- 1 Phylogenetic, population genetic, and morphological analyses reveal evidence for one species of
- 2

Eastern Indigo Snake (Drymarchon couperi)

- 3 Brian Folt^{a,*,1}, Javan Bauder^{b,c}, Stephen Spear^{b,d}, Dirk Stevenson^b, Michelle Hoffman^e, Jamie
- 4 Oaks^a, Christopher Jenkins^b, David Steen^a, and Craig Guyer^{a,1}
- ⁵ ^aDepartment of Biological Sciences and Auburn University Museum of Natural History, 331
- 6 Funchess Hall, Auburn University, Alabama 36849, U.S.A.
- ⁷ ^bThe Orianne Society, 11 Fruitstand Lane, Tiger, Georgia 30576, U.S.A.
- ⁸ ^cDepartment of Environmental Conservation, University of Massachusetts, Amherst,
- 9 Massachusetts, U.S.A.
- ^dThe Wilds, Cumberland, Ohio, U.S.A.
- ¹¹ ^eThe Orianne Center for Indigo Conservation, Central Florida Zoo and Botanical Gardens, 3755
- 12 NW Hwy 17-92, Sanford, Florida, 32771, U.S.A.
- 13 *Corresponding author; e-mail: <u>brian.folt@gmail.com</u>
- ¹Co-equal authors
- 15 Running title: Systematics of Drymarchon couperi
- 16
- 17 Abstract.—Accurate species delimitation and description are necessary to guide effective
- 18 conservation management of imperiled species. The Eastern Indigo Snake (Drymarchon couperi)
- 19 is a large species in North America that is federally-protected as Threatened under the
- 20 Endangered Species Act. Recently, two associated studies hypothesized that Drymarchon
- 21 *couperi* is two species. Here, we use diverse approaches to test the two-species hypothesis for *D*.
- 22 *couperi*. Our analyses reveal that (1) phylogenetic reconstruction in Krysko et al. (2016a) was
- 23 based entirely on variance of mitochondrial DNA sequence data, (2) microsatellite data
- 24 demonstrate significant nuclear gene flow between mitochondrial lineages and a clear isolation-

25	by-distance pattern across the species' entire range, and (3) morphological analyses recover a
26	single diagnosable species. Our results reject recent conclusions of Krysko et al. (2016a,b)
27	regarding species delimitation and taxonomy of D. couperi, and we formally place Drymarchon
28	kolpobasileus into synonymy with D. couperi. We suggest inconsistent patterns between
29	mitochondrial and nuclear DNA may be driven by high dispersal of males relative to females.
30	We caution against species delimitation exercises when one or few loci are used without
31	evaluation of contemporary gene flow, particularly species with strong sex-biased dispersal (e.g.,
32	squamates) and/or when results have implications for ongoing conservation efforts.
33	
34	ADDITIONAL KEYWORDS: Coastal Plain – Conservation – Drymarchon couperi –
35	Drymarchon kolpobasileus – Gene Flow – Population Genetics – Repatriation – Taxonomy.
36	
37	INTRODUCTION
37 38	INTRODUCTION Accurate species delimitation and description are critical not only for understanding
38	Accurate species delimitation and description are critical not only for understanding
38 39	Accurate species delimitation and description are critical not only for understanding global patterns of biodiversity, but also to guide effective conservation strategies (Avise, 1989;
38 39 40	Accurate species delimitation and description are critical not only for understanding global patterns of biodiversity, but also to guide effective conservation strategies (Avise, 1989; Agapow <i>et al.</i> , 2004; Mace, 2004; Frankham <i>et al.</i> , 2012). For example, species are often
38394041	Accurate species delimitation and description are critical not only for understanding global patterns of biodiversity, but also to guide effective conservation strategies (Avise, 1989; Agapow <i>et al.</i> , 2004; Mace, 2004; Frankham <i>et al.</i> , 2012). For example, species are often delimited into multiple species on the basis of systematic studies utilizing molecular genetic data,
 38 39 40 41 42 	Accurate species delimitation and description are critical not only for understanding global patterns of biodiversity, but also to guide effective conservation strategies (Avise, 1989; Agapow <i>et al.</i> , 2004; Mace, 2004; Frankham <i>et al.</i> , 2012). For example, species are often delimited into multiple species on the basis of systematic studies utilizing molecular genetic data, thereby requiring adjustment of existing conservation management plans (e.g., Daugherty <i>et al.</i> ,
 38 39 40 41 42 43 	Accurate species delimitation and description are critical not only for understanding global patterns of biodiversity, but also to guide effective conservation strategies (Avise, 1989; Agapow <i>et al.</i> , 2004; Mace, 2004; Frankham <i>et al.</i> , 2012). For example, species are often delimited into multiple species on the basis of systematic studies utilizing molecular genetic data, thereby requiring adjustment of existing conservation management plans (e.g., Daugherty <i>et al.</i> , 1990). When species delimitation methods fail to correctly diagnose individuals (<i>sensu</i> Ghiselin,
 38 39 40 41 42 43 44 	Accurate species delimitation and description are critical not only for understanding global patterns of biodiversity, but also to guide effective conservation strategies (Avise, 1989; Agapow <i>et al.</i> , 2004; Mace, 2004; Frankham <i>et al.</i> , 2012). For example, species are often delimited into multiple species on the basis of systematic studies utilizing molecular genetic data, thereby requiring adjustment of existing conservation management plans (e.g., Daugherty <i>et al.</i> , 1990). When species delimitation methods fail to correctly diagnose individuals (<i>sensu</i> Ghiselin, 1997), such errors can have significant consequences for conservation and management of
 38 39 40 41 42 43 44 45 	Accurate species delimitation and description are critical not only for understanding global patterns of biodiversity, but also to guide effective conservation strategies (Avise, 1989; Agapow <i>et al.</i> , 2004; Mace, 2004; Frankham <i>et al.</i> , 2012). For example, species are often delimited into multiple species on the basis of systematic studies utilizing molecular genetic data, thereby requiring adjustment of existing conservation management plans (e.g., Daugherty <i>et al.</i> , 1990). When species delimitation methods fail to correctly diagnose individuals (<i>sensu</i> Ghiselin, 1997), such errors can have significant consequences for conservation and management of imperiled species by reducing or diverting finite conservation resources (Agapow <i>et al.</i> , 2004).

3

of species delimitation should be conservative, because "it is better to fail to delimit species than
it is to falsely delimit entities that do not represent actual evolutionary lineages" (Carstens *et al.*,
2013).

51 The Eastern Indigo Snake (Drymarchon couperi Holbrook, 1842) is a large colubrid of the Coastal Plain of the southeastern United States. However, D. couperi populations have 52 declined precipitously over the last century, largely due to habitat loss, habitat fragmentation, 53 54 and historical over-collecting for the pet trade (U.S. Fish and Wildlife Service, 1982, 2008). As a result of these declines, D. couperi is listed as Threatened under the U.S. Endangered Species 55 Act (U.S. Fish and Wildlife Service, 1978, 2008). Potentially viable populations of D. couperi 56 57 remain in large contiguous habitats in southeastern Georgia (Stevenson et al., 2009; Hyslop et al., 2011; Enge et al., 2013), and throughout peninsular Florida (Breininger, Legare & Smith, 58 2004; Enge et al., 2013), but the species was likely extirpated from Mississippi, Alabama, and 59 the Florida panhandle (Enge et al., 2013). 60

Current conservation management plans for *D. couperi* were developed under the 61 hypothesis that D. couperi represents a single species. However, this hypothesis was recently 62 challenged by Krysko et al. (2016a), who used DNA sequence analyses to describe two genetic 63 lineages of D. couperi – an Atlantic lineage, including populations in southeastern Georgia and 64 eastern peninsular Florida, and a Gulf lineage of populations in western and southern peninsular 65 Florida and the Florida panhandle. This phylogeographic study was followed by a second paper 66 67 (Krysko et al., 2016b) that analyzed morphological variation between the Atlantic and Gulf lineages and provided an official description of the Gulf lineage as a purported novel species, the 68 69 Gulf Coast Indigo Snake (Drymarchon kolpobasileus Krysko, Granatosky, Nuñez, Smith 2016).

70	Given the conservation status of D. couperi (sensu lato), these results have potentially
71	important consequences for conservation of Eastern Indigo Snakes. First, division of D. couperi
72	(sensu lato) into two smaller-ranged species results in two species with substantially smaller
73	population sizes that are, therefore, at greater risk of extinction (sensu Agapow et al., 2004; e.g.,
74	Pauly, Piskurek & Shaffer, 2007). Second, conservation and recovery of two rare species
75	requires more time and funds than one; both resources are in short supply. Finally, as noted by
76	Krysko et al. (2016a), active conservation management plans for D. couperi (sensu lato) include
77	population repatriation projects in Alabama and the Florida panhandle, where populations
78	attributed to the Gulf lineage presumably were extirpated. Repatriation projects should be
79	informed by phylogeographic and genetic developments (Soltis and Gitzendammer, 1999). The
80	description of D. kolpobasileus, therefore, causes increased logistical complexity for Eastern
81	Indigo Snake captive breeding and repatriation projects.
82	We represent additional experts on Eastern Indigo Snake taxonomy, ecology and
83	conservation, many of whom participated in an inter-agency workshop on Eastern Indigo Snake
84	taxonomy referenced in Krysko et al. (2016a,b). During that event, consequences of the
85	discovery that Eastern Indigo Snakes comprise two genetic lineages were debated, and this
86	debate was used to inform conservation plans for the species. Skepticism was voiced that the two
87	lineages represent diagnosable species based largely on description of microsatellite data
88	documenting widespread admixture of the lineages. Here, we repeat that debate by using
89	multiple approaches to evaluate the hypothesis that D. couperi comprises two distinct species
90	(Krysko et al., 2016b). First, we review mitochondrial and nuclear DNA sequence analyses
91	presented by Krysko et al. (2016a) as well as morphological data presented by Krysko et al.
92	(2016b) and describe limitations of those data and analyses. Second, we analyze a novel

93	microsatellite DNA dataset and test for evidence of contemporary gene flow between the two
94	genetic lineages identified by Krysko et al. (2016a). Third, we provide new analyses of
95	morphological data collected from 125 Eastern Indigo Snakes, including individuals from both
96	genetic lineages of Krysko et al. (2016a). Specifically, we evaluate the diagnostic features of
97	head and scale shape presented by Krysko et al. (2016b). Last, we review features of the life
98	history of <i>D. couperi</i> and suggest how they inform interpretations of genetic data.
99	
100	REVIEW OF PUBLISHED DATA
101	GENE SEQUENCE ANALYSIS
102	To infer evolutionary history among populations of <i>D. couperi (sensu lato)</i> , Krysko et al.
103	(2016a) analyzed sequence data obtained from three genetic markers: the mitochondrial
104	(mtDNA) genes cytochrome b (CytB) and nicotinamide adenine dinucleotide dehydrogenase
105	subunit 4 (ND4) and the nuclear gene neurotrophin-3 (NT3). Because CytB and ND4 are linked
106	components within the non-recombinant and maternally-inherited mitochondrial genome, we
107	note that those two markers are linked on a single locus. The authors estimated phylogenetic
108	relationships among populations by analyzing a concatenated dataset including both
109	mitochondrial and nuclear loci. These data were evaluated with maximum likelihood (ML) and
110	Bayesian analyses; for the Bayesian analysis, the dataset was partitioned such that nucleotide
111	substitution was modeled separately for each locus. Because both analyses generated similar
112	phylogenetic hypotheses, the authors described results only from the Bayesian analysis.
113	Phylogenetic analyses of a single or few genetic loci frequently describe evolutionary
114	patterns that do not reflect the organism's true evolutionary history (i.e., the gene tree/species
115	tree problem; Avise et al., 1983; Funk, 1999; Funk and Omland, 2003; Dupuis, Roe & Sperling,

