
1

1

2

3

4

5

6 ANALYZING DWELL TIMES WITH THE 
7 GENERALIZED METHOD OF MOMENTS 
8

9

10 Sadie Piatt, Allen C. Price*

11

12 Department of Chemistry and Physics, Emmanuel College, Boston, MA, USA

13

14 * Corresponding author

15 E-mail: priceal@emmanuel.edu (ACP)

16

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/318717doi: bioRxiv preprint 

https://doi.org/10.1101/318717
http://creativecommons.org/licenses/by/4.0/


2

18 Abstract

19 The Generalized Method of Moments (GMM) is a statistical method for the analysis of 

20 samples from random processes.  First developed for the analysis of econometric data, the method 

21 is here formulated to extract hidden kinetic parameters from measurements of single molecule 

22 dwell times.  Our method is based on the analysis of cumulants of the measured dwell times.  We 

23 develop a general form of an objective function whose minimization can return estimates of decay 

24 parameters for any number of intermediates directly from the data.  We test the performance of 

25 our technique using both simulated and experimental data.  We also compare the performance of 

26 our method to nonlinear least-squares minimization (NL-LSQM), a commonly-used technique for 

27 analysis of single molecule dwell times.  Our findings indicate that the GMM performs comparably 

28 to NL-LSQM over most of the parameter range we explore.  It offers some benefits compared with 

29 NL-LSQM in that it does not require binning,  exhibits slightly lower bias and variance with small 

30 sample sizes (N<20), and is somewhat superior in identifying fast decay times with these same 

31 low count data sets.  Our results show that the GMM can be a useful tool and complements standard 

32 approaches to analysis of single molecule dwell times.

33

34 Introduction

35 A fundamental challenge in analysis of single molecule dwell times is the determination of 

36 the correct model to explain observations.  Methods that have been developed to address this 

37 fundamental problem include Bayesian inference (1) and maximum likelihood (2), as well as the 

38 more common nonlinear least-squares minimization approach (3).  Typically, models depend on 

39 unknown parameters which are not experimentally accessible.  Methods are distinguished by the 
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40 manner in which these hidden parameters are estimated.  In this work, we develop and characterize 

41 the use of the Generalized Method of Moments.  This method is a statistical estimation method 

42 originally developed in econometrics (4).  

43 Single molecule methods generate high resolution quantitative data on biomolecular 

44 mechanisms.  The advantages of single molecule experiments include identification of rare 

45 intermediates and solution of the “dephasing” problem (5).  In techniques such as single molecule 

46 fluorescence, a change in signal level can indicate a state transition.  Other methods, such as 

47 particle tracking using micro-beads, can also yield data on single molecule state transitions (6).  In 

48 general, the determination of how many states are present and how long the molecule dwells in 

49 each state can be challenging, and several methods have been developed to deal with this problem 

50 (7, 8).  Here, we do not treat this problem, but address the problem of the statistical analysis of the 

51 dwell times independent of the method in which they are determined.  Analysis of the dwell times 

52 is a key step in data interpretation and yields statistics on molecular transitions, thus providing data 

53 to test competing mechanistic models.  The most common method of analysis, nonlinear least-

54 squares minimization (NL-LSQM), is known to produce biased and non-normally-distributed 

55 estimates of the model parameters (3).

56 The Generalized Method of Moments (GMM) is a powerful statistical method for analysis 

57 of samples of random processes.  From its original application in the modeling of capital asset 

58 pricing (4), its use has grown to make it one of the central methods of econometric analysis (9).  

59 In spite of its broad applicability, its use in the natural sciences has been quite limited, although it 

60 has been applied recently to the analysis of simulated stochastic chemical reaction networks (10).  

61 In the GMM, the population moments of a random variable, as calculated from a suitable model, 

62 are compared to the sample moments as calculated from the measured data.  Estimates of hidden 
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63 parameters are determined via minimization of an objective function which quantifies the 

64 disagreement between the population and sample moments (9).  The GMM is a general framework 

65 that can accommodate a wide range of models and data types.  Furthermore, in the limit of a large 

66 number of samples, the GMM produces normally-distributed and unbiased estimates (4).  In the 

67 method, multiple moments can be considered, each moment resulting in a constraint on the 

68 parameters of the model.  In the case of under-constrained systems (number of moments less than 

69 number of parameters), non-unique solutions exist.  When the number of moments is equal to the 

70 number of parameters, a unique set of estimates for the parameters can be determined (assuming 

71 a real solution exists).  This exactly-determined system is often referred to as the Classical Method 

72 of Moments (CMM).  In the case of an over-constrained system (number of moments greater than 

73 the number of parameters), only an approximate solution can be found in general.  The GMM is a 

74 framework in which all such cases can be handled.

75 In this work, we develop the application of the GMM to the analysis of single molecule 

76 dwell times.  We present a general method that can be used to create objective functions applicable 

77 to single molecule reactions.  We characterize the performance of our method by testing it on 

78 simulated data.  We simulate several common reaction schemes, including single, double, and 

79 triple step reactions.  We have characterized the bias and dispersion of the estimates generated by 

80 our method and compared these to the most common alternative method of analysis, NL-LSQM.  

81 Additionally, we have collected experimental data on site-specific DNA cleavage by the restriction 

82 endonuclease NdeI and analyzed the measured dwell times using our method.  

