tetraploid potato populations.

offspring, is reported by TriPoly and the accuracy of PopPoly reaches that of TriPoly when there
are at least 2 offspring in the population.

However, the dependence of PopPoly accuracy on the population size gradually diminishes as
the number of offspring reaches 6. As an increase in the count of a haplotype in the population
results in an increase in the number of reads compatible with that haplotype (assuming no sequenc-
ing bias), the power of PopPoly algorithm increases to detect that haplotype. With a trio, however,
there is a chance that some of the parental haplotypes are not transmitted to the offspring from a

11

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/318196doi: bioRxiv preprint 

https://doi.org/10.1101/318196
http://creativecommons.org/licenses/by-nd/4.0/


tetraploid cross. This causes the lower accuracy of PopPoly compared to TriPoly when applied to
a trio, as the latter method does not combine the offspring reads with the reads from the parents.

While increasing the per homologue coverage from 5-5-2× (mother-father-offspring) to 30-30-
30× yielded an average increase of 23-36% in PAR for TriPoly, H-PoP and SDhaP, the increase was
only 14% for PopPoly (Supplement S3), as combining the population reads effectively augments
the haplotyping coverage (the increase was actually less than 5% with 10 offspring, Supplement
S3). Similarly, the difference in RR between the lowest and the highest coverage was 3% for
PopPoly compared to 4-6% for the other methods.

For the parents, the reported accuracy measures were very similar between the methods, with
H-PoP and PopPoly yielding the highest scores (Supplement S1).

Haplotype estimates of PopPoly include more SNPs compared to the other methods. As
shown in Figure 3, the average SNP missing rates (SMR) of PopPoly are around 20% lower
compared to H-PoP and around 9% lower compared to TriPoly and SDhaP. The reason for this is
that combining individual NGS reads increases the chance to phase parental SNPs and choosing
the offspring phasings from the estimated parental haplotypes leads to the inclusion of SNPs not
sufficiently covered by the offspring reads, as well as to the imputation of SNPs uncalled in (some
of) the offspring.

However, around 10% of SNPs are still missing in the PopPoly phasing, as PopPoly excludes
a SNP position if the offspring genotypes at that position (either given as input or estimated anew
by PopPoly) are incompatible with the surviving parental extensions. An example of this for
a trio is the extension at s = 2, if the only surviving parental extensions are H2

m = H2
f = h1 h2 h3 h4

s = 1: 0 0 1 1
s = 2: 1 1 0 0

 and the offspring genotype at s = 2 is G2
c =

(
1, 1, 1, 1

)
. While

G2
c is compatible with the parental genotypes at s = 2 (and therefore is accepted by the point-wise

dosage estimation of PopPoly), it cannot be obtained from H2
m and H2

f without meiotic recombi-
nation. Since PopPoly is based on the assumption of no recombination (Section 2.1), it excludes
this SNP site from phasing.

Increasing the per homologue sequencing depth from 5-5-2× (mother-father-offspring) to 30-
30-30× decreased the SMR by 16-17% for SDhaP, PopPoly and TriPoly, while this decrease was
26% for H-PoP (Supplement S3).

PopPoly improves SNP dosage estimation. As shown in Figure 4, the incorrect dosage rate
(IDR) in the phased SNPs was different for each method due to differences in each algorithm’s
approach to handle genotype dosages.

Specifically, H-PoP attempts to obtain an optimal partitioning of the reads into k groups corre-
sponding to the homologues of a k-ploid, so that the difference between the reads assigned to the
same homologue is minimised and the difference between the reads assigned to different homo-
logues is maximised. The haplotypes are determined by taking a consensus of the reads within
each group, and the dosages are determined by the estimated haplotypes. SDhaP on the other hand
employs a gradient descent scheme with Lagrangian relaxation to find the best phasing (in the
space of all possible phasings) according to the MEC criterion. Thus, its MEC solution determines
the dosages of the SNP alleles.