116 2012). In particular, use of and reliance on mtDNA for phylogenetic and taxonomic analyses has 117 been criticized because mtDNA has a vastly different natural history than the primary mode of genetic inheritance, nuclear DNA (nDNA). Mitochondrial DNA has a lower effective population 118 119 size, higher mutation rate, and frequently defies critical assumptions of neutral evolution by being under selection (Ballard & Whitlock, 2004; Frankham et al., 2012). More importantly, 120 121 mtDNA is maternally inherited and, therefore, may not describe an organism's true patterns of inheritance expressed through the nuclear genome (Ballard & Whitlock, 2004). This is 122 particularly problematic for species with relatively low dispersal rates that are more likely to 123 124 show phylogeographic breaks that are not driven by decreased gene flow but by chance alone (Irwin, 2002), or for species with intersexual differences in movement, site fidelity, or breeding 125 behavior (Scribner et al., 2001; Thorpe, Surget-Groba & Johannson, 2008; Peters, Bolender & 126 127 Pearce, 2012). Given these and other limitations, a customary practice in phylogenetic studies is to use 128 129 both mitochondrial and nuclear loci and to describe phylogenetic patterns inferred from these 130 two components of the genome separately (e.g., Irwin, 2002; Funk & Omland, 2003; Gamble et al., 2008; Grismer et al., 2014). This practice can help identify situations for which phylogenetic 131 132 hypotheses generated from mtDNA (1) are incongruent with hypotheses from the nuclear 133 genome and that (2) might be erroneously assumed to accurately depict the species tree. However, Krysko et al. (2016a) combined the mitochondrial and nuclear markers and used that 134 135 concatenated dataset to infer both ML and Bayesian phylogenies from the combined datasets.

Because mutation rates of mtDNA are higher than those of nDNA, phylogenetic analysis of the

137 concatenated data will be driven by the more variable markers from the mtDNA, thus leaving

their results subject to all the criticisms associated with mtDNA data (Ballard & Whitlock, 2004;

139 Frankham et al., 2012). We do note that the fundamental differences between mitochondrial and 140 nuclear DNA can be leveraged to understand interesting evolutionary history of study organisms (e.g., introgressive hybridization; Rubinoff & Holland, 2005; Grismer et al., 2014; Folt et al., 141 142 2016). However, we also note that the analyses summarized above do not exploit these potential 143 benefits (i.e., by comparing mitochondrial and nuclear gene trees), and we instead argue that 144 both ML and Bayesian analyses of the Eastern Indigo Snake data are biased toward describing patterns from maternally inherited mtDNA. 145 Krysko et al. (2016a) used mixed-model Bayesian inference of the sequence data to infer 146 147 divergence dates, population size, and migration rates over time. These authors hypothesized that the two lineages of Eastern Indigo snakes are derived from an ancestor that colonized the 148 149 southeastern United States via eastward migration of D. melanurus along the Gulf Coast 150 (Auffenberg, 1963). In an attempt to understand migration and gene flow between mitochondrial clades, Krysko et al. (2016a) described migration rates inferred from population genetic 151 152 summaries of their mitochondrial analysis; the authors suggested those rates were too low to 153 allow for homogenization of the two populations. However, estimates of migration rates between clades were derived from the same data used to define those clades. A better approach, 154 155 analogous to model validation (McGarigal, Cushman & Stafford, 2000), would have been to 156 estimate the clades and migration rates between them using two independent data sources. We suggest the authors' analysis of migration greatly limits their ability to delimit species and is 157 158 problematic because coalescent theory would suggest the mitochondrial clades found by the 159 authors would also be expected if all animals were within a single species. In a population of constant size, the two deepest branches of a gene tree are expected to comprise approximately 160 161 half of the gene's history from present to the most recent common ancestor (Hudson, 1990;

Wakely, 2008). Furthermore, if an individual is more likely to share a more-recent common
ancestor with geographically proximate individuals, these two clades, predicted by coalescent
theory, will often display geographic separation (Irwin, 2002). Thus, the two mitochondrial
clades that loosely correspond with a lengthy transect from Georgia to the southern tip of Florida
provide only weak evidence of population structure, let alone evidence to suggest a species
boundary.

Krysko et al. (2016b) found that individuals from the contact zone between the two 168 169 lineages (e.g., Alachua, Clay, Indian River, and Volusia counties) are morphologically 170 intermediate between what they considered core populations of the two mitochondrial lineages; 171 the authors hypothesized that such intermediate populations might represent a "hybrid" zone between lineages, an implicit hypothesis of contemporary gene flow between the two 172 173 mitochondrial lineage populations (Krysko et al., 2016b). We also note that some counties possessing morphologically intermediate snakes were distant from the apparent contact zone 174 175 between mitochondrial lineages (e.g., Hardee County), suggesting extensive gene flow. If 176 contemporary nuclear gene flow is as extensive as this, then such evidence is a serious challenge to the conclusion that the two lineages represent separate species (Frankham et al., 2012). 177 178

- 170
- 179

MORPHOLOGICAL ANALYSIS

Krysko *et al.* (2016b) conducted two sets of analyses designed to test whether
morphological characteristics distinguish the two genetic lineages. First, they tested whether
specimens from each lineage differed in seven morphological measurements traditionally used to
summarize snake scalation (e.g., Savage, 2002): the mean/median number of ventral, subcaudal,
supralabial, and infralabial scales; modal counts of temporal scales (traditional formula of dorsal

+ ventral), ocular scales (pre- and postoculars); and dorsal scale row counts (one head length
posterior to head, midbody, and one head length anterior to cloaca). This set of analyses,

- 187 essentially, yielded no differences between lineages.
- 188 As a second set of analyses, Krysko *et al.* (2016b) performed principal components analyses (PCA) on five linear measurements of head morphology: head length, head height, 189 length of a temporal scale, length of the 7th infralabial, and width of the 7th infralabial (but see 190 191 below). PCA was first run using specimens with known genetic lineage assignment and then repeated including additional specimens for which genetic lineage assignment was not known. 192 193 We focus on the first analysis. Krysko et al. (2016b) standardized each variable by dividing each 194 measurement by the geometric mean of all measurements of that individual and log-transformed each variable to normalize their distributions. Head length, head height, and 7th infralabial length 195 loaded positively and 7th infralabial width loaded negatively on the first principal component, 196 197 which explained 44.7% of variance. This axis separated specimens that were described to be long- and wide-headed with long and narrow 7th infralabials (high PC1 scores; almost 198 199 exclusively Atlantic lineage snakes) from specimens that were described to be short and narrowheaded with short and wide 7th infralabials (low PC1 scores; almost exclusively Gulf lineage 200 snakes). Temporal length loaded heavily and positively on the second principal component, 201 202 which explained 25.4% of variance and separated specimens with relatively elongate temporals (high values on PC2; primarily Atlantic lineage) from specimens with relatively short temporals 203 204 (low values on PC2; primarily Gulf lineage). The authors then performed a discriminant function 205 analysis (DFA) to determine how well the morphological variables assigned specimens to their correct genetic lineage. Because DFA assigned 96.3% of specimens to their correct genetic 206 207 lineage, Krysko et al. (2016b) used Wards hierarchical cluster analysis to infer lineages for

208 specimens that were not included in the genetic analysis; no details were provided indicating how such assignments were made. Finally, Krysko et al. (2016b) examined contact between the 209 5^{th} and 7^{th} supralabial scales, demonstrating that this condition characterized all members of the 210 211 Atlantic and Gulf lineages of D. couperi (sensu lato), but that it also characterized 19% of Texas 212 Indigo Snakes (D. melanurus erebennus). 213 We find serious inconsistencies in the scale characters measured as well as the methods 214 used to evaluate those characters. Krysko et al. (2016b) did not clearly identify the specific 215 temporal scale they measured. These authors described temporals to be 2+2 and invariant on each side, but noted that "many specimens had smaller divided scales" (Kryso et al., 2016b, p. 216 555). The 2+2 formula specifies the presence of a pair of anterior (one dorsal and one ventral) 217 218 and a pair of posterior (one dorsal and one ventral) temporals (Fig. 1A). This condition is 219 illustrated in Krysko et al. (2016b) for Drymarchon melanurus, but occurs in none of their 220 figures of D. couperi (sensu lato). Instead, figures for D. couperi (sensu lato) show an extra 221 ventral anterior temporal $(3_v+2 \text{ condition}; \text{ Fig. 1B}; \text{ likely the source of the phrase quoted above})$ 222 or an extra dorsal and ventral anterior temporal (4+2 condition; Fig. 1C). When identifying the temporal scale they measured, Krysko et al. (2016b) highlight the central-most dorsal temporal 223 of an individual expressing the 4+2 condition, but when summarizing results of their temporal 224 225 scale analyses they highlight the dorsal posterior temporal of an Atlantic lineage individual 226 expressing the 3_y+2 condition and the dorsal posterior temporal of a Gulf lineage individual expressing the 4+2 condition. Thus, it is unclear which temporal scale Krysko et al. (2016b) 227 measured for specimens with only two dorsal temporals, and how measures of the central dorsal 228 temporal allowed interpretation of unmeasured posterior temporals. 229

11

230	Examination of the infralabial character of Krysko et al. (2016b) reveals similar
231	problems. They state that the 7 th infralabial was used in their morphological analyses, but they
232	highlight the 6 th infralabial in the figures identifying the scale in question. This incongruity is
233	evident because the 4 th and 5 th infralabials are noticeably enlarged in all Eastern Indigo snakes
234	that we have examined (see results below), a feature consistent with all figures in Krysko et al.
235	(2016b), and the highlighted scale is adjacent to the 5 th infralabial. Thus, it is unclear which scale
236	was measured for this important character and whether the same scale was measured among all
237	individuals included in analysis. It is important to note that the mental scale is visible in all
238	figures of Krysko et al. (2016b) and should not be included in identifying the position of
239	individual infralabials.
240	Finally, we find problems with the DFA analysis used to determine rates of
241	misclassification and the cluster analysis used to classify snakes for which no molecular data are
242	available. Discriminant function analysis is a statistical technique used to generate linear
243	functions of variables that separate previously-identified groups. Krysko et al. (2016b) did not
244	publish these discriminant functions and instead used a clustering algorithm (Ward's hierarchical
245	analysis) to classify snakes into one of the two lineages. These authors report that the
246	discriminant model correctly identified 96.3% of specimens used to create the model; yet they
247	apparently allowed data used to create the model to also be used to test it, a procedure that yields
248	inflated estimates for fit of specimens to the model (SAS Institute, Inc., 2008). A better approach
249	would have been a k-fold cross validation procedure in which the dataset is divided so that part
250	of the data is used to generate the statistical model and the remainder is used for validation
251	(McGarigal et al., 2000). Nevertheless, DFA is an appropriate statistical tool for classifying
252	specimens using morphological data when molecular data are not available. Unfortunately,

253 Krysko et al. (2016b) use Wards hierarchical cluster analysis instead. This agglomerative 254 technique joins pairs of specimens that are most similar to each other based on measured 255 variables, and then iteratively adds additional specimens that are progressively less similar to the 256 initial clusters. However, Krysko et al. (2016b) did not report how they used the results of the 257 clustering analysis to assign individuals to Atlantic and Gulf Lineages, although statistical approaches are available for testing for group membership and significance (McGarigal et al., 258 259 2000). We suspect that a dendrogram was generated, the basal dichotomy was used to define two morphological groups, and these groups happened to conform to the Atlantic and Gulf lineages. 260 261 If so, we find two serious problems with this method. First, cluster analyses are designed to estimate numbers of groups when group membership is unknown. Because the number of groups 262 (two) was known, DFA was a more appropriate tool. Second, while a cluster analysis will always 263 264 generate a dendrogram that includes all specimens and that dendrogram will have at least two groups defined by a basal dichotomy, the procedure also provides statistical tests of group 265 membership from the terminal nodes to the basal node and tests whether two or more groups 266 267 differ significantly. Thus, it is possible for some individuals appearing on a dendrogram to 268 belong to no group (SAS Institute, Inc., 2008). We therefore suspect that some (perhaps many) lineage assignments made by Krysko et al. (2016b) using the clustering method lack statistical 269 270 support for membership in their assigned lineages. We think this is especially likely for the Mississippi specimen, because it is a geographical outlier. 271 272