83

84 Theory
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85 Motivation

86 More detailed reviews of the GMM can be found in the literature (9).  Here, we review the 

87 essentials necessary to understand our work.  As motivation, we consider a system with two hidden 

88 parameters, a and b, that define a probability density p(t;a,b) for a random variable t.  Define 𝑚1

89  and , where the angular brackets indicate the population mean (𝑎,𝑏) = 〈𝑡〉 𝑚2(𝑎,𝑏) = 〈(𝑡 ‒ 〈𝑡〉)2〉

90 (also known as the expectation value).  The population mean of any function  is here defined 𝑓(𝑡)

91 as

92  . (1)〈𝑓(𝑡) 〉 = ∫𝑑𝑡𝑝(𝑡;𝑎,𝑏)𝑓(𝑡)

93 Note that in Eq. 1, the population mean has an implicit dependence on the parameters a and b.

94 These two functions  and  are simply the population mean and variance of the 𝑚1(𝑎,𝑏) 𝑚2(𝑎,𝑏)

95 random variable t.  Now, let t be a T-dimensional vector whose elements are samples of the random 

96 variable t.  In this paper, variables in italics represent real numbers and variables in bold represent 

97 vectors.  The moment functions

98 (2)𝑔1(𝑎,𝑏,𝐭,𝑇) = 𝑚1(𝑎,𝑏) ‒
1
𝑇∑𝑇

𝑖 = 1𝑡𝑖

99 and

100 (3)𝑔2(𝑎,𝑏,𝐭,𝑇) = 𝑚2(𝑎,𝑏) ‒
1

𝑇 ‒ 1∑𝑇
𝑖 = 1(𝑡𝑖 ‒

1
𝑇∑𝑇

𝑖 = 1𝑡𝑖)2

101 both express the difference between a population moment (first term on the right hand side) and a 

102 sample moment (second term on the right hand side).  Notice that the unbiased estimator is used 

103 for the variance (Eq. 3).  If sample moments give good estimates, then we expect the values on the 

104 right hand sides of Eqs. 2 and 3 to be very small for the true values of a and b.  A reasonable 

105 method would be to set the right hand side equal to zero and solve for a and b.  This method of 

106 generating M moment equations for M parameters (in this case M = 2) is the Classical Method of 
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107 Moments (CMM).  There are limitations.  There may not be real solutions to the equations.  

108 Additionally, there may be multiple conditions, i.e., moment equations that should be satisfied. In 

109 this case, the number of equations may exceed the number of parameters (the over-constrained 

110 case), producing an overconstrained system of equations that may have no solution.

111

112 General formulation of the GMM

113 The GMM is a general framework for solving the problems identified in the previous 

114 section.  In the following derivation, we assume a single random variable.  This case generalizes 

115 in a straightforward manner to include multi-variate random processes.  In our derivation, we 

116 assume a probability density for the random variable.  It is not strictly necessary that the functional 

117 form of the probability density is known.  As we will show, our application can be used to 

118 determine the moments of the distribution without knowing the density.  In practice, to relate the 

119 moments to questions such as “how many steps are needed to explain this data?” one needs a 

120 functional form of the density.  Therefore, a single application of this method cannot by itself 

121 answer the question “which is the best model to describe this system?”  However, comparison of 

122 analyses using different models can help with this important problem, as we will show later in this 

123 work.

124 To start, we assume the probability density is a function of the random variable t as well 

125 as of N parameters  and will be written as p(t; ).  Note that  has dimension N.  We will also 

126 need the joint probability density for multiple independent samples.  If we assume there are T 

127 samples, this is

128  . (4)𝑃(𝐭;𝛌,𝑇) = ∏𝑇
𝑖 = 1𝑝(𝑡𝑖;𝛌)

129 We also need the expectation value of a function of t.  This is defined (analogously to Eq. 1) as
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130 . (5)〈𝑓(𝛌,𝐭,𝑇) 〉 = ∫𝑑𝐭𝑃(𝐭;𝛌,𝑇)𝑓(𝛌,𝐭,𝑇)

131 In Eq. 5, the possible dependence on  and T has been explicitly included.

132 In order to determine a GMM estimate of the parameters from a given sample, we start 

133 with a set of functions, termed generalized moments, such that the expectation value of these 

134 functions is zero.  That is, we need a set of M functions  such that .𝑔𝑚(𝛌,𝐭,𝑇) 〈𝑔𝑚(𝛌,𝐭,𝑇) 〉 = 0 

135 In practice, it is these functions we must assume, not the probability density.  However, if we know 

136 the probability density, it is straightforward to determine the generalize moments.  The index m 

137 can assume any value from 1 up to M (the maximum number of moments considered).  In general, 

138 we may have more moment conditions than parameters (M > N), and therefore we can only look 

139 for approximate solutions.  To do this, the following objective function is minimized with respect 

140 to the variables ,

141 . (6)     𝑄(𝛌,𝐭,𝑇) = ∑𝑀
𝑚 = 1

∑𝑀
𝑚' = 1𝑊𝑚,𝑚'(𝛌,𝐭,𝑇) 𝑔𝑚(𝛌,𝐭,𝑇) 𝑔𝑚'(𝛌,𝐭,𝑇)

142 The matrix Wm,m’ is a positive definite weight matrix which in general can depend on the 

143 parameters  as well as on t and T.  The final GMM estimates of the parameters can then be written 

144 as

145 . (7)λ(𝐭,𝑇) = arg min
'

 𝑄(𝛌',𝐭,𝑇)

146 Note that the value of the estimate depends not only on the samples t and sample size T, but also 

147 on the choice of weight matrix Wm,m’ .

