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Abstract

Motivation: Models for analysing and making relevant biological inferences from mas-
sive amounts of complex single-cell transcriptomic data typically require several indi-
vidual data-processing steps, each with their own set of hyperparameter choices. With
deep generative models one can work directly with count data, make likelihood-based
model comparison, learn a latent representation of the cells and capture more of the
variability in different cell populations.

Results: We propose a novel method based on variational auto-encoders (VAEs) for
analysis of single-cell RNA sequencing (scRNA-seq) data. It avoids data preprocessing
by using raw count data as input and can robustly estimate the expected gene expres-
sion levels and a latent representation for each cell. We tested several count likelihood
functions and a variant of the VAE that has a priori clustering in the latent space. We
show for several scRNA-seq data sets that our method outperforms recently proposed
scRNA-seq methods in clustering cells and that the resulting clusters reflect cell types.

Availability and implementation: Our method, called scVAE, is implemented in
Python using the TensorFlow machine-learning library, and it is freely available at
https://github.com/scvae/scvae.

The length of this alphabet is 127.55219pt.

1 Introduction
Single-cell RNA sequencing (scRNA-seq) enables
measurement of gene expression levels of individual
cells and thus provides a new framework to under-
stand dysregulation of disease at the cell-type level
(Regev et al., 2017). To date, a number of meth-
ods1 have been developed to process gene expression
data to normalise the data (Haghverdi et al., 2018)
and cluster cells into putative cell types (Satija et al.,
2015; Kiselev et al., 2017). Seurat (Satija et al., 2015)
is a popular method which is a multi-step process
of normalisation, transformation, decomposition, em-
bedding, and clustering of the gene expression levels.
This can be cumbersome, and a more automated ap-
proach is desirable. Four recent methods, cellTree (du-

1A list of software packages for single-cell data anal-
ysis is available at https://github.com/seandavi/
awesome-single-cell.

Verle et al., 2016), DIMM-SC (Sun et al., 2017), DCA
(Eraslan et al., 2018), and scVI (Lopez et al., 2018),
model the gene expression levels directly as counts us-
ing latent Dirichlet allocation, Dirichlet-mixture gen-
erative model, an auto-encoder, and a variational
auto-encoder, respectively. The last two methods are
described below.

Here, we show that expressive deep generative mod-
els, leveraging the recent progress in deep neural net-
works, provide a powerful framework for modelling
the data distributions of raw count data. We show
that these models can learn biologically plausible rep-
resentations of scRNA-seq experiments using only the
highly sparse raw count data as input entirely skipping
the normalisation and transformation steps needed
in previous methods. Our approach is based on the
variational auto-encoder (VAE) framework presented
in Kingma and Welling (2013) and Rezende et al.
(2014). These models learn compressed latent repre-
sentations of the input data without any supervisory
signals, and they can denoise the input data using
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its encoder-decoder structure. We extend these mod-
els with likelihood (link) functions suitable for mod-
elling (sparse) count data and perform extensive ex-
periments on several data sets to analyse the strengths
and weaknesses of the models and the likelihood func-
tions. Variational auto-encoders have been examined
and extended to use multiple latent variables for, e.g.,
semi-supervised learning (Kingma et al., 2014), clus-
tering (Dilokthanakul et al., 2016; Maaløe et al., 2017;
Jiang et al., 2017), and structured representations
(Sønderby et al., 2016; Johnson et al., 2016; Lin et al.,
2018). They have also been used in variety of cases to,
e.g., generate sentences (Bowman et al., 2016), trans-
fer artistic style of paintings (Gatys et al., 2015), and
create music (Roberts et al., 2017). Recently, VAEs
have also been used to study normalised bulk RNA-
seq data (Way and Greene, 2017) as well as visual-
ising normalised scRNA-seq data (VASC, Wang and
Gu, 2018; scvis, Ding et al., 2018).

Compared to most other auto-encoder methods,
VAEs have two major advantages: (a) It is probabilis-
tic so that performance can be quantified and com-
pared in terms of the likelihood, and (b) the varia-
tional objective creates a natural trade-off between
data reconstruction and model capacity. Other types
of auto-encoders also learn a latent representation
from data that is used to reconstruct the same as well
as unseen data. The latent representation is tuned
to have low-capacity, so the model is forced to only
estimate the most important features of the data.
Different auto-encoder models have previously been
used to model normalised (or binarised) bulk gene ex-
pression levels: denoising auto-encoders (Tan et al.,
2014; Gupta et al., 2015; Tan et al., 2016), sparse
auto-encoders (Chen et al., 2016), and robust auto-
encoders (Cui et al., 2017). A bottleneck auto-encoder
(Eraslan et al., 2018) was also recently used to model
single-cell transcript counts, and a generative adver-
sarial network (Goodfellow et al., 2014), which is a
related model, was recently used to model normalised
single-cell gene expression levels (Ghahramani et al.,
2018).