- 273 MATERIALS AND METHODS
- 274

GENE SEQUENCE ANALYSIS

275	To explore the extent to which nuclear sequence data support speciation within Eastern
276	Indigo Snakes, we accessed the Krysko et al. (2016a) sequence data from GenBank (Appendix I)
277	and used ML methods to infer a nuclear gene tree from the NT3 dataset, following the methods
278	used by Krysko et al. (2016a). This dataset included 23 D. couperi (sensu lato) samples (N = 13
279	Atlantic clade, N = 10 Gulf clade) and four outgroup taxa (<i>Drymarchon melanurus erebennus</i> ,
280	Drymarchon melanurus rubidus, Coluber flagellum, Coluber constrictor). We fit different
281	models of nucleotide substitution and ranked them using BIC; this procedure suggested that the
282	Kimura (1980) model best fit the data. We then estimated a ML phylogeny for NT3 using the
283	package 'phangorn' (Schliep, 2011) in the statistical Program R (R Core Team, 2016). This
284	method allowed us to test whether a phylogenetic pattern inferred from nuclear DNA alone
285	differed from a concatenated analysis of mitochondrial and nuclear DNA.
200	
286	
286 287	MICROSATELLITE ANALYSIS
	MICROSATELLITE ANALYSIS We extracted and genotyped microsatellite DNA from 428 tissue samples (scale, shed
287	
287 288	We extracted and genotyped microsatellite DNA from 428 tissue samples (scale, shed
287 288 289	We extracted and genotyped microsatellite DNA from 428 tissue samples (scale, shed skins, or muscle from road-killed individuals) throughout peninsular Florida and southern
287 288 289 290	We extracted and genotyped microsatellite DNA from 428 tissue samples (scale, shed skins, or muscle from road-killed individuals) throughout peninsular Florida and southern Georgia. Twenty-five samples were obtained from the collections of the Florida Museum of
287 288 289 290 291	We extracted and genotyped microsatellite DNA from 428 tissue samples (scale, shed skins, or muscle from road-killed individuals) throughout peninsular Florida and southern Georgia. Twenty-five samples were obtained from the collections of the Florida Museum of Natural History, including 20 samples used in Krysko <i>et al.</i> (2016a). The samples from Krysko
287 288 289 290 291 292	We extracted and genotyped microsatellite DNA from 428 tissue samples (scale, shed skins, or muscle from road-killed individuals) throughout peninsular Florida and southern Georgia. Twenty-five samples were obtained from the collections of the Florida Museum of Natural History, including 20 samples used in Krysko <i>et al.</i> (2016a). The samples from Krysko <i>et al.</i> (2016a) included individuals from central Florida that represented both mitochondrial
287 288 289 290 291 292 293	We extracted and genotyped microsatellite DNA from 428 tissue samples (scale, shed skins, or muscle from road-killed individuals) throughout peninsular Florida and southern Georgia. Twenty-five samples were obtained from the collections of the Florida Museum of Natural History, including 20 samples used in Krysko <i>et al.</i> (2016a). The samples from Krysko <i>et al.</i> (2016a) included individuals from central Florida that represented both mitochondrial clades where they occur in close proximity. The remaining Florida samples (N = 170) were
287 288 289 290 291 292 293 294	We extracted and genotyped microsatellite DNA from 428 tissue samples (scale, shed skins, or muscle from road-killed individuals) throughout peninsular Florida and southern Georgia. Twenty-five samples were obtained from the collections of the Florida Museum of Natural History, including 20 samples used in Krysko <i>et al.</i> (2016a). The samples from Krysko <i>et al.</i> (2016a) included individuals from central Florida that represented both mitochondrial clades where they occur in close proximity. The remaining Florida samples (N = 170) were collected during field studies of <i>D. couperi</i> (Bauder & Barnhardt 2014, Bauder <i>et al.</i> 2016a) in

14

298	similar representation of both mitochondrial lineages (55% Atlantic and 45% Gulf). We
299	extracted DNA using the Qiagen DNeasy blood and tissue extraction kit (Qiagen, Inc., Valencia,
300	CA). We ran 17 microsatellite loci (Shamblin et al., 2011) within three multiplexed panels using
301	the Qiagen Multiplex PCR kit (see Appendix II for details). Each reaction contained 1X Qiagen
302	Multiplex PCR Master Mix, 0.2 μ M multiplexed primer mix (each primer at equal
303	concentrations), and 1 μ l of DNA extract in a total volume of 7 μ l. The PCR protocol was
304	modified from Shamblin et al. (2011) for multiplex PCR and consisted of an initial denaturation
305	of 95°C for 15 min, 20 touchdown cycles of 94°C for 30 s, 60°C minus 0.5°C per cycle for 90 s
306	and 72°C for 1 min, followed by 30 cycles of 94°C for 30 s, 50°C for 90 s and 72°C for 1 min,
307	and a final elongation step of 60°C for 30 min. Multiplexed PCR products were run on a 3130xl
308	Applied Biosystems Genetic Analyzer at the University of Idaho's Laboratory for Ecological,
309	Evolutionary, and Conservation Genetics. We scored fragment sizes using Genemapper 3.7
310	(Applied Biosystems).
311	We tested for the presence of null alleles that would lead to violations of Hardy-
312	Weinberg equilibrium assumptions. We eliminated any loci that had an estimated null allele
313	frequency > 0.10 using the software FreeNA (Chapuis & Estoup, 2007). We estimated
314	population structure and number of genetic clusters using the Bayesian clustering algorithm

315 Structure 2.3.4 (Pritchard, Stephens & Donnelly, 2000). We used the admixture model with

316 100,000 iterations following 10,000 burn-in repetitions. We evaluated K = 1-10 with five

317 replicates for each value of K. We used Structure Harvester (Earl & vonHoldt 2012) to

318 implement the Delta K method of Evanno *et al.* (2005) to estimate the number of clusters that

best explain the microsatellite data. We used CLUMPP v.1.1.2. (Jakobsson & Rosenberg, 2007)

320 to estimate the optimal cluster assignment in a single file based on the five replicates for the best

321	supported values of K. Because the Evanno et al. (2005) method analyzes changes in likelihood
322	between values of K, it cannot estimate Delta K for $K = 1$; therefore, we assessed the probability
323	of a $K = 1$ scenario with the raw likelihood values from Structure. Given biases of methods to
324	estimate population structure from microsatellite data (Janes et al., 2017), we sought to follow
325	recommendations from Janes et al. (2017) by describing and comparing population structure
326	predicted by both the Delta K and raw likelihood outputs from Structure, while also reporting bar
327	plot outputs for different values of K supported by those methods. We used the program
328	CLUMPAK (Kopelman et al., 2015) to visualize bar plot outputs from Structure. We note that
329	during these exploratory hierarchical analyses we observed additional fine scale genetic structure
330	among populations; these details were outside the scope of the current analysis, but we intend to
331	examine these data more fully in a future paper.
332	In addition to the clustering analyses, we used Mantel tests to test for isolation by
333	distance both across and within the two mitochondrial clades. We had exact coordinates for all
334	samples collected by co-authors. In the case of museum samples, points were only precise to
335	approximately 10 kilometers. However, considering that our study extent ranged approximately
336	800 kilometers from north to south, we do not consider this lack of precision as a major source of
337	error for our isolation-by-distance analysis. We estimated genetic distance at the individual level
338	using proportion of shared alleles (Bowcock et al., 1994). We estimated proportion of shared
339	alleles using package 'memgene' (Peres-Neto & Galpern, 2014) and implemented Mantel tests
340	using package 'vegan' (Oksanen et al., 2016) in the statistical Program R (R Core Team, 2016).
341	

342

MORPHOLOGICAL ANALYSIS

343	We examined 114 D. couperi (sensu lato) housed at the Orianne Center for Indigo
344	Conservation (OCIC), a sample that included 68 and 17 specimens from the Atlantic and Gulf
345	lineages of Krysko et al. (2016a), respectively, along with 4 specimens of unknown lineage
346	assignment, 12 specimens derived from F1 hybrids of Atlantic and Gulf lineage snakes, and 13
347	hybrids of Atlantic lineage snakes crossed with adults of unknown origin. Lateral or dorsolateral
348	photos of the head were taken of each specimen, including a millimeter ruler for scale. The
349	photos were used to record the condition of the temporal scales for each specimen. Four
350	categories were recognized based on the number and position of temporal scales (Fig. 1). We
351	generated a contingency table providing counts of specimens in each of the four categories for
352	each lineage, specimens of unknown lineage, and hybrids. Fisher's exact test was used to
353	determine whether the relative proportions of temporal scale categories differed between the
354	Atlantic and Gulf lineages. Additionally, we measured total head length (posterior-most point of
355	8^{th} supralabial to anterior tip of rostral; N = 111), head height (only for photos in lateral aspect; at
356	level of anterior-most point of parietal suture; $N = 35$), and length of the dorsal posterior
357	temporal (intersection of ventral posterior temporal, dorsal posterior temporal, and adjacent first
358	dorsal scale to intersection of ventral posterior temporal, dorsal posterior temporal, and adjacent
359	ventral temporal; $N = 111$). All distances were measured using Adobe Photoshop 6.0 with
360	reference to the photographed ruler. We used an analysis of covariance (ANCOVA) to test
361	whether the linear relationship between head length and head height differed between Atlantic
362	and Gulf lineages. We divided the length of the dorsal posterior temporal by head length to
363	control for effects of body size and used an analysis of variance to test whether temporal length
364	differed among the four categories of temporal scales.

365	We also examined 11 preserved specimens in the Auburn University Museum (AUM)
366	collections. These snakes were from southeastern Georgia and presumed to belong to the
367	Atlantic lineage. For these specimens, we measured length and width of the 6 th and 7 th infralabial
368	scales with dial calipers. We measured both scales because it was not clear which of these was
369	measured by Krysko et al. (2016b) and because they represent the position of the 7 th lower labial
370	scale if the mental scale was included and if it was excluded. Additionally, we used photos of the
371	type specimens presented in Krysko et al. (2016) to determine length and width of the 6 th and 7 th
372	infralabial scales using Adobe Photoshop 6.0. A length-to-width ratio was then calculated for
373	each specimen. Mean differences between 6 th and 7 th infralabials were tested as a paired t-test.
374	Differences between our sample of Atlantic lineage snakes and the type specimens was
375	determined by visual inspection. We used SAS v.9.4 for all analyses (SAS Institute, Inc., 2008)
376	with $\alpha = 0.05$.
377	
378	RESULTS
379	GENE SEQUENCE ANALYSIS
380	We found that the nuclear locus NT3 was completely invariant across all D. couperi
381	specimens, and thus NT3 had no variable sites for phylogenetic inference of D. couperi. As
382	expected, the inferred ML phylogeny estimated a polytomy (Fig. 2), indicating a lack of
383	phylogenetic structure among individuals from the two mitochondrial lineages of D. couperi
384	(sensu lato) (Krysko et al., 2016a). Specimens of D. melanurus erebennus and D. melanurus
385	rubidus clustered as sister taxa to the exclusion of all D. couperi specimens when rooted by
386	samples from Coluber.
387	

388

MICROSATELLITE ANALYSIS

18

389 We found evidence for null alleles in three loci (Dry33, Dry63, and Dry69). Therefore, 390 we eliminated these loci from further analysis and retained the remaining 14 loci. Delta K was 391 maximized at K = 2 (Fig. 3) and supported two genetic clusters: one associated with the 392 northern-most samples, and a second with the southern-most samples. However, there was extensive admixture between the two clusters, particularly in central Florida (Fig. 4; Fig. 5). For 393 394 the 20 samples from Krysko et al., (2016a), including representatives from Atlantic and Gulf lineages, we found all individuals were assigned to our southern cluster, and all were highly 395 396 admixed with the northern cluster (0.66 assignment to the southern cluster for the Gulf clade and 0.57 assignment to southern cluster for the Atlantic clade). Raw likelihood values from Structure 397 398 began to plateau at K = 3 (Fig. 3) and therefore supported three populations: a cluster of the 399 southern samples, but described further population subdivision of the northern samples into two 400 clusters.