148 When the number of moment conditions M is less than the number of parameters N, this 

149 problem is underspecified, and the function Q does not have a unique minimum.  If the number of 

150 moment conditions is equal to the number of parameters, the system is “just specified,” and, in 

151 general, the GMM will give identical estimates as the CMM.  This latter point follows since Wm,m’ 

152 is positive definite and therefore Q  0.  Since the CMM estimates make gm = 0 for all m, we have 
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153 Q = 0 identically and therefore it must be a minimum at that point.  It is important to remember 

154 that this theorem holds only when the CMM estimate exists (i.e., there are real solutions).  Note 

155 that it also follows that the just-specified case will be independent of the weight matrix Wm,m’, as 

156 the CMM does not use that matrix.  In general, for the over-specified case, the GMM estimate does 

157 depend on choice of weight matrix, a problem to which we now turn.

158 In the limit of a large number of samples, the distribution of moments (for fixed 

159 parameters), is expected to be Gaussian as a consequence of the Central Limit Theorem.  In this 

160 case, choosing a weight matrix equal to the inverse of the covariance matrix of the moment 

161 functions will lead (in the limit of a large number of samples) to an unbiased estimate of parameters 

162 with minimal variance (11).  One should remember that, in general, for finite numbers of samples, 

163 the estimate will be biased and not normally-distributed.

164 To see how this is applied, define the following covariance matrix 

165 . (8)     𝑉𝑚,𝑚'(𝛌,𝑇) =  〈𝑔𝑚(𝛌,𝐭,𝑇) 𝑔𝑚'(𝛌,𝐭,𝑇)〉

166 Here, as before, the angular brackets indicate the population mean.  Note that since we integrate 

167 over the random variables, this covariance matrix is not a function of t.  However, it may depend 

168 on sample size, T.  The weight matrix is then the inverse of this matrix:

169   . (9)𝑊𝑚,𝑚' = (𝑉 ‒ 1)𝑚,𝑚'

170 One problem with this approach is that the weight matrix is a function of the parameters .  

171 This complicates the minimization of the objective function, since the values of these parameters 

172 are unknown.  Various practical methods of handling this include (1) using the identity matrix for 

173 Wm,m’ (a simple method for getting an initial solution), (2) using various estimates of the covariance 

174 matrix calculated from the data itself, (3) using multi-step methods where a simple weighting is 

175 used first (often the identity) and then the resulting GMM estimate for the parameters is used to 
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176 recalculate the weights for a second pass, or (4) continuously updating the weight matrix as the 

177 objective function is minimized.  With the exception of the continuously updated weight matrix, 

178 we will evaluate all of these methods in this work.

179

180 Application to single molecule dwell times

181 The reactions considered will be assumed to be of the type shown in Fig 1.  In this figure, 

182 states of the system are represented by letters, and the corresponding mean residence times in each 

183 state are given by A, B, etc.  For the reversible reaction, transition rates are given as k1, k2 and k3.  

184 The observed dwell time is defined as the time it takes the system to enter the final state given that 

185 it starts out in state A.  For the derivation that follows, we will assume all reactions steps are 

186 irreversible.  Since the probability density of the total dwell time for a two step reversible reaction 

187 has the same functional form as that of an irreversible scheme, our derivation is applicable to both 

188 cases.  We will show at the end of this section how to apply our analysis to the reversible two step 

189 reaction.  For more than two steps, the functional form of the probability density for reversible 

190 schemes is more difficult to relate to our method.  We choose to limit ourselves to the irreversible 

191 case for more than two steps for two main reasons.  First, the theoretical form of the cumulants 

192 can be expressed generally and simply, thus allowing a simple and general formulation of a 

193 solution.  Second, testing N-step irreversible reaction schemes against data is an established 

194 method for estimating the number of steps present in experimental data (12, 13), thus allowing for 

195 application of the cumulant based GMM method to address this question. 

196

197 Fig 1.  Reaction schemes.  Each state is represented by a letter and the mean residence time in 

198 that state is τA, τB, etc.  The transition rates in the reversible reaction are given by k1, k2 and k3.
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199

200 The residence time tA in state A in Fig 1 is drawn from a continuous, single-exponential 

201 distribution,

202 , (10)𝑝𝐴(𝑡𝐴;𝜏𝐴) = exp ( ‒
𝑡𝐴

𝜏𝐴)
203 where A is the mean dwell time in state A.  A similar function can be defined for state B, C, etc. 

204 The mean observed dwell time for the system is therefore

205  . (11)〈𝑡〉 =  𝜏𝐴 + 𝜏𝐵 + … + 𝜏𝐸

206 Since each step is independent and exponentially-distributed, the population variance is given by 

207 an analogous formula,

208 . (12)〈𝑡2〉 ‒ 〈𝑡〉2 =  𝜏𝐴
2 + 𝜏𝐵

2 + … + 𝜏𝐸
2

209 In order to formulate a general method for these systems, we would like a formula analogous to 

210 Eq. 12 for higher order moments.  We can find such a generalization with cumulants.  For any 

211 random process which is a sum of independent random processes, the mth order cumulant is merely 

212 the sum of the mth order cumulants of the individual processes.  In this case, if we represent the 

213 cumulant of the total dwell time with (m), then we have

214  . (13)𝜅(𝑚) =  𝜅𝐴
(𝑚) + 𝜅𝐵

(𝑚) + … + 𝜅𝐸
(𝑚)

215 In this equation, A
(m) is the mth order cumulant of step A, etc.  The mth order cumulant for an 

216 exponential distribution is

217 , (14)𝜅𝐴
(𝑚) = (𝑚 ‒ 1)!𝜏𝐴

𝑚

218 which allows us to write the general formula for the cumulants for an N-step irreversible reaction 

219 scheme.