Our contributions are threefold: (a) We have devel-
oped new generative models based on the VAE frame-
work for directly modelling raw counts from RNA-seq
data; (b) we show that our models using either a Gaus-
sian or a Gaussian-mixture latent variable prior learn
biologically plausible groupings of scRNA-seq data of
as validated on data sets with known cell types; and
(c) we provide a publicly available framework for un-
supervised modelling of count data from RNA-seq ex-
periments.

2 Methods and materials
We have developed generative models for directly
modelling the raw read counts from scRNA-seq data.
In this section, we describe the models as well as the
different data likelihood (link) functions for this task.

2.1 Latent-variable models
We take a generative approach to modelling raw count
data vectors x, where x represents a single cell and its
components xn, which are also called features, corre-
spond to the gene expression count for gene n. We
assume that x is drawn from the distribution pθ(x) =
p(x |θ) parameterised by θ. The number of features
(genes), N , is very high, but we still want to model
co-variation between the features. We achieve this by
introducing a stochastic latent variable z, with fewer
dimensions than x, and condition the data-generating
process on this. The joint probability distribution of
x and z is then

pθ(x, z) = pθ(x | z) pθ(z), (1)

where pθ(x | z) is the likelihood function and pθ(z) is
the prior probability distribution of z. Marginalising
over z results in the marginal likelihood of θ for one
data point:

pθ(x) =

∫
pθ(x | z) pθ(z) dz. (2)

The log-likelihood function for all data points (also
called examples, which in this case are cells) will be
the sum of the log-likelihoods for each data point:
F(θ) =

∑M
m=1 log pθ(xm), where M is the number

of cells. We can then use maximum-likelihood estima-
tion, arg maxθ F(θ), to infer the value θ.

We use a deep neural network to map from z to the
sufficient statistics of x. However, as the marginali-
sation over the latent variables in Equation (2) is in-
tractable for all but the simplest linear models, we
have to resort to approximate methods for inference
in the models. Here we use variational Bayesian opti-
misation for inference as introduced in the variational
auto-encoder framework (Kingma and Welling, 2013;
Rezende et al., 2014). Details of this approach is cov-
ered in Section 2.4.

2.2 Deep generative models
The choice of likelihood function pθ(x | z) depends on
the statistical properties of the data, e.g., continuous
or discrete observations, sparsity, and computational
tractability. Contrary to most other VAE-based arti-
cles considering either continuous or categorical input
data, our goal is to model discrete count data directly,
which is why Poisson or negative binomial likelihood
functions are natural choices. This will be discussed
in more detail below. The prior over the latent vari-
ables p(z) is usually chosen to be an isotropic standard
multivariate Gaussian distribution to get the following
generative process (Fig. 1A):

pθ(x | z) = f(x;λθ(z)), (3a)
pθ(z) = N (z;0, I), (3b)

where f is a discrete distribution such as the Pois-
son (P) distribution: fP(x;λ) = e−λ λ

x

x! and f(x;λ) =
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Fig. 1. Model graphs of (A) the generative process and (B)
the inference process of the variational auto-encoder
models. Dotted strokes designate nodes and edges for the
Gaussian-mixture model only. Grey circles signify observable
variables, white circles represent latent variables, and
rhombi symbolise deterministic variables. The black squares
denote the functions next to them with the variables
connected by lines as input and the variable connected by
an arrow as output.

∏
k f(xk;λk). The Poisson rate parameters are func-

tions of z: λθ(z). We can for example parameterise it
by a single-layer feed-forward neural network:

λθ(z) = h(Wz + b). (4)

Here, W and b are the weights and bias of a lin-
ear model, θ = (W,b), and h(·) is an appropri-
ate element-wise non-linear transformation to make
the rate non-negative. The Poisson likelihood func-
tion can be substituted by other probability distribu-
tions with parameters of the distribution being non-
linear functions of z in the same fashion as above (see
Section 2.3). In order to make the model more ex-
pressive, we can also replace the single-layer model
with a deep model with one or more hidden lay-
ers. For L layers of adaptable weights we can write:
al = hl(Wlal−1 + bl) for l = 1, . . . , L, a0 = z, and
λθ(z) = aL with hl(·) denoting the activation func-
tion of the lth layer. For the hidden layers the recti-
fier function, ReLU(x) = max(0, x), is often a good
choice.