In contrast to H-PoP and SDhaP, TriPoly and PopPoly use the input dosages as basis and make
corrections to these based on parent-offspring relationships in the population. Specifically, if the
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Figure 3. SNP missing rate (SMR) in the population against the number of offspring re-
ported by PopPoly (light grey), TriPoly (grey), H-PoP (dark grey) and SDhaP (black) for
simulated tetraploid potato populations.

genotype of an offspring in a trio is not compatible with the genotypes of the parents at position
s, TriPoly obtains the offspring extension and hence the offspring genotype at s by considering
all of the possible allele transmissions from the parents at s and by choosing the most likely trio
extensions. The dosage correction method of PopPoly is explained in Section 2.2.

The simulation results show that the dosage correction scheme of PopPoly is the most successful
approach if there are at least two offspring in the population (Figure 4). For a trio, however, the
most accurate dosages are reported by TriPoly, while the IDR is the same for TriPoly and PopPoly
with 2 offspring. On average, the IDR is around 31% for SDhaP (the highest), followed by 20%
for H-PoP and 13% for TriPoly. With at least 6 offspring, the IDR of PopPoly drops below 10%
(∼7%).

As discussed for the phasing accuracy, the ability of PopPoly to detect wrongly estimated
dosages and to correctly (re)estimate dosages depends on the haplotype counts in the population.
Due to the absence of some parental haplotypes in the offspring of a trio, the accuracy of PopPoly
drops below that of TriPoly, which relies less on the parental haplotypes and more on the read of
the offspring to assign its dosages.
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Figure 4. Incorrect dosage rate (IDR) in the population against the number of offspring
reported by PopPoly (light grey), TriPoly (grey), H-PoP (dark grey) and SDhaP (black) for
simulated tetraploid potato populations.

Considering the sequencing coverage, SDhaP profited the most from the higher depths with a
24% lower IDR at 30-30-30× compared to at 5-5-2× (per homologue), while this decrease in IDR
was 12% for TriPoly and H-PoP and only 7% for PopPoly (Supplement S3).

Continuity of haplotyping is improved by PopPoly compared to single individual methods.
The number of haplotype blocks, i.e. the number of gaps in an estimated phasing plus one [17], for
a set of SNPs, S, is equal to the number of connected components in the SNP-connectivity graph,
GS = (S, ES). Each node in GS represents a SNP and an edge is drawn between two SNP nodes, (s,
s′), if s and s′ are covered together by at least one sequence fragment (which could be a single read
or a paired-end sequence fragment). As shown in Figure 5, the expected number of phasing gaps
(normalised by the number of SNPs, |S|) is much lower in the estimates of TriPoly and PopPoly
compared to H-PoP and SDhaP, as a pair of SNPs has a higher chance of being connected when
all of the population reads are considered for the phasing of each individual compared to the case
where for each individual only its own reads are taken into account.

3.2. Haplotypes of tuberisation and maturity loci in A × C population. Using PopPoly, we
phased all of the 579 segregating SNPs at the 9 candidate loci (Supplement S2). For each locus,
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Figure 5. Number of phasing gaps normalised per SNP (NGPS) in the haplotype estimates
of PopPoly (light grey), TriPoly (grey), H-PoP (dark grey) and SDhaP (black) against the
number of offspring in the population for simulated tetraploid potato populations.

we used the estimated haplotypes to calculate nucleotide diversity [30], i.e. the expected chance of
a nucleotide difference per site between two randomly chosen haplotypes in the population. The
estimated parental haplotypes showed high local similarity, although globally, i.e. for the entire
locus, they were often distinct (Table 2).

As evident from the median counts of the transmission of parental haplotypes to the offspring in
Table 2, around half of the 56 distinct parental haplotypes (over all of the loci) were transmitted at
least 5 times to the offspring. This is the expected transmission count of a haplotype in a tetraploid
cross with 10 offspring if all of the parental haplotypes are distinct at the locus. However, one
parental haplotype at StCDF3 did not appear at all in the offspring estimates. A closer look at this
locus (Table 3) shows that this haplotype, H6, is different from two other paternal haplotypes H5

and H7 (which are the same as each other) only at SNP sites s = 66 to s = 69, where H6 contains
the reference alleles while H5 and H7 contain the alternative. With a larger population it will be
possible to investigate whether this is due to phasing error or due to natural or human selection of
the progeny. In comparison, the transmission pattern at StCDF1 (Table 3) was as expected under
the considered assumptions (Section 2.1).
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Gene Number of distinct parental haplotypes Transmission counts of parental haplotypes> Nucleotide diversity