220  . (15)𝜅(𝑚) = (𝑚 ‒ 1)!(𝜏𝑚
𝐴 + 𝜏𝑚

𝐵 + … + 𝜏𝑚
𝐸)
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221 Eq. 15 gives the population cumulants of the reaction scheme shown in Fig 1.  In order to complete 

222 the moment function, we need to calculate unbiased estimates of the cumulants from the measured 

223 samples.  Formulas for unbiased sample cumulants exist and are referred to as k-statistics (14).  In 

224 order to define the k-statistics for this problem, let us first define the mth order central moments.

225  , (16)𝑚1 =
1
𝑇∑𝑇

𝑖 = 1𝑡𝑖

226  . (17)𝑚𝑙 =
1
𝑇∑𝑇

𝑖 = 1(𝑡𝑖 ‒ 𝑚)𝑙,    𝑙 > 1

227 The k-statistics up to order 4 are then

228   , (18)𝑘(1)(𝐭,𝑇) = 𝑚1

229 , (19)𝑘(2)(𝐭,𝑇) =
𝑇

𝑇 ‒ 1𝑚2

230  , (20)𝑘(3)(𝐭,𝑇) =
𝑇2

(𝑇 ‒ 1)(𝑇 ‒ 2)𝑚3

231  . (21)𝑘(4)(𝐭,𝑇) =
𝑇2?

(𝑇 ‒ 1)(𝑇 ‒ 2)(𝑇 ‒ 3)[(𝑇 + 1)𝑚4 ‒ 3(𝑇 ‒ 1)𝑚2
2]

232 The first and second order expressions are the usual definitions of the sample mean and sample 

233 variance in the random variable t.  The third and fourth order expressions are less familiar.

234 We can now state our mth order generalized moment function for the N-step reaction.

235 (22)𝑔𝑚(𝜏𝐴,𝜏𝐵,…, 𝐭,𝑇) = 𝜅(𝑚)(𝜏𝐴,𝜏𝐵,…, 𝜏𝐸) ‒ 𝑘(𝑚)(𝐭,𝑇)

236 In this expression, the population cumulant (m) is given by Eq. 15 above, and the term k(m) is to be 

237 an unbiased estimate of the cumulant as calculated from Eqs. 18 – 21.

238 The GMM is not completely defined until the weight matrix is specified.  We evaluate 

239 several options in this paper.  These include the identity matrix, the inverse of a jackknife estimate 

240 of the covariance matrix, and the inverse of a covariance matrix calculated using a Monte-Carlo 

241 method.  We leave the description of these methods to the Materials and Methods section of this 
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242 paper.  Equations 14, 15, and 16-21 completely define the moment functions used in this study.  

243 They, along with the weight matrix, define the GMM for this problem.

244

245 The case of a reversible two step reaction

246 For a two-step reaction, such as those shown in Fig. 1, the total dwell time can be shown 

247 to obey a probability density of the following form (12),

248 . (23)𝑝(𝑡;𝜏𝐴,𝜏𝐵) = {exp ( ‒ 𝑡/𝜏𝐴) ‒ exp ( ‒ 𝑡/𝜏𝐵)
𝜏𝐴 ‒ 𝜏𝐵

                       𝜏𝐴 ≠ 𝜏𝐵              
𝑡

𝜏2exp ( ‒ 𝑡/𝜏)                        𝜏 = 𝜏𝐴 = 𝜏𝐵

249 In the case of a reversible first step, the decay constants will be equal to

250   . (24)
1

𝜏𝐵/𝐴
=

1
2(𝑘1 + 𝑘2 + 𝑘3) ±

1
4(𝑘1 + 𝑘2 + 𝑘3)2 ‒ 𝑘1𝑘3

251 In this equation, the plus sign applies to B and the minus sign to A.  The GMM described in this 

252 work will determine estimates for the parameters A and B, which can be related to the underlying 

253 rate constants in the reversible reaction model by Eq. 24.

254

255 Materials and methods

256 Simulations and GMM calculations

257 Dwell times were simulated for multistep stochastic reactions by adding samples 

258 individually drawn from exponentially-distributed random processes.  The sets of decay 

259 parameters used were as follows.  For the single step, all trials used a decay time of 10 s.  For the 

260 two-step reaction, decay parameters pairs used were (10 s, 10 s), (10 s, 20 s), (10 s, 50 s) and (10 

261 s, 100 s).  For the three-step reaction, decay parameters sets were (10 s, 10 s, 10 s), (10 s, 10 s, 50 
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262 s), and (10 s, 30 s, 100 s).  For all decay parameter sets, sample sizes used were 5, 10, 20, 50, 100, 

263 200, 500 and 1000.  For each set of parameters and sample size, 1,000 trials were simulated.  For 

264 each trial, unbiased estimates of cumulants were calculated using k-statistics up to 4th order.  

265 Four different weight matrices were evaluated.  These were (1) the identity matrix, (2) a 

266 diagonal matrix with elements equal to the inverse of a jackknife estimate of the variance of the 

267 cumulants, (3) the matrix inverse of a jackknife estimate of the covariance matrix of the cumulants, 

268 and (4) the inverse of an interpolated covariance matrix.  All jackknife estimates were determined 

269 from a single trial in the following manner.  First, N subtrials were created by sequentially 

270 removing each sample from the trial (resulting in N subtrials of N-1 samples each).  Then, these 

271 N subtrials were used to calculate N distinct estimates of the cumulants.  Finally, the variance or 

272 covariance was calculated from these estimated cumulants and the result was scaled by (N-1)/N.  