2.2.1 Gaussian-mixture variational auto-encoder
Using a Gaussian distribution as the prior probability
distribution of z only allows for one mode in the latent
representation. If there is an inherent clustering in the
data, like for scRNA-seq data where the cells repre-
sent different cell types, it is desirable to have multi-
ple modes, e.g., one for every cluster or class. This can

be implemented by using a Gaussian-mixture model
in place of the Gaussian distribution. Following the
specification of the M2 model of Kingma et al. (2014),
with inspiration from Dilokthanakul et al. (2016) and
modifications by Rui Shu2, a categorical latent ran-
dom variable y ∈ {1, . . . ,K} is added to the VAE
model:

pθ(x, y, z) = pθ(x | z) pθ(z | y) pθ(y). (5)

where the likelihood term pθ(x | z) is same as for the
standard VAE (Eq. 3a) and

pθ(z | y) = N (z;µθ(y),σ2
θ(y)I), (6a)

pθ(y) = Cat(y;π). (6b)

The generative process for the Gaussian-mixture vari-
ational auto-encoder (GMVAE) is illustrated in Fig-
ure 1A. Here, π is a K-dimensional probability vec-
tor, where K is the number of components in the
Gaussian-mixture model. The component πk of π
is the mixing coefficient of the kth Gaussian distri-
bution, quantifying how much this distribution con-
tributes to the overall probability distribution. With-
out any prior knowledge, the categorical distribution
is fixed to be uniform.

2.3 Modelling gene expression count data
Instead of normalising and transforming the gene ex-
pression data, the original transcript counts are mod-
elled directly to take into account the total amount of
genes expressed in each cell also called the sequenc-
ing depth. To model count data the likelihood func-
tion pθ(x | z) will need to be discrete and only have
non-negative support. As described earlier, parame-
ters for these probability distributions are modelled
using deep neural networks that takes the latent vec-
tor z as input. We will consider a number of such dis-
tributions in the following and investigate which ones
are best in term of likelihood on held-out data.

Our first approach to model the likelihood func-
tion uses either the Poisson or negative binomial
(NB) distributions. The Poisson distribution provides
the simplest distribution naturally handling count
data, whereas the negative binomial distribution cor-
responds well with the over-dispersed nature of gene
expression data (Oshlack et al., 2010). To properly
handle the sparsity of the scRNA-seq data (Vallejos
et al., 2017), we test two approaches: a zero-inflated
distribution and modelling of low counts using a dis-
crete distribution. A zero-inflated distribution adds
an additional parameter, which controls the amount
of excessive zeros added to an existing probability dis-
tribution. For the Poisson distribution, fP(x;λ), the
zero-inflated version (ZIP) is defined as

fZIP(x; ρ, λ) =

{
ρ+ (1− ρ)fP(x;λ), x = 0,

(1− ρ)fP(x;λ), x > 0,
(7)

2Detailed in a blog post by Rui Shu: http://ruishu.io/2016/
12/25/gmvae/.
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where ρ is the probability of excessive zeros. The zero-
inflated negative binomial (ZINB) distribution have
an analogous expression.

The so-called piece-wise categorical distribution,
which has been used for demand forecasting (Seeger
et al., 2016), uses a mixture of discrete probabilities
for low counts and a shifted probability distribution
for counts equal to or greater than kmax. The piece-
wise categorical version of the Poisson distribution
(PCP) is

fPCP(x; τ , λ) =

{
τk, x = k, 0 ≤ x < kmax,

τkmaxfP (x− kmax;λ), x ≥ kmax ,

(8)
where τk, k = 0, . . . , kmax − 1, is the probability of a
count being equal to k and τkmax the probability that
the count is kmax or above.

Lastly, we also investigate the so-called constrained
Poisson (CP) distribution (Salakhutdinov and Hinton,
2009) which reparameterises the Poisson to depend
explicitly on the sequencing depth Dm of cell m. For
the constrained Poisson distribution, the rate param-
eter λmn for gene n in cell m is

λmn = Dmpmn , (9)

where pmn is constrained to be a probability distri-
bution for each cell: pmn ≥ 0 and

∑
n pmn = 1. This

construction ensures the rates are set such that the ex-
pected number of counts are equal to the sequencing
depth while we can still model each gene by a Poisson
distribution.

Since we do not know the true conditioning struc-
ture of the genes, we make the simplifying assumption
that they are independent for computational reasons
and therefore use feed-forward neural networks.

2.4 Variational auto-encoders
In order to train our deep generative models, we
will use the variational auto-encoder framework which
amounts to replacing the intractable marginal likeli-
hood with its variational lower bound and estimate
the intractable integrals with low-variance Monte
Carlo estimates. The lower bound is maximised for
the training set and then evaluated on a test set in
order to perform model comparison.

Since the likelihood function pθ(x | z) is modelled
using non-linear transformations, the posterior prob-
ability distribution pθ(z |x) = pθ(x | z)pθ(z)/pθ(x)
becomes intractable. Variational auto-encoders use a
variational Bayesian approach where pθ(z |x) is re-
placed by an approximate probability distribution
qφ(z |x) modelled using non-linear transformations
parameterised by φ. Thus, the marginal log-likelihood
can be written as

log pθ(x) = KL(qφ(z |x) ‖ pθ(z |x)) + L(θ,φ;x).
(10)

Here, the first term is the Kullback–Leibler (KL) di-
vergence between the true and the approximate pos-
terior distributions. L(θ,φ) can be rewritten as

L(θ,φ;x) = Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x) ‖ pθ(z)),
(11)

where the first term is the expected negative recon-
struction error quantifying how well the model can
reconstruct x, and the second term is the relative KL
divergence between the approximate posterior distri-
bution qφ(z|x) and the prior distribution pθ(z) of z.