Genetic distance was strongly correlated with geographic distance across the entire range of samples (Mantel r = 0.39; P < 0.001). When our samples were grouped into the Gulf and Atlantic lineages of Krysko *et al.* (2016a), similar effects of isolation by distance were evident within each lineage (Mantel's r = 0.39, p < 0.001 for the Gulf lineage; Mantel's r = 0.40, p < 0.001 for the Atlantic lineage), suggesting no strong barriers to gene flow across the range of *D*. *couperi* (*sensu* lato).

407

408

MORPHOLOGICAL ANALYSIS

409 Our sample of OCIC specimens recovered four categories of temporal scales from both
410 Atlantic and Gulf lineages (Table 1). In 22% of specimens, temporals conformed to the 2+2

411	formula that Krysko et al. (2016b) described as being invariant (Fig. 1A). We found that 38% of
412	specimens exhibited an extra ventral temporal (Fig. 1B), 26% of specimens had extra dorsal and
413	ventral temporals (Fig. 1C), and 14% of specimens exhibited an extra dorsal temporal (Fig. 1D).
414	The frequency with which these four categories occurred differed between Atlantic and Gulf
415	lineage specimens (Table 1; $df = 3$; Fisher's Exact P = 0.006), with Atlantic lineage snakes
416	tending to have two dorsal temporals and Gulf lineage snakes tending to have three dorsal
417	temporals. Head shape, based on ANCOVA of head width on head length, did not differ between
418	Atlantic and Gulf lineages in either slope (Fig. 7; $F = 0.07$; $df = 1$; $P = 0.79$) or intercept ($F =$
419	0.48; df = 1; $P = 0.49$). Length of the dorsal posterior temporal, expressed as a proportion of
420	head length, differed significantly among temporal categories (F = 18.34 ; df = 3 ; P < .0001),
421	with the dorsal posterior temporal being proportionately shorter when three dorsal temporal
422	scales are present relative to when two dorsal temporal scales are present (Fig. 6).
423	When the length and width of the 6 th and 7 th infralabial scales were converted to a length-
424	to-width ratio, the distribution of our sample of scales from Atlantic lineage snakes encompassed
425	values for both type specimens for each scale (Fig. 8). Length-to-width ratios differed between
426	6^{th} and 7^{th} infralabials (t = 8.07; df = 12, P < .0001), with 7^{th} infralabials being more elongate
427	than 6 th infralabials.
428	
429	DISCUSSION
430	GENE SEQUENCE ANALYSIS
431	We found no variation of the nuclear NT3 locus in sequences generated by Krysko et al.
432	(2016a). These authors included this locus because it "potentially represents an informative,
433	single-copy, unlinked locus that is likely evolving at a different rate than mtDNA

434	(mitochondrial) genes". From this we infer that the authors expected this nuclear gene to
435	corroborate patterns generated from mtDNA, solidifying their conclusion that two species are
436	present. However, if the locus was expected to be informative (i.e., sensu Ruane et al., 2014),
437	then the fact that it is invariant indicates that it (1) does not support population structure
438	consistent with two genetic populations (i.e., two species), (2) was not necessary to include it in
439	the study, and (3) only served to restrict phylogenetic inference to the mitochondrial genome and
440	its inherent problems. From a statistical perspective, the only effect of including NT3 in their
441	analysis was a slight reduction of branch lengths due to the sequence's invariance. For these
442	reasons, we suggest that the gene sequence data do not provide compelling evidence in support
443	of two distinct species of D. couperi (sensu lato).
444	
445	MICROSATELLITE ANALYSIS
445 446	MICROSATELLITE ANALYSIS Our population genetic analyses supported two populations within Eastern Indigo Snakes,
446	Our population genetic analyses supported two populations within Eastern Indigo Snakes,
446 447	Our population genetic analyses supported two populations within Eastern Indigo Snakes, as did that of Krysko <i>et al.</i> (2016a). However, there are two key differences between the
446 447 448	Our population genetic analyses supported two populations within Eastern Indigo Snakes, as did that of Krysko <i>et al.</i> (2016a). However, there are two key differences between the population structure described by our microsatellite analysis and their phylogenetic results. First,
446 447 448 449	Our population genetic analyses supported two populations within Eastern Indigo Snakes, as did that of Krysko <i>et al.</i> (2016a). However, there are two key differences between the population structure described by our microsatellite analysis and their phylogenetic results. First, the geographic pattern of our population clusters suggests a north-south orientation rather than a
446 447 448 449 450	Our population genetic analyses supported two populations within Eastern Indigo Snakes, as did that of Krysko <i>et al.</i> (2016a). However, there are two key differences between the population structure described by our microsatellite analysis and their phylogenetic results. First, the geographic pattern of our population clusters suggests a north-south orientation rather than a Gulf-Atlantic orientation. Second, and most importantly, our analyses document widespread
446 447 448 449 450 451	Our population genetic analyses supported two populations within Eastern Indigo Snakes, as did that of Krysko <i>et al.</i> (2016a). However, there are two key differences between the population structure described by our microsatellite analysis and their phylogenetic results. First, the geographic pattern of our population clusters suggests a north-south orientation rather than a Gulf-Atlantic orientation. Second, and most importantly, our analyses document widespread contemporary admixture of alleles from the northern and southern populations. Admixture
446 447 448 449 450 451 452	Our population genetic analyses supported two populations within Eastern Indigo Snakes, as did that of Krysko <i>et al.</i> (2016a). However, there are two key differences between the population structure described by our microsatellite analysis and their phylogenetic results. First, the geographic pattern of our population clusters suggests a north-south orientation rather than a Gulf-Atlantic orientation. Second, and most importantly, our analyses document widespread contemporary admixture of alleles from the northern and southern populations. Admixture occurs across the entire range of <i>D. couperi</i> (<i>sensu lato</i>), and cannot be characterized as a narrow
 446 447 448 449 450 451 452 453 	Our population genetic analyses supported two populations within Eastern Indigo Snakes, as did that of Krysko <i>et al.</i> (2016a). However, there are two key differences between the population structure described by our microsatellite analysis and their phylogenetic results. First, the geographic pattern of our population clusters suggests a north-south orientation rather than a Gulf-Atlantic orientation. Second, and most importantly, our analyses document widespread contemporary admixture of alleles from the northern and southern populations. Admixture occurs across the entire range of <i>D. couperi</i> (<i>sensu lato</i>), and cannot be characterized as a narrow hybrid zone. Instead, genetic structure among populations is best described as continuous

457	a much stronger isolation by distance relationship within lineages relative to across the two
458	lineages recognized by Krysko et al. (2016a,b). In fact, the correlation of genetic and geographic
459	distance is nearly identical within and between clusters, which is strong evidence that there are
460	not two separate evolutionary groups of Eastern Indigo Snakes. Based on examination of
461	microsatellites and issues we noted about their migration analysis, we contest the conclusion that
462	the two lineages of Krysko et al. (2016a) have "near discrete geographic distributions" (p. 118)
463	and that "dispersal between lineages is too low to influence demographic processes" (p. 119).
464	Rather, these results describe two parapatric populations with high levels of contemporary gene
465	flow, observations that are highly inconsistent with a two-species hypothesis and more in support
466	of a single evolutionary metapopulation lineage species of D. couperi (Frankham et al., 2012).
467	Our analyses add to a growing number of examples of Florida organisms that appear,
468	based on modeling of one or few genetic loci, to represent species that are distinct from other
469	mainland counterparts, but for which microsatellite or similar data demonstrate substantial gene
470	flow. Burbrink and Guiher (2014) estimated that there was such low gene flow between Florida
471	Cottonmouths and mainland cottonmouths that speciation must have occurred between the two, a
472	hypothesis immediately contested by data from Strickland et al. (2014) who detected a broad
473	geographic range of admixture using AFLP markers. Similarly, Thomas et al. (2014) described
474	alligator snapping turtles from the Apalachicola River and adjacent rivers to be a distinct species,
475	despite microsatellite data from Echelle et al. (2010) that are inconsistent with this conclusion
476	(Folt & Guyer, 2015). Likewise, Gordon et al. (2017) used mtDNA to describe a population of
477	Anaxyrus boreas in the western United States as a distinct species, a conclusion contested by
478	microsatellite analysis of gene flow (Forrest et al., 2017).

22

4	8	0
	0	U

MORPHOLOGICAL ANALYSIS

Contrary to the results presented in Krysko et al. (2016b), we reject the hypothesis that 481 482 the Atlantic and Gulf lineages are identifiable entities revealed by morphology. We reach this 483 conclusion after re-examining the variables used by Krysko et al. (2016b) to diagnose each lineage. Of the disparities that emerge between our analyses and theirs, the conformation of the 484 infralabials is the most problematic. The figures presented by Krysko et al. (2016b) for the 6th 485 infralabial show great promise for diagnosing lineages, and separation of the lineages along PC1 486 of their analysis seems to provide statistical support for this character. However, we were struck 487 488 by how dissimilar Atlantic specimens appeared to be from the scale shape ascribed to them by Krysko *et al.* (2016b). Our analyses demonstrate that the 6th and 7th infralabials differ in shape, 489 that the shape of the 7th infralabial conforms to the shape ascribed to the Atlantic lineage, and 490 that the shape of the 6th infralabial conforms to that ascribed to the Gulf lineage. It is unclear 491 492 which of these scales was measured by Krysko et al. (2016b) and we found that the range of 493 variation of each scale within a sample of Atlantic lineage snakes encompasses both type 494 specimens. One potential explanation for this discrepancy is that Krysko et al. (2016b) intended to measure the 7th infralabial but inadvertently measured the 6th for Gulf lineage specimens and 495 the 7th for Atlantic lineage specimens, perhaps because the mental scale sometimes was included 496 497 in counts and other times was not. Otherwise, we are left with a PCA that separates lineages 498 based on one of the two possible scales, but a univariate analysis that fails to confirm these 499 lineages.

500 Our results for the temporal scale reveal great variation in the number of these scales 501 present in Eastern Indigo Snakes. The four categories that characterize this variation are found in 502 both Atlantic and Gulf lineage snakes, indicating that this feature is not diagnostic. Nevertheless,

503 Atlantic lineage snakes tend to have two dorsal temporals, while Gulf lineage snakes tend to 504 have three. We assume that Krysko et al. (2016b) intended to measure the dorsal posterior temporal and, therefore, we focused our attention on this scale. Our data indicate that the length 505 506 of the dorsal posterior temporal, relative to head length, becomes shortened if three dorsal 507 temporals are present and becomes elongate if two dorsal temporals are present. This finding indicates that the scale shapes revealed by PC2 of Krysko et al. (2016b) represent distinguishable 508 509 groups, but these represent two phenotypes and not two species. We infer that the different morphologies of the dorsal posterior temporal result because, during embryonic development of 510 511 some individuals, the dorsal anterior temporal divides, limiting space for development of the 512 dorsal posterior temporal.