273 The interpolated covariance was calculated by linear interpolation from a set of previously-

274 calculated covariance matrices.  These previously-determined matrices were calculated using a 

275 Monte Carlo (MC) method for a wide range of values of N (sample size) and decay parameters 

276 (A, B, etc.).  For the MC calculations, 100,000 trials were calculated, and the covariance was 

277 calculated directly from the cumulants of these trials.

278 The objective function (Eq. 6) was minimized using the Broyden-Fletcher-Goldfarb-

279 Shanno algorithm with an explicit gradient.  Global minima were found by using a logarithmically-

280 spaced grid of initial trial points.  The parameter space region searched was an ‘n-cube,’ where n 

281 is the number of parameters (the number of steps in the reaction).  The grid spacing was a factor 

282 of ten.  For example, for a two-step reaction, the two dimensional region [1, 1000]  [1, 1000] was 

283 searched.  This included starting points an order of magnitude less and more than the minimum 

284 and maximum decay parameters simulated.  Note that since the GMM objective functions 
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285 examined here are multipolynomials of the decay parameters, the minimization is robust, as the 

286 surface is not rough (i.e. it does not exhibit a large number of minima).  In the two-pass GMM, the 

287 estimates for the decay parameters from a first-pass minimization were used as the starting search 

288 point for a second pass which used the interpolated weight matrix calculated from the first pass 

289 parameter estimates.  

290 All scripts and routines for performing the calculations reported in this manuscript can be 

291 downloaded from https://sourceforge.net/projects/genmm.  These scripts are not intended to be 

292 end user software, but are made available to encourage transparency, reproducibility and to 

293 encourage others to build on our work.

294

295 Nonlinear least-squares minimization

296 To perform the NL-LSQM of the simulated data, each simulated data set was binned into 

297 a number of bins equal to the square root of the number of samples (rounding up to the nearest 

298 whole number).  The bins were fit to a bi-exponential distribution with two free decay parameters 

299 using the Levenberg-Marquardt algorithm.  A finite bin-width correction was used.

300

301 Experimental data collection and processing

302 Experimental dwell times were measured for DNA cleavage by the restriction 

303 endonuclease NdeI.  The method of data collection is explained in detail elsewhere (6).  Briefly, 

304 1000 bp DNAs with a single centrally-located NdeI restriction site were used to tether 1 µm 

305 magnetic beads in a microflow channel.  The DNA-tethered beads were observed under low 
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306 magnification and dark field imaging.  A low flow rate and magnet were used to apply a small 

307 force (<100 fN) to the beads, which are pulled out of focus as the DNA is cleaved.  Varying 

308 concentrations of NdeI (from 25 to 350 pM) were introduced in reaction buffer (20 mM Tris-HCl, 

309 100 mM NaCl, 3 mg/mL BSA, 1 mg/mL Pluronic F-127, 1 mM MgCl2).  Video data was recorded 

310 at a frame rate of 1 fps.  Dwell time between initial introduction of the enzyme and the final 

311 cleavage of the DNA is measured by noting the time at which the bead is removed.   The software 

312 package ImageJ was used to locate bead positions in the initial image, and then all images were 

313 analyzed by custom software which integrates the intensity around the bead position.  A large drop 

314 in intensity identifies the cleavage event and the dwell time is recorded as the frame number.  A 

315 frame rate of either 0.5 or 1 fps was used.  Individual data sets produced 200 to 700 dwell times 

316 (cleavage events).  Mean dwell times varied from 150 s to 300 s, and data was analyzed using the 

317 GMM.  One up to six step reaction models were tested using the “just-specified” objective function 

318 for each scheme.  A single pass GMM was used.

319

320 Results 

321 Performance of GMM with simulated data

322 By minimizing an objective function composed of moment functions, the GMM provides 

323 estimates of parameters which approximately satisfy the condition that all the moment functions 

324 have the value zero. The performance of the GMM is known to depend on the order of the method 

325 (the number of moment conditions included), as well as on the nature of the weighting matrix used 

326 to weight the various terms.  In addition, various methods of weighting have been developed.  

327 These include “two-pass” methods, in which an initial trail matrix is used to find a first pass 
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328 estimate.  The second pass uses a more effective weight matrix calculated from the results of the 

329 first pass.  

330 In this work, we apply an algorithm based on the GMM to the analysis of single molecule 

331 dwell times.  We use simulated as well as experimental data, and test a variety of models, weighting 

332 matrices, as well as a two-pass method.  See the Materials and Methods section for a complete 

333 description of all variations.  In general, we found a diagonal weight matrix based on jackknife 

334 estimates of the variances in the cumulants (the D-matrix) to produce estimates with the lowest 

335 bias for all orders.  Figure 2 shows the results of analyzing simulated data for a single step reaction.  

336 The results are shown for methods of all orders up to fourth.  The dispersion in the results is shown 

337 by representing the mean deviation with error bars.  The unit matrix (I-matrix) as well as a non-

338 diagonal matrix based on jackknife estimate of the full covariance matrix of the cumulants (C-

339 matrix) gave poorer results (data not shown).  

340

341 Fig 2.  Results for 1 step reaction.  Mean for 1000 trials for orders 1 (circles), 2 (squares), 3 

342 (diamonds), and 4 (triangles) are plotted versus sample size (N).  The simulated decay constant is 

343 10 s.  Error bars represent mean deviations.  

344

345 As seen in Fig 2, the bias and dispersion reduce with increasing number of samples for all 

346 orders (except for first order where the bias is zero).  Additionally, the bias tends to increase as the 

347 order of the method is increased for all sample sizes.  Note that the first order method is equivalent 

348 to the Classical Method of Moments, in which the estimate is simply the mean of the sample dwell 

349 times.  It is easily shown that this estimate is unbiased for all sample sizes.  We found that the 
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350 dispersion, as measured by the mean deviation, shows a complex dependence on the order of 

351 method for the I-matrix.  However, for the D- and C-matrix, the dispersion is relatively 

352 independent of order (data not shown).