Evaluating Equation (10) is intractable due to the
appearance of the intractable true posterior distribu-
tion. However, as the KL divergence is non-negative,
Equation (11) provides a lower bound on the marginal,
e.g., log pθ(x) ≥ L(θ,φ;x). The integrals over z in
Equation (11) are still analytically intractable, but
a low-variance estimator can be constructed using
Monte Carlo integration as mentioned above.

For the standard VAE, the approximate posterior
distribution is chosen to be a multivariate Gaussian
distribution with a diagonal covariance matrix:

qφ(z |x) = N (z;µφ(x),σ2
φ(x)I), (12)

where µφ(x) and σ2
φ(x) are non-linear transforma-

tions of x parameterised by a neural network with pa-
rameters φ in a similar fashion as Equation (4) is used
to parameterise the generative model. Equation (12)
is called the inference model, and it is illustrated in
Figure 1B together with the inference model for the
GMVAE, which is described in Supplementary Sec-
tion S1.

The parameters of the generative and inference
models are optimised simultaneously using a stochas-
tic gradient descent algorithm. The reparameterisa-
tion trick for sampling from qφ(z |x) allows back-
propagation of the gradients end-to-end (Kingma and
Welling, 2013). We use a warm-up scheme during op-
timisation as described in the Supplementary Sec-
tion S2, and we report the marginal log-likelihood
lower bound averaged over all examples. The VAE re-
construction of x is defined as the mean of the expres-
sion values using a stochastic encoding and decoding
step: x̃ =

∫ ∑
x′ x′p(x′ | z)q(z |x)dz. The variance of

the reconstruction can also be computed in a similar
fashion.

2.5 Clustering and visualisation of the latent
space

The aim of using a VAE is to capture the joint dis-
tribution of multivariate data such as gene expres-
sion profiles. Since our method is likelihood-based,
model comparison can be performed by evaluating the
marginal log-likelihood (lower bound) on a test set
for different models. For model comparison with non-
likelihood-based methods or methods that preprocess
the data, we need other metrics such as a clustering
quality. For latent variable methods, clustering in the
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latent space is the most obvious approach. Therefore,
we do this as well.

The categorical latent variable used in the GMVAE
model gives a built-in clustering by using as assign-
ment the mixing coefficient with the highest respon-
sibility qφ(y|x). The responsibilities are computed as
part of the inference network as described in Supple-
mentary Section S1. The standard VAE model does
not have this feature built in, so instead k-means clus-
tering (kM) is used to cluster the latent representa-
tions of the cells for this model. We also test k-means
clustering for the GMVAE model.

We use two clustering metrics to measure the simi-
larity between a clustering found by one of our mod-
els and the clustering given in the data set. These are
the adjusted Rand index (Hubert and Arabie, 1985),
Radj, and adjusted mutual information (AMI; Vinh
et al. (2009)). For both metrics, two identical cluster-
ings have a value of 1, while the expected value of the
metrics is 0 (they are not bounded below).

To visualise the latent space in which the latent
representations reside, the mean values of the approx-
imate posterior distribution qφ(z|x) are plotted in-
stead of the samples. This is done to better get a
representation of the probability distribution for the
latent representation of each cell. For the standard
VAE, this is just z̄ = µφ(x), and for the GMVAE,
z̄ = Ey

[
µφ(x, y)

]
. For latent spaces with only two

dimensions, we plot these directly, but to visualise
higher dimensional latent spaces, we project to two di-
mensions using t-distributed stochastic neighbour em-
beddings (t-SNE; van der Maaten and Hinton, 2008).

2.6 RNA-seq data sets
We model four different RNA-seq data sets as sum-
marised in Table 1. The first data set is of single-cell
gene expression counts of peripheral blood mononu-
clear cells (PBMC) used for generation of reference
transcriptome profiles (Zheng et al., 2017). It is com-
bined from nine separate data sets of different purified
cell types and published by 10x Genomics3, and we use
the filtered gene–cell matrices for each data set. An-
other data set of purified monocytes is also available,
but since another cell type was discovered in this data
set (Zheng et al., 2017), and since no separation of the
two is available in the data set, we only use the other
nine data sets, which are listed in Table 1. This table
also shows the high degree of sparsity of the data set.

The second data set is a bulk RNA-seq data set
made publicly available by TCGA (Weinstein et al.,
2013).4 This data set consists of RSEM (Li and
Dewey, 2011) expected gene expression counts for

3Available online at https://support.10xgenomics.com/
single-cell-gene-expression/datasets/ (under “Single
Cell 3′ Paper: Zheng et al. 2017”).