StCDF1 6 4-5-15 0.41

StCDF2 8 1-5-9 0.43

StCDF3 7 0-4.5-17 0.27

StCDF4 3 7-15-18 0.42

StCDF5 7 1-5-10 0.32

StCO1 3 8-11-21 0.40

StCO2 6 3-6.5-11 0.41

StFKF1 8 2-4.5-9 0.38

StGI1 8 2-4.5-8 0.29

> Minimum-Median-Maximum count of the distinct parental haplotypes observed in the offspring

Table 2. Summary of SNP phasing at the potato maturity and tuberisation loci (Table 1)

4. CONCLUSION

We present a novel algorithm, PopPoly, to exploit parent-offspring relationships for the estima-
tion of haplotypes in F1-populations using short DNA sequence reads. Through realistic simu-
lations, we show that PopPoly outperforms single individual haplotyping methods, which ignore
family relationships. Besides, PopPoly yields better estimates compared to the trio based haplotyp-
ing method TriPoly when there are more than 2 offspring in the population. In addition, PopPoly
employs the family information to improve variant dosage estimation in the population at the de-
tected SNP sites. We also show that the performance of PopPoly is less influenced by sequencing
depth compared to the other methods.

To demonstrate the utility of PopPoly, we used it to phase all of the 579 SNPs segregating at 9
plant maturity and tuberisation loci in an F1 population of tetraploid potato, the A×C cross, with
10 offspring.
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s=1 s=38 s=75

StCDF1

H1 00000000000000000000000000001011010110
H2 00110011000111011111111110001011111110
H3 00110011000111011111111110001101111110
H4 11100011010110011111100100001100000110
H5 00000000000000000000000000000000000000
H6 00000000000000000000000000000000000000
H7 00111111111110111111111101111101011111
H8 00000000000000000000000000000000000000

StCDF3

H1 000000000000000000100001010100010000010000100100000000001101010011111011100
H2 000011000000000000000000000000000000000000000000000000000000000000000000000
H3 000011000000000000100001010100010000010000100110000000001101010011111011100
H4 111111111111111111011111111111111111101111011011111111110011101111110100011
H5 000011000000000000100001010100010000010000100100000000001101010011111011100
H6 000011000000000000100001010100010000010000100100000000001101010010000011100
H7 000011000000000000100001010100010000010000100100000000001101010011111011100
H8 000000000000000000000000000000000000000000000000000000000000000000000000000

Gene Offspring id H1 H2 H3 H4 H5 H6 H7 H8

StCDF1

1 0 1 0 1 0.33 0.33 1 0.33
2 0 1 1 0 0.33 0.33 1 0.33
3 1 0 1 0 0.67 0.67 0 0.67
4 1 0 0 1 0.33 0.33 1 0.33
5 0 1 0 1 0.67 0.67 0 0.67
6 0 1 1 0 0.67 0.67 0 0.67
7 0 1 1 0 0.33 0.33 1 0.33
8 1 0 1 0 0.67 0.67 0 0.67
9 1 0 1 0 0.33 0.33 1 0.33
10 0 0 1 1 0.67 0.67 0 0.6

StCDF3

1 1 0 0 1 1 0 1 0
2 1 1 0 0 1 0 1 0
3 1 1 0 0 1 0 1 0
4 1 0 0 1 1 0 1 0
5 1 0 0 1 0.5 0 0.5 1
6 1 0 0 1 0.5 0 0.5 1
7 1 1 0 0 1 0 1 0
8 1 0 0 1 1 0 1 0
9 1 0 1 0 0.5 0 0.5 1
10 1 1 0 0 1 0 1 0

Table 3. The 8 parental haplotypes and their transmission probabilities to each offspring
at StCDF1 and StCDF3 loci (H1 −H4 represent maternal and H5 −H8 represent paternal
haplotypes).
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