Krysko et al. (2016b) also used head shape to diagnose the two lineages. Relative head 513 514 length and head height did load heavily on their PC1 axis and they used this to diagnose the Atlantic lineage as having an elongate wide head and to diagnose the Gulf lineage as having a 515 516 short narrow head. Our bivariate examination of head length and height revealed no difference in 517 head shape between the two lineages. We have no convenient explanation for why our results differed from Krysko et al. (2016b), although we note that snake morphology can be difficult to 518 measure consistently (Madsen & Shine, 2001). Specimens preserved with mouths open are likely 519 520 to have larger values for head height than those with mouths closed. If the relative frequency of open-mouthed versus closed-mouthed specimens differed between lineages, this might yield a 521 522 spurious association of head shape with lineage. Our measurements were made from live 523 specimens with closed mouths, which we infer reduces measurement error. If the lineages truly 524 differ in head shape, our ANCOVA should have revealed this difference.

24

526	NATURAL HISTORY MECHANISMS
527	Our examination of genetic and morphological variation in D. couperi (sensu lato)
528	demonstrates that the two-species hypothesis proposed by Krysko et al. (2016b) is not supported
529	by available data. We offer several explanations for why true patterns of gene flow might result
530	in a lack of genetic and morphological differentiation. First, movements of D. couperi can be
531	extensive, especially for males. Male annual home range size is as large as ca. 1500 ha (Hyslop
532	et al., 2014) and average ca. 2.5-6.6 times larger than for females (Breininger et al., 2011;
533	Hyslop et al., 2014). In fact, the disparity between male and female home range sizes becomes
534	exacerbated in large snakes, a feature dominated by data from D. couperi (Fig. 9; Appendix III).
535	Within peninsular Florida, male D. couperi can move up to ca. 2 km in a single day and average
536	movement distance in males is ca. twice that of females (Bauder et al., 2016a; D. Breininger,
537	unpublished data). Furthermore, males within peninsular Florida increase their movement
538	frequency, distance, and home range size during the breeding season (Bauder et al., 2016a, b).
539	Dispersal distance of males may be 10 times that of females (Stiles, 2013), with a small adult
540	male in southern Georgia dispersing at least 22.2 km (straight line) over approximately two years
541	(Stevenson & Hyslop, 2010).
542	A second feature of D. couperi life history that reduces opportunity for speciation is the

A second feature of *D. couperi* life history that reduces opportunity for speciation is the variety of habitats used by these animals throughout a year (e.g., Hyslop *et al.*, 2014), particularly in peninsular Florida, where individuals will even utilize habitats with varying degrees of anthropogenic disturbance (Bauder *et al.*, in press). This broad habitat use reduces the opportunity for ecological barriers to gene flow and is consistent with the high rates of gene flow indicated by our microsatellite analysis. Additional life history observations show that *D. couperi* (*sensu lato*) can cross fresh and saltwater features 6–264 m wide (O'Bryan, 2017; D. Stevenson,

549	personal observation; D. Breininger, unpublished data), and we note that traditional river barriers
550	(Soltis et al., 2006) do not appear to limit gene flow in these large snakes. While we do not doubt
551	that a historical climatic event may have separated D. couperi into two populations (Krysko et
552	al., 2016a), the observed levels of contemporary gene flow indicate that genetic populations of
553	D. couperi are in the process of merging back into a single evolutionary population (i.e.,
554	species), as has been observed for diverse taxa following climatic cycles (Frankham et al., 2011).
555	Together, our knowledge of <i>D. couperi</i> movement patterns and life history allows us to
556	hypothesize that limited female movement drives structure of the maternally-inherited mtDNA
557	data presented by Krysko et al. (2016a), even though high levels of male movement drive
558	extensive gene flow of the nuclear genome (Thorpe et al., 2008). This life history-based model
559	of intersexual variance in D. couperi gene flow is consistent with two other reptile systems for
560	which life-history strategies generate contrasting patterns of gene flow among populations. First,
561	female philopatry of Loggerhead Sea Turtles (Caretta caretta Linnaeus 1758) causes structuring
562	of mtDNA in the Atlantic Ocean, but high male dispersal drives significant nuclear gene flow
563	among populations (Bowen et al., 2005). Second, a recent study of Neotropical snakes found
564	active-foraging species to have greater rates of nuclear gene flow than ambush-predator species
565	with more limited dispersal (de Fraga et al., 2017). Last, and most relevant, many squamates are
566	polygynous and are characterized by greater male dispersal relative to females (Leturque &
567	Rousset, 2004; e.g., Keog, Webb & Shine, 2007; Dubey et al., 2008; Calsbeek, 2009); therefore,
568	squamates typically have greater nuclear gene flow than that of the mitochondrion (Thorpe et al.,
569	2008). This pattern is also seen in many waterfowl species (Scribner et al. 2001; Peters et al.
570	2012). Thus, we suggest that D. couperi is similar to other reptile species in that life history
571	provides explanations for why phylogeographic patterns from mtDNA are inconsistent with

572	historical and/or contemporary patterns of nuclear DNA. Because of this incongruence and the
573	high levels of recent gene flow among populations observed by our microsatellite analysis, we
574	place Drymarchon kolpobasileus into synonomy with D. couperi. For now, we retain all Eastern
575	Indigo Snakes within D. couperi, but note that the analysis of Krysko et al. (2016b) reveals that
576	this species may not be diagnosable from D. melanurus erebennus (Cope 1960).
577	
578	CONSERVATION IMPLICATIONS
579	Eastern Indigo Snakes are now being released into the Conecuh National Forest (CNF) of
580	south-central Alabama and to the Apalachicola Bluffs and Ravines Reserve in the panhandle of
581	Florida. Efforts to repatriate the species are the result of extensive collaborations and
582	partnerships between state and federal agencies, as well as non-governmental conservation
583	organizations. Initially, snakes used for release were to come from wild-caught gravid females
584	taken from sites in southeastern Georgia, retained in captivity until they laid eggs, and then
585	released at the point of capture. Eggs from these initial females then were to be hatched in
586	captivity and raised for release at one of the two repatriation sites or donated to the Orianne
587	Center for Indigo Conservation (OCIC), where captive breeding from these and other donated
588	animals was to occur, eventually replacing use of wild-captured females. Many meetings were
589	held among stakeholders and, as Krysko et al. (2016a) note, their preliminary molecular results
590	(Krysko, Smith & Smith, 2010) were presented at one of these early meetings as a challenge to
591	the release of Atlantic lineage snakes at the two release sites. Here we describe why data from
592	that preliminary report did not compel changes in the repatriation plan and why continuation of
593	that plan is unlikely to encounter the problems predicted by Krysko et al. (2016a).

27

594 A lack of apparently viable populations of Eastern Indigo Snakes in the Florida 595 panhandle and southern Alabama and Mississippi was recognized as a significant gap in efforts to retain Eastern Indigo Snakes across its historic geographic range. This gap guided the choice 596 597 of the two sites where repatriation was deemed reasonable (Enge et al., 2013). Data from Krysko et al. (2010) were used to propose that only snakes of the Gulf lineage be used for repatriation 598 599 because genetic information from two isolated samples from the panhandle of Florida were of 600 this lineage. However, because Eastern Indigo Snakes were extirpated at both sites, discussions 601 centered on how to deal with the uncertainty of which lineage historically occurred at each site 602 and, therefore, which lineage(s) were appropriate to release at each site. This uncertainty recognized the fact that, for both sites, the 3rd and 4th closest localities currently occupied by 603 604 Eastern Indigo Snakes have the Atlantic lineage. Additionally, the Atlantic lineage occurs in the 605 Suwannee drainage, which empties into the Gulf of Mexico, further illustrating the uncertainty in identifying the location of the Gulf-Atlantic split and that both lineages are found in north 606 607 Florida where they might serve as colonists for the release sites. Participants in these discussions 608 were made aware of then-unpublished microsatellite data demonstrating widespread gene flow 609 between lineages and observations from the zoo and herpetocultural communities documenting interbreeding of the two lineages with no apparent effects of outbreeding depression. While there 610 611 is currently no evidence of ecological differences between Atlantic and Gulf lineage snakes, 612 snakes from northern populations are known to differ markedly from southern populations in 613 seasonal activity. Specifically, D. couperi in the latter region do not appear dependent upon 614 Gopher Tortoise (Gopherus polyphemus Daudin 1802) burrows for winter refugia, likely because of milder winter temperatures (Stevenson, Dyer & Willis-Stevenson, 2003; Hyslop, Cooper & 615 616 Meyers, 2009; Hyslop et al., 2014; Breininger et al., 2011; Bauder et al., 2016a). As a result, use

617	of snakes from similar latitudes appeared to be more important in ensuring successful
618	repatriation than use of snakes from the same mitochondrial lineage. The majority of meeting
619	participants therefore concluded that the wide movements of male D. couperi and broad habitat
620	use of the species made matching of mitochondrial DNA lineages less important in guiding
621	repatriation than matching spatial variation in ecology. Preservation of mitochondrial lineages
622	was already achieved through apparently viable populations at the northern and southern
623	geographic extremes of D. couperi and release of snakes of one mitochondrial lineage into an
624	area historically occupied by the other lineage was viewed simply as replicating patterns of gene
625	flow observed throughout much of north and central Florida.
626	Those charged with implementing conservation planning for the Eastern Indigo Snake
627	welcome the opportunity to base those plans on the best published science. Because inferences
628	from phylogenetic analyses of few loci can conflict with those from contemporary gene flow, we
629	suggest that, at a minimum, both tools should be considered to adequately reveal recently
630	diverged taxa. Additionally, we argue that a more-consistent voice from the community of
631	systematists will emerge when life-history data are allowed to inform speciation models. For
632	example, the potential for large snakes to move long distances as well as a difference in
633	movement behavior between the sexes limit the utility of mitochondrial data alone to reveal
634	novel species. We suspect this disparity in movement is rampant within squamates (see e.g.
635	Perry & Garland, 2002). Finally, species descriptions for which diagnoses merely report
636	measures of variables that overlap widely among taxa (e.g., Thomas et al., 2014; Krysko et al.,
637	2016b) or that are not derived from results presented in the paper (e.g., Burbrink & Guiher,
638	2014) should be rejected because they fail to provide further evidence that the proposed taxon is
639	identifiable as an individual. We point to Warwick et al. (2015), Sovic et al. (2016), and Forrest

640	et al. (2017) as examples of how careful melding of phylogenetic and population genetic
641	analyses can improve the process by which one might determine whether several populations
642	have diverged sufficiently to be recognized as distinct species. Thus, we urge authors and
643	reviewers to be particularly critical of species descriptions without careful analysis of
644	contemporary gene flow, because these papers can incorrectly delimit species, contribute to
645	erroneous hyperdiversity, and confuse efforts to understand and conserve imperiled biodiversity.
646	
647	ACKNOWLEDGMENTS
648	We thank the Alabama Department of Conservation and Natural Resources, Auburn
649	University College of Science and Mathematics, Orianne Society, and U.S. Fish and Wildlife
650	Service for funding that made this study possible. We thank the Orianne Center for Indigo
651	Conservation for allowing us access to the captive breeding collection of <i>D. couperi</i> , and we
652	thank the Florida Museum of Natural History, M. Aldecoa, P. Barnhart, D. Ceilley, Z. Forsburg,
653	G. Graziani, C. Lechowicz, J. Macey, S. Mortellaro, L. Paden, D. Parker, K. Ravenscroft, M.
654	Ravenscroft, B. Rothermel, A. Safer, J. Sage, F. Snow, K. Stohlgren, M. Wallace, Sr., and J.
655	Wasilewski for providing samples. Use of live snakes was covered under Auburn University
656	IACUC protocols (PRN 2007-1142, 2010-1750, 2013-2386) and a federal permit TE32397A-O.
657	This paper is contribution no. [] of the Auburn University Museum of Natural History.
658	
659	REFERENCES