4Available online at https://xenabrowser.net/datapages/
?dataset=tcga_gene_expected_count&host=https:
//toil.xenahubs.net.

Table 1. Overview of gene expression data sets.

Data set Examples Features Classes Sparsity

PBMC 92 043 32 738 9a 0.980
MBC 1 306 127 27 998 — 0.928
TCGA 10 830 58 581 29 0.525
GTEx 11 688 54 271 53 0.472
a CD19+ B cells, CD34+ cells, CD4+ helper T cells,
CD4+/CD25+ regulatory T cells, CD4+/CD45RA+/CD25-
naïve T cells, CD4+/CD45RO+ memory T cells, CD56+ nat-
ural killer cells, CD8+ cytotoxic T cells, CD8+/CD45RA+
naïve cytotoxic T cells.

samples of human cancer cells from 29 tissue sites.
Gene IDs are used in this data set, so the available
mapping from TCGA is used to map the IDs to gene
names. The difference in number of genes and sparsity
from the original data set is not large. The two remain-
ing data sets are described, modelled, and analysed in
Supplementary Sections S4–5.

2.7 Experiment setup
Each data set is divided into training, validation, and
test sets using a 81 %–9 %–10 % split with uniformly
random selection. The training sets are used to train
the models, the validation sets are used for hyperpa-
rameter selection during training, and the test sets are
used to evaluate the models after training.

For the deep neural networks, we examine differ-
ent network architectures to find the optimal one for
each data set. We test deep neural networks of both
one and two hidden layers with 100, 250, 500, or 1000
units each. We also experiment with a latent space of
both 10, 25, 50, and 100 dimensions. A standard VAE
with the negative binomial distribution as the likeli-
hood function (a VAE-NB model) is used for these
experiments. Using the optimal architecture, we test
the link functions introduced in Section 2.3 as likeli-
hood function for both the standard VAE as well as
the GMVAE. We train and evaluate each model three
times for each likelihood function.

The hidden units in the deep neural networks use
the rectifier function as their non-linear transforma-
tion. For real, positive parameters (λ for the Poisson
distribution, r for the negative binomial distribution,
σ in the Gaussian distribution), we model the natu-
ral logarithm of the parameter. For the standard de-
viation σ in the Gaussian-mixture model, however,
we use the softplus function, log(1 + ex), to constrain
the possible covariance matrices to be only positive-
definite. The units modelling the probability parame-
ters in the negative binomial distribution, p, and the
zero-inflated distributions, πk, use the sigmoid func-
tion, while for the categorical distributions in the con-
strained Poisson distribution, the piece-wise categori-
cal distributions, as well as for the Gaussian-mixture
model, the probabilities are given as logits with lin-
ear functions, which can be evaluated as probabilities

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 2, 2019. ; https://doi.org/10.1101/318295doi: bioRxiv preprint 

https://support.10xgenomics.com/single-cell-gene-expression/data sets/
https://support.10xgenomics.com/single-cell-gene-expression/data sets/
https://xenabrowser.net/datapages/?data set=tcga_gene_expected_count&host=https://toil.xenahubs.net
https://xenabrowser.net/datapages/?data set=tcga_gene_expected_count&host=https://toil.xenahubs.net
https://xenabrowser.net/datapages/?data set=tcga_gene_expected_count&host=https://toil.xenahubs.net
https://doi.org/10.1101/318295
http://creativecommons.org/licenses/by-nc-nd/4.0/


using the softmax normalisation. Additionally for the
piece-wise categorical distributions, we choose the cut-
offK to be 4, since this strikes a good balance between
the number of low and high counts for all examined
data sets (see Supplementary Fig. S1 for an example
of this). For the k-means clustering and the GMVAE
model, the number of clusters is chosen to be equal to
the number of classes, if cell types were provided.

The models are trained using one Monte Carlo sam-
ple for each example and using the Adam optimisation
algorithm (Kingma and Ba, 2014) with a mini-batch
size of 100 and a learning rate of 10−4. Additionally,
we use batch normalisation (Ioffe and Szegedy, 2015)
to improve convergence speed of the optimisation. We
train all models for 500 epochs and use early stop-
ping with the validation marginal log-likelihood lower
bound to select parameters θ and φ. We also use the
warm-up optimisation scheme for 200 epochs for VAE
and GMVAE models exhibiting overregularisation. To
test whether the non-linearities in the neural network
contributes to a better performance, we also run our
models without hidden layers in the generative pro-
cess. This corresponds to factor analysis (FA) with
a generalised linear model link function. The optimal
network architecture for the inference process is found
in the same way as for the VAE models, and we simi-
larly cluster the latent space using k-means clustering.
In addition, we investigate the performance of a base-
line linear (link) factor analysis (LFA). LFA assumes
continuous data, so we first normalise the read counts
using the counts-per-million method (Law et al., 2014)
and then apply log transformation to one plus the read
count. We use a 25-dimensional Gaussian latent vari-
able vector and cluster the latent space using k-means
clustering. Both LFA and k-means clustering are per-
formed using scikit-learn (Pedregosa et al., 2011).