353 We now turn to the performance of the GMM for the two-step reaction (a single 

354 intermediate).  In all that follows, we hold the first decay parameter fixed (A = 10 s) and vary the 

355 second (B = 10, 20, 50, or 100 s).  We examined second, third and fourth order methods.  Note 

356 that in this case, the first order method is under-constrained and does not result in a unique estimate 

357 and is therefore excluded.  We also examined the effect of using the I-, D-, and C-matrices (defined 

358 above), as well as the benefit of a two-pass GMM, in which a first pass estimate is used to 

359 recalculate the weight matrix.

360 For the two step reaction model, the GMM returns two estimated decay parameters which 

361 can be sorted into a smaller value (presumably an estimate for A) and a larger value (presumably 

362 an estimate for B).  In Fig 3, we plot the mean values of these two estimates, along with the mean 

363 deviations as error bars, for two sets of model parameters, (A, B ) = (10 s, 10 s) and (A, B) = (10 

364 s, 50 s).  The results shown were calculated using the D-matrix, which gave the best results for

365 these trials (see Figs S2 through S6, Supplementary Material, for C and I-matrices).  The bias and 

366 dispersion decrease with increasing sample size, consistent with the expected large sample size 

367 behavior (4).  For the case of B = 50 s (Figs 3C and 3D), we see that for both estimates, bias 

368 increases with order, similar to the pattern for the one step reaction.  However, the sign of the bias 

369 is different for the two estimates, such that the lower estimate is too high and the higher estimate 

370 is too low.  Dependence of the dispersion on the order is either weak or shows a slight increase as 
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371 order goes up.  Results for decay parameters B = 100 s are similar to those for B = 50 s (see Figs 

372 S1 through S6).

373

374 Fig 3.  Single pass GMM results for 2 step reaction.  Means for 1000 trials for orders 2 

375 (circles), 3 (squares), and 4 (diamonds) are plotted versus sample size (N). Error bars represent 

376 mean deviations.  Left panels (A and C) show lower estimate and right panels (B and D) show 

377 higher estimate.  The two top panels (A and B) are for the decay constant pair (10 s, 10 s) and the 

378 two bottom panels (C and D) for (10 s, 50 s).

379

380 For the case when both model parameters are equal (A = B = 10s), the bias is either 

381 independent of order (Fig 3A), or shows a non-trivial dependence on order and sample size (Fig 

382 3B).  Results for decay parameters (A, B)= (10s , 20s) are intermediate between those for B = 10s 

383 and B = 50s (see Fig S1).  The above results indicate that a second-order method using the D-

384 matrix is the optimum method of those explored using the parameters we tested.

385 We next tested the two-pass GMM on the simulated data.  Two-pass GMM methods 

386 attempt to generate a more accurate weight matrix by executing a first pass using a best guess for 

387 the weight matrix, and then using the resulting first pass estimates to calculate a more accurate 

388 weight matrix for the second pass.  In our case, we chose our best single-pass GMM result (the 

389 second order, D-matrix method) as our first pass.  We then used the estimates from this pass to 

390 calculate the theoretical covariance in the sample cumulants and from the inverse of this, the 

391 weight matrix.  For efficiency, the theoretical covariance was calculated by interpolation from a 

392 set of covariance matrices that were calculated using a Monte Carlo method (see Materials and 
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393 Methods for details).  Since the second order GMM is “just-specified” in the case of two model 

394 parameters, and hence independent of weight matrix, we investigated the effect of adding a second 

395 pass using up to third or fourth order moments

396 The results from the two-pass GMM are shown in the Fig 4.  As can be seen from the 

397 figure, an additional pass does not greatly affect the bias nor the dispersion under any of the 

398 parameter sets used in this study.  The small reduction in bias seen at low sample numbers in Figs. 

399 4A and 4D is offset by the small increase in bias shown in Figs. 4B and 4C.  Figure 4 only shows 

400 the results from the D-matrix weighting scheme.  See Supplementary Material (Fig S7) for 

401 complete results.

402

403 Fig 4.  Two pass GMM results for 2 step reaction .  Mean for 1000 trials for one-pass 2nd order 

404 (circles),  two-pass 3rd order (squares), and two-pass 4th order (diamonds) is plotted.  Error bars 

405 represent mean deviations.  Left panels (A and C) show lower estimate and right panels (B and 

406 D) show higher estimate.  The two top panels (A and B) are for the decay constant pair (10 s, 10 

407 s) and the two bottom panels (C and D) for (10 s, 50 s).

408

409 We additionally applied the GMM to a three-step reaction model.  Third and fourth order 

410 single-pass GMM methods were applied to three sets of decay parameters.  These sets were (A, 

411 B, C) = (10 s, 10 s, 10 s), (10 s, 10 s, 50 s) and (10 s, 30 s, 100 s).  GMM estimates were sorted 

412 into smallest to largest returned value, and the means and mean deviations are shown in Fig 5.  The 

413 performance of the GMM estimation is quite varied when faced with this more challenging 
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414 problem.  Bias tends to decrease with increasing sample number for most estimates, except for the 

415 lowest estimate for the case of parameters (10s, 10s, 50s).