660 Auffenberg WF. 1963. The fossil snakes of Florida. *Tulane Studies in Zoology* 10: 131–216

661	Agapow PM,	, Bininda-Emonds	OR,	Crandall KA,	Gittleman JL,	Mace	GM,	Marshall	JC, Purv	is
-----	------------	------------------	-----	--------------	---------------	------	-----	----------	----------	----

- A. 2004. The impact of species concept on biodiversity studies. *The Quarterly review of biology* 79: 161–179.
- Avise JC. 1989. A role for molecular genetics in the recognition and conservation of endangered
 species. *Trends in Ecology and Evolution* 4: 279–281.
- 666 Avise JC, Shapira JF, Daniel SW, Aquadro CF, Lansman RA. 1983. Mitochondrial DNA
- differentiation during the speciation process in *Peromyscus*. *Molecular Biology and Evolution* 1: 38–56.
- Ballard JWO, Whitlock MC. 2004. The incomplete natural history of mitochondria. *Molecular Ecology* 13: 729–744.
- Bauder JM, Barnhart P. 2014. Factors affecting the accuracy and precision of triangulated radio
 telemetry locations of Eastern Indigo Snakes (*Drymarchon couperi*). *Herpetological Review* 45: 590–597.
- Bauder JM, Breininger DR, Bolt MR, Legare ML, Jenkins CL, Rothermel BB, McGarigal K.
- 675 2016a. Seasonal variation in eastern indigo snake (*Drymarchon couperi*) movement
- 676 patterns and space use in peninsular Florida at multiple temporal scales. *Herpetologica*677 72: 214–226.
- Bauder JM, Breininger DR, Bolt MR, Legare ML, Jenkins CL, Rothermel BB, McGarigal K.
- 679 2016. The influence of sex and season on conspecific spatial overlap in a large, actively680 foraging colubrid snake. *PLoS ONE* 11: 1–19.
- Bauder JM, Breininger DR, Bolt MR, Legare ML, Jenkins CL, Rothermel BB, McGarigal K. In
- 682 press. Multi-level, multi-scale habitat selection by a wide-ranging ranging federally
- 683 threatened snake. *Landscape Ecology*.

684	Bowcock JM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL. 1994. High
685	resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:
686	455–457.
687	Bowen BW, Bass AL, Soares L, Toonen RJ. 2005. Conservation implications of complex
688	population structure: Lessons from the loggerhead turtle (Caretta caretta). Molecular
689	<i>Ecology</i> 14: 2389–2402.
690	Breininger DR, Legare ML, Smith RB. 2004. Eastern Indigo Snakes (Drymarchon couperi) in
691	Florida. In: Akcakaya H, Burgman M, Kindvall O, Wood C, Sjogren-Gulve P, Hatfield J,
692	McCarthy M, eds. Species Conservation and Management: Case Studies. New York:
693	Oxford University Press, 299–311.
694	Breininger DR, Bolt MR, Legare ML, Drese JH, Stolen ED. 2011. Factors Influencing Home-
695	Range Sizes of Eastern Indigo Snakes in Central Florida. Journal of Herpetology 45:
696	484–490.
697	Burbrink FT, Guiher TJ. 2014. Considering gene flow when using coalescent methods to delimit
698	lineages of North American pitvipers of the genus Agkistrodon. Zoological Journal of the
699	Linnean Society.
700	Calsbeek R. 2009. Sex-specific adult dispersal and its selective consequences in the brown anole,
701	Anolis sagrei. Journal of Animal Ecology 78: 617–624.
702	Carstens BC, Pelletier TA, Reid NM, Satler JD. 2013. How to fail at species delimitation.
703	Molecular ecology 22: 4369–83.
704	Chapuis MP, Estoup A. 2007. Microsatellite null alleles and estimation of population
705	differentiation. Molecular Biology and Evolution 24: 621–631.

706	Clark DR Jr. 1970.	Ecological study of	the worm snake,	Carphophis vermis	(Kennicott).
-----	--------------------	---------------------	-----------------	-------------------	--------------

- 707 *Miscellaneous Publications of the University of Kansas Museum of Natural History* 19:
 708 85–194.
- 709 Daugherty C, Cree A, Hay J, Thompson M. 1990. Neglected taxonomy and continuing
- extinctions of tuatara (*Sphenodon*). *Nature* 374: 177–179.
- de Fraga R, Lima AP, Magnusson WE, Ferrao M, Stow AJ. 2017. Contrasting patterns of gene
- flow for Amazonian snakes that actively forage and those that wait in ambush. *Journal of Heredity* 108: 524–534.
- 714 Dodd CK, Barichivich JW. 2007. Movements of large snakes (Drymarchon, Masticophis) in
- north-central Florida. *Florida Scientist* 70: 83–94.
- Dubey S, Brown GP, Madsen T, Shine R. 2008. Male-biased dispersal in a tropical Australian
 snake (*Stegonotus cucullatus*, Colubridae). *Molecular Ecology* 17: 3506–3514.
- Dupuis JR, Roe AD, Sperling FAH. 2012. Multi-locus species delimitation in closely related
 animals and fungi: one marker is not enough. *Molecular Ecology* 21: 4422–4436.
- 720 Durner GM, Gates JE. 1993. Spatial ecology of black rat snakes on Remington Farms,

721 Maryland. *Journal of Wildlife Management* 57: 812–826.

Earl DA, vonHoldt BM. 2012. STRUCTURE HARVESTER: a website and program for

visualizing STRUCTURE output and implementing the Evanno method. *Conservation Genetic Resources* 4: 359–361.

- Echelle AA, Hackler JC, Lack JB, Ballard SR, Roman J, Fox SF, Leslie DM, Den Bussche RA.
- 726 2010. Conservation genetics of the alligator snapping turtle: cytonuclear evidence of
- range-wide bottleneck effects and unusually pronounced geographic structure.
- 728 *Conservation Genetics* 11: 1375–1387.

729	Enge KM, Stevenson DJ, Elliott MJ, Bauder JM. 2013. The historical and contemporary
730	distribution of the eastern indigo snake (Drymarchon couperi). Herpetological
731	Conservation and Biology 8: 288–307.
732	Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the
733	software STRUCTURE: a simulation study. <i>Molecular Ecology</i> 14: 2611–2620.
734	Fitch HS. 1949. Study of snake populations in central California. American Midland Naturalist
735	41: 513–579.
736	Fitch HS. 1958. Home ranges, territories, and seasonal movements of vertebrates of the natural
737	history reservation. Miscellaneous Publications of the University of Kansas Museum of
738	Natural History 11: 63–326.
739	Fitch HS. 1960. Autecology of the copperhead. Miscellaneous Publications of the University of
740	Kansas Museum of Natural History 13: 85–288.
741	Fitch HS. 1963a. Natural history of the black rat snake (Elaphe o. obsoleta) in Kansas. Copeia
742	1963: 638–649.
743	Fitch HS. 1963b. Natural history of the racer, Coluber constrictor. Miscellaneous Publications of
744	the University of Kansas Museum of Natural History 15: 351–468.
745	Fitch HS. 1965. An ecological study of the garter snake, Thamnophis sirtalis. Miscellaneous
746	Publications of the University of Kansas Museum of Natural History 15: 493–564.
747	Fitzgerald M, Shine R, Lemckert F. 2002. Spatial ecology of arboreal snakes (Hoplocephalus
748	stephensii, Elapidae) in an eastern Australian forest. Austral Ecology 27: 537-545.
749	Folt B, Guyer C. 2015. Evaluating recent taxonomic changes for alligator snapping turtles
750	(Testudines: Chelydridae). Zootaxa 3947: 447-450.

751	Folt B, Garrison N, Guyer C, Rodriguez J, Bond JE. 2016. Phylogeography and evolution of the
752	Red Salamander (Pseudotriton ruber). Molecular Phylogenetics and Evolution 98: 97–
753	110.
754	Forrest MJ, Stiller J, King TL, Rouse GW. 2017. Between hot rocks and dry places: the status of
755	the Dixie Valley Toad. Western North American Naturalist 77: 162–175.
756	Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB. 2011.
757	Predicting the probability of outbreeding depression. Conservation Biology 25: 465-475.
758	Frankham R, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC, Mendelson JR,
759	Porton IJ, Ralls K, Ryder OA. 2012. Implications of different species concepts for
760	conserving biodiversity. Biological Conservation 153: 25-31.
761	Funk DJ. 1999. Molecular systematics of cytochrome oxidase I and 16S from Neochlamisus leaf
762	beetles and the importance of sampling. Molecular Biology and Evolution 16: 67-82.
763	Funk DJ, Omland KE. 2003. Species-level paraphyly and polyphyly: frequency, causes, and
764	consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology,
765	Evolution, and Systematics 34: 397–423.
766	Gamble T, Berendzen PB, Bradley Shaffer H, Starkey DE, Simons AM. 2008. Species limits and
767	phylogeography of North American cricket frogs (Acris: Hylidae). Molecular
768	phylogenetics and evolution 48: 112–25.
769	Gerald GW, Bailey MA, Holmes JN. 2006. Movements and activity range sizes of northern
770	pinesnakes (Pituophis melanoleucus melanoleucus) in middle Tennessee. Journal of
771	Herpetology 40: 503–510.
772	Ghiselin M. 1997. Metaphysics and the origin of species. SUNY Press, Albany.

773	Goddard P. 1980. Limited movement areas and spatial behavior in the smoothsnake Coronella
774	austriaca in southern England. In: Coborn J, ed. Proceedings of the European
775	Herpetological Symposium. Oxford: Cotswold Wild Life Park Limited, 25-40.
776	Gordon MR, Simandle ET, Tracy CR. 2017. A diamond in the rough desert shrublands of the
777	Great Basin in the Western United States: A new cryptic toad species (Amphibia:
778	Bufonidae: Bufo (Anaxyrus)) discovered in Northern Nevada. Zootaxa 4290: 123-139.
779	Grismer JL, Bauer AM, Grismer LL, Thirakhupt K, Aowphol A, Oaks JR, Wood PL, Onn CK,
780	Thy N, Cota M, Jackman T. 2014. Multiple origins of parthenogenesis, and a revised
781	species phylogeny for the Southeast Asian butterfly lizards, Leiolepis. Biological Journal
782	of the Linnean Society 113: 1080–1093.
783	Hudson RR. 1990. Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary
784	<i>Biology</i> 7: 1–44.
785	Hyslop NL, Cooper RJ, Meyers JM. 2009. Seasonal shifts in shelter and microhabitat use of the
786	threatened Eastern Indigo Snake (Drymarchon couperi) in Georgia. Copeia 2009: 458-
787	464.
788	Hyslop NL, Stevenson DJ, Macey JN, Carlile LD, Jenkins CL, Hostetler J a., Oli MK. 2012.
789	Survival and population growth of a long-lived threatened snake species, Drymarchon
790	couperi (Eastern Indigo Snake). Population Ecology 54: 145-156.
791	Hyslop NL, Meyers JM, Cooper RJ, Stevenson DJ. 2014. Effects of body size and sex of
792	Drymarchon couperi (Eastern Indigo Snake) on habitat use, movements, and home range
793	size in Georgia. Journal of Wildlife Management 78: 101–111.
794	Irwin, DE. 2002. Phylogeographic breaks without geographic barriers to gene flow. Evolution
795	56: 2383–2394.