We compare our best-performing models with Seu-
rat, scvis, and scVI for the PBMC data set. Seurat
have in turn been compared to several other single-cell
clustering methods (Duò et al., 2018). Since Seurat
uses the full data set, to make a fair comparison, we
also train our best-performing models on the full data
set. Because scvis is a visualisation method, we com-
pare our models to it visually. In addition, we train
our best-performing models using only two latent vari-
ables to visualise the latent space without using t-
SNE. scVI is evaluated on the original counts similar
to our method, so we can compare the test marginal
log-likelihood lower bounds directly. We also perform
k-means clustering on the latent space of scvis and
scVI and compute the adjusted Rand indices of these
clusterings to compare them with our method.

2.8 Software implementation
The models described above have been implemented
in Python using the machine-learning software library
TensorFlow (Abadi et al., 2015) in an open-source
and platform-independent software tool called scVAE

(single-cell variational auto-encoders), and the source
code is freely available online5 along with a user guide
and examples. The RNA-seq data sets presented in
Section 2.6 along with others are easily accessed us-
ing our tool. It also has extensive support for sparse
data sets and can thus be used on the largest data sets
currently available as demonstrated in Supplementary
Section S4.

3 Results
Both the standard VAE and the GMVAE have been
used to model both single-cell and bulk RNA-seq data
sets (see Supplementary Sections S4–S5 for more).
The performance of different likelihood functions have
been investigated, and the latent spaces of the models
have been examined.

3.1 scRNA-seq data of purified immune cells
We first modelled the scRNA-seq data set of gene
expression counts for peripheral blood mononuclear
cells (PBMC; Zheng et al., 2017). To assess the opti-
mal network architectures for these data sets, we first
trained VAE-NB models with different network ar-
chitecture as mentioned in Section 2.7 on the data
set with all genes included. This was carried out as
a grid search of number of hidden units and latent
dimensions (Supplementary Fig. S2). We found that
using two smaller hidden layers (of 100 units each) in
the generative and inference processes yielded better
results than only using one hidden layer, and a high-
dimensional latent space of 100 dimensions resulted in
the highest test marginal log-likelihood lower bound.
A similar network architecture grid search were car-
ried out using FA-NB models, and the optimal archi-
tecture was two large hidden networks of 1000 units
each with a latent space of only 25 dimensions.

With these network architectures, different dis-
crete likelihood functions were examined for the VAE,
GMVAE, and FA models. The mean marginal log-
likelihood lower bound and the mean adjusted Rand
index for each model and likelihood function evalu-
ated on the test set are plotted against each other in
Figure 2 for a subset of model/link function combi-
nations (see Supplementary Fig. S3 for the complete
version). From this figure, it is clear that using a GM-
VAE model with the negative binomial distribution
yielded the highest lower bound as well as the highest
Rand index, with the zero-inflated Poisson distribu-
tion as the next best. For each likelihood function, the
GMVAE model yielded the highest lower bound, and
in most cases, the distribution-based clustering of the
GMVAE model outperforms k-means clustering in the
latent space of the same model or of the other models
on average. All scVAE models outperform the LFA
baseline model. This shows that complex non-linear

5https://github.com/scvae/scvae.
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models really makes a difference for the marginal log-
likelihood of the data. It should be noted, however,
that there does not seem to be a strong positive cor-
relation between Rand index and marginal likelihood
lower bound. Similar conclusions are obtained using
adjusted mutual information. The latent space of the
GMVAE-NB model for the test set of the PBMC data
set can be seen in Figure 3 (see Supplementary Fig. S4
for a larger version), which shows different clusters
corresponding to distinct cell types, while more similar
cell types are clustered close to each other or mixed to-
gether. In particular, cells cluster into well-known dis-
tinct immune cell populations: B cells, CD34+ cells,
natural killer cells, and T cell sub-populations. Cyto-
toxic T cells, which express CD8, cluster together, and
T cells expressing CD4 group together, while memory
T cells, which can express both, are in a cluster be-
tween the two. Within the two CD4+ and CD8+ clus-
ters, naïve and either regulatory or vanilla cells, re-
spectively, form distinguishable groupings. Addition-
ally, in the former cluster, helper T cells are mixed
in with these two cell types, which makes sense, since
their subtypes can express the same genes as either
one.

Furthermore, cells for several cell types seem to be
split into subtypes, which could both be a biological
and a batch effect. There is more overlap of the cell
types in the latent spaces for the VAE-NB, FA-NB,
and LFA models (Supplementary Fig. S5–7). It is also
possible to visualise what each latent dimension en-
code about the cells by looking at how cell types are
correlated with a given latent dimension (an example
is shown in Supplementary Fig. S8). Finally, for the
GMVAE model we investigated whether we could use
the test marginal log-likelihood lower bound to iden-
tify the number of components. The result of scanning
the number of components K from 5 to 13 is shown in
Supplementary Fig. S9. The optimal value was found
to be K = 9, which is the number of cell types in the
data set.