416

417 Fig 5.  Single pass GMM results for 3 step reaction .  Mean for 1000 trials for orders 3 

418 (circles) and 4 (squares) versus sample size (N).  Error bars represent mean deviations.  The three 

419 GMM estimates are sorted into smallest to largest and arranged left to right in each row.  Top 

420 panels  (A, B, & C) are for the decay constants  (10s, 10s, 10s), middle panels  (D, E, & F) for 

421 (10s, 10s, 50s,) and bottom panels  (G, H, & I) for (10s, 30s, 100s).  

422

423 Comparison with NL-LSQM

424 In order to compare the GMM to alternative methods, we used a non-linear least squares 

425 minimization (NL-LSQM) method based on fitting histograms of our simulated two-step reaction 

426 data to the theoretical bi-exponential distribution.  We used the same simulated data that was used 

427 to calculate the GMM estimates shown in Fig 3 and performed global nonlinear least-squares 

428 minimizations as described in the Materials and Methods.  Figure 6 shows a comparison of the 

429 second order GMM method using the D-matrix to the NL-LSQM method for a two-step reaction.  

430 Note that for sample sizes of 5 and 10, the NL-LSQM method showed very large bias for the 

431 smaller decay parameter (in some cases, returning negative decay parameters) which is not plotted.  

432 For large samples (N > 100) the two methods are comparable in bias and dispersion, except for the 

433 case where the two model parameters are equal, in which case the GMM has slightly smaller bias.  

434 At low sample size (N < 20), the GMM shows less bias and dispersion, and is able to return 
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435 reasonable estimates even for sample sizes as small as five.  Results for the decay parameter pairs 

436 (10s,20s) and (10s,100s) are shown in Fig S8 in Supplementary Material.

437

438 Fig 6.  Results for comparison of GMM to non-linear least squares.  Estimates from GMM are 

439 shown in blue circles and those of NL-LSQM are green squares and are plotted versus sample size 

440 (N).  Error bars represent mean deviations.  Left panels (A and C) show lower estimate and right 

441 panels (B and D) show higher estimate.  The two top panels (A and B) are for the decay constant 

442 pair (10s,10s) and the two bottom panels (C and D) for (10s, 50s).

443

444 Application to experimental data

445 To gain experience using the GMM with experimental data, we collected single molecule 

446 data of double stranded DNA cleavage using a bead loss assay we have previously described (6).  

447 Single molecule dwell times of DNA cleavage have been shown to be useful for the study of 

448 restriction endonuclease mechanism (15).  Our technique uses tethered beads to measure the dwell 

449 time until cleavage for several hundred DNAs in a single experiment.  The total dwell time consists 

450 of several steps, including the DNA target search as well as the cleavage of each strand of the 

451 DNA.  

452 We have previously shown that the mean dwell time under the conditions of 2 mM Mg2+ 

453 is highly dependent on protein concentration, consistent with a diffusion-controlled process.  In 

454 this work, we collected data at 1 mM Mg2+ for a range of concentrations from 25 pM to 350 pM 

455 and analyzed the resulting dwell times using the GMM.  Since we did not know a priori the number 

456 of steps in the reaction, we chose to test models with one up to six steps, each using the “just 
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457 specified” order (i.e., first order for one step, second order for two step, etc.) and using a diagonal 

458 jackknife weight matrix.  

459 Our results for the one and two step analysis are shown in Fig 7.  The single step result is 

460 equal to the sum of the two decay times from the two step analysis, which must be the case.  The 

461 results for the three and four step method are listed in Table I.  The results for the five and six step 

462 model are not shown.  Examination of the graph and table shows that the slowest time step remains 

463 relatively constant for the different models as we increase the number of steps in the model past 

464 two.  For example, at 22 pM , the slowest step in the two step model is 242 s, which changes to 

465 259 s in the three step model, then 265 s in the four step reaction.  But the faster steps show a 

466 different pattern.  For this same data, the two step model yields a faster step of 72.0 s, which turns 

467 into two steps of 27.5 s in the three step reaction, and finally three steps of 16.4 s in the four step.  

468 Note that in each model, the faster steps are each of identical duration.  This pattern of the slowest 

469 step remaining somewhat constant and the faster steps all being equal in value, but decreasing as 

470 we increase the number of steps in the model continues for the five and six step models also. This 

471 is a curious finding, and suggests that this pattern might help distinguish how many steps are the 

472 minimum necessary to explain our data.  

473

474 Fig 7.  Application of GMM to DNA cleavage by NdeI.  All results are for single-pass GMM.  

475 The results for 1 step reaction, first order GMM are shown with red diamonds.  Results for a 2 step 

476 reaction, second order method are shown in green squares and blue circles.  Error bars are estimates 

477 of statistical uncertainty taken from dispersion shown in Fig 3. 

478
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479 Table 1.  Results of three and four step GMM analysis of experimental data.

[NdeI] THREE STEP RESULTS FOUR STEP RESULTS

(pM) 1 (s) 2 (s) 3 (s) 1 (s) 2 (s) 3 (s) 4 (s)

22 27.5 27.5 259 16.4 16.4 16.4 265

44 11.1 11.1 199 5.05 5.05 5.05 206

88 21.4 21.4 145 12.4 12.4 12.4 151

175 11.8 11.8 159 5.96 5.96 5.96 164

350 36.3 36.3 91.9 21.6 21.6 21.6 99.7

480 Protein concentration is listed in left hand column.  The decay times for the GMM results are 

481 listed in order of increasing time.  The time for the slowest step is in the rightmost column 

482 under each model result.  