- Janes JK, Miller JM, Dupuis JR, Malenfant RM, Gorrell JC, Cullingham CI, Andrew RL. 2017.
- The K = 2 conundrum. *Molecular Ecology* 26: 3594-3602.
- Johnson G. 2000. Spatial ecology of the Eastern Massasauga (*Sistrurus c. catenatus*) in a New
- 799 York peatland. *Journal of Herpetology* 34: 186–192.
- Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for
- 801 dealing with label switching and multimodality in analysis of population structure.
- 802 *Bioinformatics* 23: 1801–1806.
- 803 Kapfer JM, Pekar CW, Reineke DM, Coggins JR, Hay R. 2010. Modeling the relationship
- 804 between habitat preferences and home-range size: a case study on a large mobile colubrid
- snake from North America. *Journal of Zoology* 282: 13–20.
- Keogh JS, Webb JK, Shine R. 2007. Spatial genetic analysis and long-term mark-recapture data
 demonstrate male-biased dispersal in a snake. *Biology Letters* 3: 33–35.
- Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through
- 809 comparative studies of nucleotide sequences. *Journal of Molecular Evolution* 16: 111–
- 810 120.
- 811 Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. 2015. CLUMPAK: a program
- 812 for identifying clustering modes and packaging population structure inferences across *K*.
- 813 *Molecular Ecology Resources* 15: 1179–1191.
- 814 Krysko KL, Smith DJ, Smith CA. 2010. Historic and current geographic distribution and
- 815 preliminary evidence of population genetic structure in the Eastern Indigo Snake
- 816 (Drymarchon couperi) in the southeastern United States. Final Report, Project Agreement
- 817 06011, Florida Fish and Wildlife Conservation Commission, Tallahassee, Florida, USA.

818	Krysko KL, Nuñez LP, Lippi CA, Smith DJ, Granatosky MC. 2016a. Pliocene-Pleistocene
819	lineage diversifications in the Eastern Indigo Snake (Drymarchon couperi) in the
820	Southeastern United States. Molecular Phylogenetics and Evolution 98: 111-122.
821	Krysko KL, Granatosky MC, Nuñez LP, Smith DJ. 2016b. A cryptic new species of Indigo
822	Snake (genus Drymarchon) from the Florida Platform of the United States. Zootaxa
823	4138: 549–569.
824	Layne JN, Steiner TM. 1996. Eastern indigo snake (Drymarchon corais couperi): summary of
825	research conducted on Archbold Biological Station. Report prepared under Order,
826	43910–43916.
827	Leturque H, Rousset F. 2004. Intersexual competition as an explanation for sex-ratio and
828	dispersal biases in polygynous species. Evolution 58: 2398-2408.
829	Linehan JM, Smith LL, Steen DA. 2010. Ecology of the eastern kingsnake (Lampropeltis getula
830	getula) in a longleaf pine (Pinus palustris) forest in Southwestern Georgia.
831	Herpetological Conservation and Biology 5: 94–101.
832	Macartney JM, Gregory PT, Larsen KW. 1988. A tabular survey of data on movements and
833	home ranges of snakes. Journal of Herpetology 22: 61-73.
834	Mace GM. 2004. The role of taxonomy in species conservation. Philosophical transactions of
835	the Royal Society of London. Series B, Biological Sciences 359: 711–9.
836	Madsen T, Shine R. 2001. Do snakes shrink? Oikos 92: 187–188.
837	McGarigal K, Cushman S, Stafford S. 2000. Multivariate Statistics for Wildlife and Ecology
838	Research. New York: Springer.
839	Meirmans PG. 2012. The trouble with isolation by distance. <i>Molecular Ecology</i> 21: 2839–2846.

840	Miller GJ, Smith LL, Johnson SA, Franz R. 2012. Home range size and habitat selection in the
841	Florida Pine Snake (Pituophis melanoleucus mugitus). Copeia 2012: 706–713.
842	Moler PE. 1985. Home range and seasonal activity of the eastern indigo snake, Drymarchon
843	corais couperi, in northern Florida. Final Performance Report, Study No. E-1-06, III-A-5,
844	Florida Game and Fresh Water Fish Commission, Tallahassee, FL.
845	Nallau G. 1968. Espace vital et territoire chez Vipera aspis. Ecoéthologie 1: 55–77.
846	O'Bryan CJ. 2017. Documentation of unusual movement behaviour of the indigo snake
847	Drymarchon couperi (Holbrook, 1842) (Squamata: Colubridae), an upland species, in a
848	pastureland matrix of the USA. Herpetological Notes 10: 317-318.
849	Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos
850	P, Stevens MHH, Wagner H. 2016. Vegan: Community Ecology Package. R package
851	version 2.3-3. <u>https://CRAN.R-project.org/package=vegan</u> .
852	Pauly GB, Piskurek O, Shaffer HB. 2007. Phylogeographic concordance in the southeastern
853	United States: the flatwoods salamander, Ambystoma cingulatum, as a test case.
854	Molecular Ecology 16: 415–29.
855	Peres-Neto P, Galpern P. 2014. Memgene: Spatial pattern detection in genetic distance data
856	using Moran's Eigenvector Maps. R package version 1.0. https://CRAN.R-
857	project.org/package=memgene.
858	Perry G, Garland T. 2002. Lizard home ranges revisited: effects of sex, body size, diet, habitat,
859	and phylogeny. Ecology 83: 1870–1885.
860	Peters JL, Bolender KA, Pearce JM. 2012. Behavioural vs. molecular sources of conflict between
861	nuclear and mitochondrial DNA: the role of male-biased dispersal in a Holarctic sea
862	duck. <i>Molecular Ecology</i> 21: 3562–3575.

- Pritchard, JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus
 genotype data. *Genetics* 155: 945–959.
- 865 R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for
- 866 Statistical Computing, Vienna, Austria. https://www.R-project.org/.
- 867 Roth ED. 2005. Spatial ecology of a cottonmouth (*Agkistrodon piscivorus*) population in east
- 868 Texas. Journal of Herpetology 39: 308–312.
- Roth, TC II, Greene BD. 2006. Movement patterns and home range use of the northern
 watersnake (*Nerodia sipedon*). *Copeia* 2006: 544–551.
- 871 Ruane S, Bryson RW, Pyron RA, Burbrink FT. 2014. Coalescent species delimitation in
- 872 milksnakes (genus *Lampropeltis*) and impacts on phylogenetic comparative analyses.
 873 *Systematic Biology* 63: 231–250.
- 874 Rubinoff D, Holland B. 2005. Between two extremes: mitochondrial DNA is neither the panacea
- 875 nor the nemesis of phylogenetic and taxonomic inference. *Systematic Biology* 54: 952–
 876 961.
- Rudolph DC, Burgdorf SJ. 1997. Timber rattlesnakes and Louisiana pine snakes of the western
 Gulf Coastal Plain: hypotheses of decline. *Texas Journal of Science* 49: 111–122.
- 879 SAS Institute Inc. 2008. SAS/STAT® 9.2 User's Guide. Cary, NC: SAS Institute Inc.
- 880 Savage JM. 2002. The Amphibians and Reptiles of Costa Rica: A Herpetofauna between Two
- 881 *Continents, Between Two Seas.* University of Chicago Press.
- 882 Schliep KP. 2011. phangorn: phylogenetic analysis in R. *Bioinformatics* 27, 592–593.
- 883 Scribner KT, Petersen MR, Fields RL, Talbot SL, Pearce JM, Chesser RK. 2001. Sex-biased
- gene flow in spectacled eiders (Anatidae): Inferences from molecular markers with
- contrasting modes of inheritance. *Evolution* 55: 2105–2115.

886	Shamblin BM, Alstad TI, Stevenson DJ, Macey JN, Snow FH, Nairn CJ. 2011. Isolation and
887	characterization of microsatellite markers from the threatened eastern indigo snake
888	(Drymarchon couperi). Conservation Genetic Resources 3: 303–306.
889	Shine R, Fitzgerald M. 1996. Large snakes in a mosaic rural landscape: the ecology of carpet
890	pythons Morelia spilota (Serpentes: Pythonidae) in coastal eastern Australia. Biological
891	Conservation 76: 113–122.
892	Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS. 2006. Comparative phylogeography
893	of unglaciated eastern North America. Molecular Ecology 15: 4261-93.
894	Soltis PS, Gitzendanner MA. 1999. Molecular systematics and the conservation of rare species.
895	Conservation Biology 13: 471–483.
896	Sovic MG, Fries AG, Gibbs HL. 2016. Origin of a cryptic lineage in a threatened reptile through
897	isolation and historical hybridization. Heredity 117: 358-366.
898	Stevenson DJ, Dyer KJ, Willis-Stevenson BA. 2003. Survey and monitoring of the Eastern
899	Indigo Snake in Georgia. Southeastern Naturalist 2: 393-408.
900	Stevenson DJ, Enge KM, Carlile LD, Dyer KJ, Norton TM, Hyslop NL, Kiltie RA. 2009. An
901	Eastern Indigo Snake (Drymarchon couperi) mark-recapture study in southeastern
902	Georgia. Herpetological Conservation and Biology 4: 30-42.
903	Stevenson DJ, Hyslop NL. 2010. Long-distance interpopulation movement: Drymarchon
904	couperi (Eastern Indigo Snake). Herpetological Review 41: 91-92.
905	Stiles JA. 2013. Evaluating the use of enclosures to reintroduce Eastern Indigo snakes.
906	Unpublished M.S. thesis, Auburn University.
907	Strickland JL, Parkinson CL, McCoy JK, Ammerman LK. 2014. Phylogeography of Agkistrodon
908	piscivorus with emphasis on the western limit of its range. Copeia 2014: 639-649.

Thomas TM, Granatosky MC, Bourque JR, Krysko KL, Moler PE, Gamble T, Suarez E, Leone

41

910	E, Enge KM, Roman J. 2014. Taxonomic assessment of Alligator Snapping Turtles
911	(Chelydridae: Macrochelys), with the description of two new species from the
912	southeastern United States. Zootaxa 3786: 141-165.
913	Thorpe RS, Surget-Groba Y, Johannson H. 2008. The relative importance of ecology and
914	geographic isolation for speciation in anoles. Philosophical Transactions of the Royal

915 Society of London. Series B, Biological Sciences 363: 3071–3081.

916 US Fish and Wildlife Service. 1978. Endangered and Threatened Wildlife and Plants. Listing of

917 the Eastern indigo snake as a threatened species. *Federal Register* 43:4026–4029.

- US Fish and Wildlife Service. 1982. Eastern indigo snake recovery plan. US Fish and Wildlife
 Service, Atlanta, GA. 23 pp.
- 920 US Fish and Wildlife Service. 2008. Eastern Indigo Snake (Drymarchon couperi): 5-year
- 921 Review-Summary and Evaluation. Mississippi Ecological Services Field Office, Jackson,
 922 MS. 30 pp.
- 923 Wakely J. 2008. Coalescent Theory: An Introduction. Robers and Company Publishers.
- 924 Warwick AR, Travis J, Lemmon EM. 2015. Geographic variation in the Pine Barrens Treefrog

925 (*Hyla andersonii*): concordance of genetic, morphometric and acoustic signal data.

926 *Molecular Ecology* 24: 3281–3298.

909

Wasko DK, Sasa M. 2009. Activity patterns of a neotropical ambush predator: spatial ecology of
the fer-de-lance (*Bothrops asper*, Serpentes: Viperidae) in Costa Rica. *Biotropica* 41:
241–249.

Webb JK, Shine R. 1997. A field study of spatial ecology and movements of a threatened snake
species, *Hoplocephalus bungaroides*. *Biological Conservation* 82: 203–217.