The PBMC data set has also been analysed using
Seurat at different resolutions (see Supplementary Ta-
ble S1), and the highest adjusted Rand index obtained
was Radj = 0.634 at a resolution of 0.2. This yields
nine clusters, which is also the number of cell types in
the data set. This performance of Seurat have been in-
cluded in Figure 2, and even though Seurat is trained
on the full data set, two of the GMVAE models (using
withheld data) perform better on average. A GMVAE-
NB model was also trained on the full data set. This
resulted in a lower bound of L = −2046.0± 0.4 and a
Rand index of Radj = 0.656± 0.039 (see Supplemen-
tary Fig. S10 for its latent space), which is better than
the best Rand index obtained using Seurat. In the la-
tent space, we again find that the cells are clustered
and arranged according to which CD molecule they
express, and it also looks like some cells are clustered
together in subtypes.

We also trained a scvis model with standard pa-

Fig. 2. Comparison of VAE and GMVAE models with
different likelihood functions trained and evaluated on the
PBMC data set. For each combination the mean and the
standard deviation of the adjusted Rand index are plotted
against the marginal log-likelihood lower bound. These are
compared to scVI and on the adjusted rand index only: LFA,
Seurat (trained and evaluated on the full data set) and scvis.

Fig. 3. Latent space of the median-performing GMVAE-NB
model trained and evaluated on the PBMC data set. The
encoding of the cells in the latent space has been embedded
in two dimensions using t-SNE and are colour-coded using
their cell types. Clear separation corresponding to different
cell types can be seen, but some similar cell types are also
clustered close together or mixing together.
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rameters as well as a GMVAE-NB model with a 2-d
latent variable on the PBMC data set (see Supple-
mentary Fig. S11 for their latent spaces). Compar-
ing the latent space of the two models, both mod-
els succeed in separating out cells with dissimilar cell
types, while struggling with cells of similar cell type,
but the scvis model handles it better. This 2-d-latent-
variable GMVAE-NB also has both a worse lower
bound of L = −2103.7± 1.3 and a worse Rand index
of Radj = 0.420± 0.014 compared to the GMVAE-NB
using the optimal architecture, but comparable to the
scvis, which has a Rand index of Radj = 0.436± 0.009
shown in Figure 2. The t-SNE of the latent space of
this model also has a much better separation of the
cells than the latent space of the scvis model.

Finally, we compared our method to scVI and
the resulting mean lower bound and Rand index are
shown in Figure 2. As can be seen from this fig-
ure, scVI significantly outperforms our models on the
lower bound and are comparable to the standard VAE
models in Rand index, but both comparable GMVAE
models (with negative binomial distributions) are sig-
nificantly better in ARI. Looking at the latent space of
the scVI model (Supplementary Fig. S12), it is clear
that the GMVAE model achieve more separation of
the cells, especially of the T cells.

3.2 Bulk RNA-seq data of human cancer cells
The bulk RNA-seq data set of RSEM expected gene
expression levels for human cancer cell samples from
TCGA (Weinstein et al., 2013) was also modelled.
On a GPU with 12 GB of memory, we cannot model
the data set using all genes with the optimal net-
work architecture. Since the majority of the variance
is captured in the 5000–10 000 most varying genes,
we choose to limit the number of genes to 5000. As
with the previous data set, different network architec-
tures (Supplementary Fig. S13) and likelihood func-
tions (Supplementary Fig. S14) were investigated for
the VAE, GMVAE, and FA models. There is a clear
difference in marginal log-likelihood lower bound be-
tween using either of the negative binomial distribu-
tions from any of the Poisson distributions, but for
each likelihood function, the GMVAE model yielded
the highest lower bound. k-means clustering on the
VAE and GMVAE latent spaces for all likelihood func-
tions resulted in the best adjusted Rand indices in
general with the best one being for the GMVAE-P-
kM model. Contrary to the sparse single cell data
sets, for the TCGA data set only small performance
gains were observed compared to the LFA baseline
model. The latent space of the GMVAE-NB model
for the test set of the TCGA data set (Supplementary
Fig. S15) show that samples belonging to different tis-
sue sites are clearly separated. The latent spaces of the
VAE-NB, FA-NB, and LFA models look quite similar
despite the difference in Rand index (Supplementary
Fig. S16–18).

4 Discussion
We have shown that variational auto-encoders (VAEs)
can be used to model single-cell and bulk RNA-seq
data. The Gaussian-mixture VAE (GMVAE) model
achieves higher marginal log-likelihood lower bounds
on all data sets as well as a higher Rand indices for
the PBMC data set compared to corresponding stan-
dard VAE, factor analysis (FA) and LFA models. The
latent spaces for the GMVAE also showed the clearest
separation according to cell type. Its built-in cluster-
ing helps the GMVAE achieve this.