483

484 To explore this idea, we generated two simulated test datasets, one of a two-step reaction 

485 with time steps (50s, 150s), and one of a six-step reaction with time steps (10s, 10s, 10s, 10s, 10s, 

486 150s).  We then applied the just specified GMM (single pass) using different numbers of steps 

487 (one up to six) in the model.  For the two step data, we found that as we increase the number of 

488 steps in the model, the method returned negative time constants when asked for more than two 

489 steps.  The greatest returned decay times were relatively constant and close to (50s, 150s), 

490 indicating that even when we choose to analyze the data with the incorrect model, the method was 

491 correctly identifying the steps present in the data, and then returning insignificant durations for the 

492 fictitious steps.  For the six-step simulated data, the largest time constant remained relatively 

493 constant and close to the expected value of 150s.  The faster decay constants were all much smaller 

494 but varied quite a bit, and the algorithm began to return negative time constants when more than 
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495 four steps were assumed in the model.  This shows that the method could not correctly identify the 

496 number of fast steps, but did seem to suggest that there were at least four.  This is similar to what 

497 we observed in the analysis of our data, and suggests that in our experimental system, there are 

498 several fast steps and one slower one.  This slow step is shown  by the the green curve in Fig 7 and 

499 the faster decays are represented by the blue curve in Fig 7, whose value is the sum of the faster 

500 decays.

501

502 Discussion

503 We have developed an application of the Generalized Method of Moments (GMM) to the 

504 analysis of single molecule dwell times.  Originally developed for the analysis of econometric 

505 data, the GMM is a statistical framework for the analysis of samples drawn from random processes.  

506 Our method is based on the analysis of cumulants of the data, and we have shown that it can be 

507 used successfully to analyze single molecule biophysical data.  Using simulated as well as 

508 experimental data, we have shown that the GMM can extract useful model parameters directly 

509 from sets of experimentally measured dwell times.  We also provide guidelines on the best use of 

510 the GMM to analyze real data.  

511 Many of our findings agree with the growing literature assessing the utility of the GMM.  

512 Our simulated data shows that for applications to single molecule dwell times, the lowest order 

513 method that can completely determine a solution (the “just-specified” case) demonstrates lower 

514 bias than higher order methods.  For orders higher than this minimum, the bias generally depends 

515 on the nature of the weight matrix.  In the two-step reaction, we investigated the effect of three 

516 different weight matrices for these higher order GMMs.  These were (1) the identity matrix, (2) a 
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517 diagonal weight matrix with terms equal to the inverses of estimated variances of the cumulants, 

518 and (3) a matrix equal to the inverse of an estimated covariance matrix.  We find that, although 

519 estimating the variances of the cumulants from the data can reduce bias, adding more complicated 

520 weight matrices (including off-diagonal terms due to cross-variances) can actually increase bias.  

521 These results indicate a “less-is-better” approach.  Adding higher orders or off-diagonal elements 

522 to the weight matrix does not necessarily help the estimate.  We also found that adding a second 

523 pass (see Fig 4) does not significantly improve performance.

524 Even under “just-specified” constraints, i.e., when the number of moment conditions equals 

525 the number of free parameters, our results for the two-step reaction show dependence on weight 

526 matrix, albeit small (See Fig S4 in Supplementary Materials).  Although it is true that the just-

527 specified GMM method generally gives the same results as the Classical Method of Moments 

528 (CMM), this only follows if the CMM returns a real-valued result.  In the case of the two-step 

529 reaction, it is straightforward to show that the CMM fails to return real-valued estimates in many 

530 cases.  In these cases, the GMM will return real values that depend on the weight matrix.  

531 Furthermore, it can be shown that in the cases in which the CMM does not return real valued 

532 estimates, the second order GMM must return a double root, that is, it returns two identical 

533 estimates.  Since these estimates tend to be midway between the higher and lower decay constants, 

534 they have the effect of causing the higher estimate to have negative bias, and the lower estimate to 

535 have positive bias, a trend which is seen in our simulated data (Figs 3 and 4, lower panels).  It is 

536 worth noting that other methods of dwell time analysis, including Bayesian methods and Hidden 

537 Markov Models, have been shown to systematically underestimate decay constants, similar to what 

538 we find for the GMM (7, 8). 
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539 Comparison of the GMM to NL-LSQM shows that these two methods provide estimates 

540 with comparable bias and dispersion for larger sample sizes (N > 20).  However, the GMM shows 

541 a moderate advantage in terms of bias at very low sample numbers, and does better at estimating 

542 the smaller of two decay parameters (Figs 6A and 6C) in these cases.  The NL-LSQM method 

543 often fails to pick out these faster decays when there are very few samples.  A partial explanation 

544 can be found in the fact that the NL-LSQM method relies on binning which can be particularly 

545 challenging at low counts.

546 In our test of the GMM on experimental data, we found that as we added more steps to the 

547 reaction model, the method continued to produce estimates of faster multiple steps, out to six steps.  

548 This is not what we found for similar analyses of simulated two-step data, and suggests that in the 

549 experimental system, there are a number of faster steps but that the GMM is not able to determine 

550 the exact number of steps nor the rate of each one.  Figure 7 shows that the slow step is 

551 dependent on the protein concentration and decreases as the concentration increases.  However, 

552 the faster steps shows little dependence on protein concentration.  This could be explained by a 

553 mechanism in which the rate limiting step is the site specific association of the protein with the 

554 binding site, followed by a series of faster steps leading to cleavage of one or both DNA strands.   

555 Once implemented, the GMM is easy to apply with few adjustable parameters.  It also is 

556 flexible and can be reformulated, requiring only a redefinition of the moment functions.  The only 

557 requirement is that a sufficient number of moment functions of the measured values and system 

558 parameters can be formulated, whose expectation values are zero.  The number of such moment 

559 functions must be at least the number of free parameters in the model.

560
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