In general we only find a weak correlation between
test log marginal likelihood lower bound and Rand
indices. Since likelihood is a measure of how well we
are able to capture the multivariate transcript dis-
tribution and Rand index is a measure of alignment
with predefined cell types the weak correlation simply
implies that the are other important sources of varia-
tion in the data not directly related to cell type. Fac-
tor models (for count data and linear for transformed
data) lead to significantly worse lower bounds, demon-
strating that non-linear transformations can more eas-
ily express more subtle co-variation patterns in the
data sets. We found that the negative binomial distri-
bution modelled most data sets for most models the
best, and that it was a close second to its zero-inflated
version in the remaining cases. So explicit modelling
of zero counts seems not be necessary. For much less
sparse bulk RNA-seq dataset (TCGA), the advantage
of working with the more advanced models were less
pronounced. This might be explained by the diversity
within each data sample and lesser need for accurately
dealing with low and zero expression.

In modelling four different data sets, we have found
the following guidelines help in achieving a higher
marginal log-likelihood lower bound score on a data
set. The network architecture should adapt to the data
set: Use a large network when there are more cells
and/or more cell types in the data set and when the
data is less sparse. The models for all data sets also
benefited from deeper network architectures. If the
optimal network architecture is too large for compu-
tation, one can limit the number of genes to the most
varying genes.6 For the likelihood function, try using
the negative binomial distribution (or its zero-inflated
version) first. In addition, the warm-up optimisation
scheme proved valuable in avoiding overregularisation
when modelling the scRNA-seq data sets.

Compared to Seurat (Satija et al., 2015) the
GMVAE-NB model achieved a higher adjusted Rand
index on average for the PBMC data set. This was
achieved working directly on the transcript counts
with no preprocessing of the data. With variational
auto-encoders being generative models, they can also
model unseen data (test set or new data), whereas
Seurat cannot. By modelling the cells with the GM-

6We did this for the bulk RNA-seq data set, and the optimal
network architecture stayed the same.
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VAE model using the optimal configuration and then
visualising the latent space using t-SNE, we also
achieve a better visual representation of cells than
the scvis model (Ding et al., 2018). Even though the
scVI model (Lopez et al., 2018) achieves a better test
marginal log-likelihood lower bound than any of our
models on the PBMC data set, corresponding GM-
VAE models still obtain latent spaces with more sepa-
rate groupings. In Supplementary Section S4, we also
showed that our method can scale up to very large
data sets like the data set of 1.3 million mouse brain
cells from 10x Genomics.

5 Summary and conclusion
We show that two variations of the variational auto-
encoder are able to model gene expression counts us-
ing appropriate discrete probability distribution as
likelihood (link) functions and provide a software im-
plementation. These models are probabilistic and put
a lower bound on the marginal likelihood of the data
sets, enabling us to perform likelihood-based model
comparison. We have applied both models success-
fully to single-cell and – to a lesser degree – bulk
RNA-seq data sets, and the GMVAE model achieves
better clustering and representation of the cells than
Seurat, scvis, scVI, and a baseline method using size-
factor normalisation and log transformation, linear
factor analysis, and k-means clustering. However, scVI
achieves a better bound for the likelihood, which
might be attributed to including the sequencing depth
as a latent variable in the scVI model. Building clus-
tering into the Gaussian-mixture variational auto-
encoder, we have a model that can cluster cells into
cell populations without the need of a pipeline with
several parameter selection steps. Having both an in-
ference process and a generative process, makes it pos-
sible to project new data onto an existing latent space,
or even simulate new data from samples in the latent
space. This means that new cells can be introduced to
an already trained model, and it could enable combin-
ing the latent representations of two cells to generate a
cell and the transitional states in-between. In the scVI
model, a zero-inflated negative binomial distribution
is used. We observe that using a negative binomial
distribution overall is a better model for our method.
As in Lopez et al. (2018), we also provide batch cor-
rection within our framework.

As for future extensions we would also like to make
the models more flexible by adding more latent vari-
able layers (Sønderby et al., 2016) and make the mod-
els learn the number of clusters (Rasmussen, 2000)
rather than setting it a priori. We could also use semi-
supervised learning and active learning to better clas-
sify cells and identify cell populations and associated
response variables. This would also help with transfer
learning enabling modelling multiple data sets with
the same model. As mentioned above, it should also
be possible to combine encodings of the cells in the

latent space and produce in-between cells like Lotfol-
lahi et al. (2018). We would also like to extent our
investigation of what dimensions of the latent vari-
ables encode (Kinalis et al., 2019). We note that it is
possible to apply these models to data sets with multi-
ple modalities such as RNA-seq and exome sequencing
(Brouwer and Lió, 2017).
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