- 932 Whitaker PB, Shine R. 2003. A radiotelemtric study of movements and shelter-site selection by
- 933 free-ranging brownsnakes (*Pseudonaja textilis*, Elapidae). *Herpetological Monographs*
- 934 17: 130–144.

43

Table 1. Frequency of occurrence of two and three dorsal temporal scales (DTs) between the

Mitochondrial Clade		Scale C	ondition	
	2+2	$3_v + 2$	3 _d +2	4+2
Atlantic	14	30	11	13
Gulf	5	1	2	9
Atlantic x Gulf	2	5	1	4
Atlantic x Unknown	2	6	1	4
Unknown	1	2	1	0

936 Atlantic and Gulf lineages of Eastern Indigo Snakes.

44

938 Appendix I. GenBank accession numbers for sequence data from the nuclear gene neurotrophin-

Accession number	Species	Country	State	County	Mitochondrial lineage
KT214324	Drymarchon couperi	U.S.A.	Florida	Charlotte	Gulf
KT214325	Drymarchon couperi	U.S.A.	Florida	Okaloosa	Gulf
KT214326	Drymarchon couperi	U.S.A.	Florida	Lee	Gulf
KT214327	Drymarchon couperi	U.S.A.	Florida	Citrus	Gulf
KT214328	Drymarchon couperi	U.S.A.	Florida	Hendry	Gulf
KT447213	Drymarchon couperi	U.S.A.	Florida	Monroe Miami-	Gulf
KT214329	Drymarchon couperi	U.S.A.	Florida	Dade Miami-	Gulf
KT214330	Drymarchon couperi	U.S.A.	Florida	Dade Miami-	Gulf
KT214331	Drymarchon couperi	U.S.A.	Florida	Dade	Gulf
KT214332	Drymarchon couperi	U.S.A.	Florida	Monroe	Gulf
KT214333	Drymarchon couperi	U.S.A.	Georgia	Coffee	Atlantic
KT214334	Drymarchon couperi	U.S.A.	Georgia	Liberty	Atlantic
KT214335	Drymarchon couperi	U.S.A.	Georgia	Wayne	Atlantic
KT214336	Drymarchon couperi	U.S.A.	Georgia	Bryan	Atlantic
KT214337	Drymarchon couperi	U.S.A.	Georgia	Camden	Atlantic
KT214338	Drymarchon couperi	U.S.A.	Georgia	Coffee	Atlantic
KT214339	Drymarchon couperi	U.S.A.	Georgia	Telfair	Atlantic
KT214340	Drymarchon couperi	U.S.A.	Georgia	Evans	Atlantic
KT214341	Drymarchon couperi	U.S.A.	Georgia	Irwin	Atlantic
KT447212	Drymarchon couperi	U.S.A.	Georgia	Wheeler	Atlantic
KT214342	Drymarchon couperi	U.S.A.	Georgia	Liberty	Atlantic
KT214343	Drymarchon couperi	U.S.A.	Florida	Brevard	Atlantic
KT214344	Drymarchon couperi	U.S.A.	Florida	Brevard	Atlantic
KT447212	Drymarchon melanurus erebennus	U.S.A.	Texas	Hidalgo	_
KT447213	Drymarchon melanurus rubidus	Mexico	Sonora	-	-
KT447214	Coluber flagellum	U.S.A.	Florida	Washington	_
KT447215	Coluber constrictor	U.S.A.	Florida	Highlands	-

939 3 (NT3) from Krysko *et al.* (2016a) that were analyzed to generate Fig. 2.

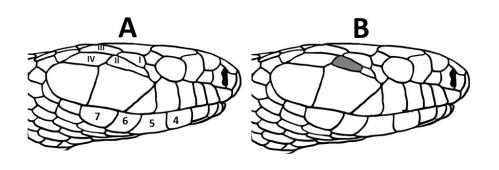
45

- 941 Appendix II. Multiplex PCR panels for Drymarchon couperi microsatellite loci. The names of
- 942 loci are as in Shamblin *et al.* (2011).

_

Multiplex	Locus
1	Dry24 – 6FAM
	Dry55 – 6FAM
	Dry30 – VIC
	Dry44 – PET
	Dry68 - NED
2	Dry48 – 6FAM
_	Dry63 – 6FAM
	Dry58 – VIC
	Dry59 – VIC
	Dry65 – VIC
	Dry69 - VIC
	Dry06 – PET
	Dry33 - NED
2	
3	Dry05 – 6FAM
	Dry35 – VIC
	Dry14 – PET
	Dry70 – NED

- 944 Appendix III. Citations for snake studies (N = 28) describing intersexual variance in home range
- size (hectares) for 22 species of snakes used to generate Fig. 9. See Macartney et al. (1988) for
- 946 an earlier review of the topic.


Species	<u>Home range size (ha)</u>		Citations
	Male	<u>Female</u>	
Agkistrodon contortrix	9.9	3.4	Fitch (1960)
Agkistrodon piscivorus	1.86	0.31	Roth (2005)
Bothrops asper	6.3	5.8	Wasko and Sasa (2009)
Carphophis amoenus	0.028	0.004	Clark (1970)
Coluber constrictor	9.3	3.9	Fitch (1958)
C. constrictor	3	1.8	Fitch (1963b)
Coluber flagellum	150	21	Dodd and Barichivich (2007)
Coronella austriaca	0.66	0.45	Goddard (1980)
Crotalus horridus	143.8	19.9	Rudolph and Burgdof (1997)
Crotalus viridis	12.1	6.5	Fitch (1949)
Drymarchon couperi	510	101	Hyslop <i>et al.</i> (2014)
D. couperi	202	76	Breininger et al. (2011)
D. couperi	141	22	Moler (1985)
D. couperi	74	19	Layne and Steiner (1996)
D. couperi	149	49	Bauder et al. (2016a)
Hoplocephalus bungaroides	2.2	2.1	Webb and Shine (1997)
Hoplocephalus stephensii	20.2	5.4	Fitzgerald et al. (2002)
Lampropeltis getula	49.5	49.4	Linehan et al. (2010)
Morelia spilota	12	12	Shine and Fitzgerald (1996)
Nerodia sipedon	0.51	0.58	Roth and Greene (2006)
Pantherophis obsoletus	11.7	9.3	Fitch (1963a)
P. obsoletus	9.5	9.5	Durner and Gates (1993)
Pituophis catenifer	36.6	26.9	Kapfer <i>et al.</i> (2010)
Pituophis melanoleucus	69	43	Gerald et al. (2006)
P. melanoleucus	70.1	37.5	Miller et al. (2012)
Pseudonaja textilis	11.8	1.5	Whitaker and Shine (2003)
Sistrurus catenatus	27.8	21.7	Johnson (2000)
Thamnophis sirtalis	14.2	9.2	Fitch (1965)
Vipera aspera	0.29	0.18	Naulleau (1968)

948	Fig. 1. Head scale patterns in Eastern Indigo Snakes (Drymarchon couperi). A) 2+2 condition of
949	temporals (I = dorsal anterior temporal; II = ventral anterior temporal; III = dorsal posterior
950	temporal; IV = ventral posterior temporal) and position of 4^{th} , 5^{th} , 6^{th} , and 7^{th} infralabials; B)
951	3_v +2 condition of temporals (extra ventral temporal shaded); C) 4+2 condition of temporals
952	(extra dorsal and ventral temporals shaded); D) 3_d+2 condition of temporals (extra dorsal
953	temporal shaded).
954	Fig. 2. Maximum likelihood phylogeny among samples of Eastern Indigo Snakes (Drymarchon
955	couperi, sensu lato) and outgroups (Drymarchon melanurus, Coluber constrictor, Coluber
956	flagellum), as inferred from sequence data from the nuclear gene neurotrophin-3 (NT3). Indigo
957	snakes are labeled by GenBank accession numbers and are classified by the lineages identified
958	by Krysko <i>et al.</i> (2016a; blue = Atlantic lineage; orange = Gulf lineage).
959	Fig. 3. Plot of Delta K (A) and likelihood scores (B) used to identify the most likely number of
960	population clusters across the range of Drymarchon couperi using the Bayesian algorithm
961	Structure (Evanno, Regnaut & Goudet, 2005). The dashed line in (A) indicates Delta $K = 0$; the
962	error bars in (B) indicate S.D.
963	Fig. 4. Bar plots of population clustering estimated through the Bayesian clustering algorithm
964	Structure with (A) $K = 2$ and (B) $K = 3$. The y-axis is the proportion of individual ancestry for
965	each cluster; in the x-axis, group 1 represents individuals assigned or assumed to be within the
966	Atlantic mitochondrial clade, and group 2 represents individuals assigned or assumed to be in the
967	Gulf mitochondrial clade. Within each group, individuals are sorted by latitude. (A) $K = 2$; red

- 968 indicates alleles from the northern population cluster, and green indicates alleles from the
- southern population cluster. (B) K = 3; green and blue indicate alleles from two northern
- 970 population clusters, and red indicates alleles from the southern population cluster.

971	Fig. 5. Maps of sampling sites represented as pie charts of percent ancestry within population
972	clusters identified by Structure analyses. (A) $K = 2$ populations, with the southern cluster
973	represented as black and the northern cluster as gray; (B) $K = 3$ populations, with the southern
974	cluster as black and two northern populations as grey and white. Lines indicate state boundaries
975	in the southeastern U.S.A.
976	Fig. 6. Bivariate plot of head height on head length. Values from Atlantic lineage indicated by
977	solid circles and solid line; values from Gulf lineage indicated by open circles and dashed line.
978	Fig. 7. Box and whiskers plot of distribution of ratio of dorsal posterior temporal scale length to
979	head length in four categories of temporal scales (see Fig. 1). Vertical lines indicate range; box
980	indicates interquartile, horizontal line indicates median; open diamond indicates mean.
981	Fig. 8. Distribution of length-to-width ratio of 6 th and 7 th infralabials in 11 Atlantic lineage
982	specimens of Drymarchon couperi (dark spots). Open triangles indicate ratios from type
983	specimen of <i>D. couperi</i> (Atlantic lineage); open diamonds indicate ratios from type specimen of
984	D. kolpobasileus (Gulf lineage).
985	Fig. 9. Bivariate plot of female home range area (ha) on male home range area for 25 studies of
986	21 species of snakes (Appendix III). Open circles are data from Drymarchon couperi; closed

- 987 circles are data from all other species of snakes. Dashed line is null expectation if male and
- 988 female home range sizes are equal in size.

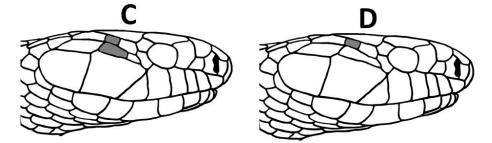


Fig. 1

50

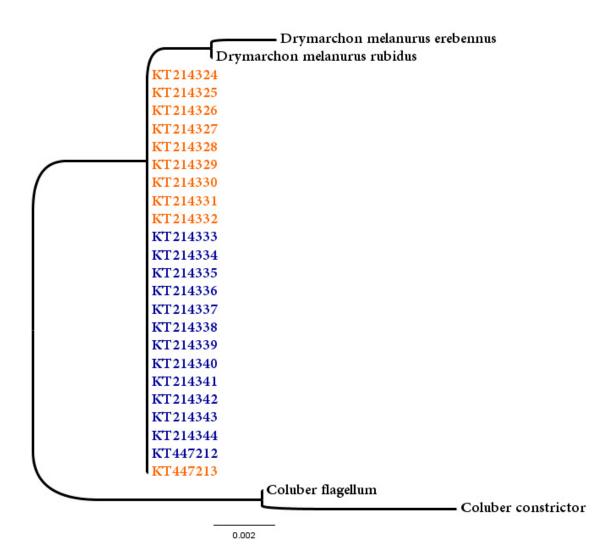


Fig. 2

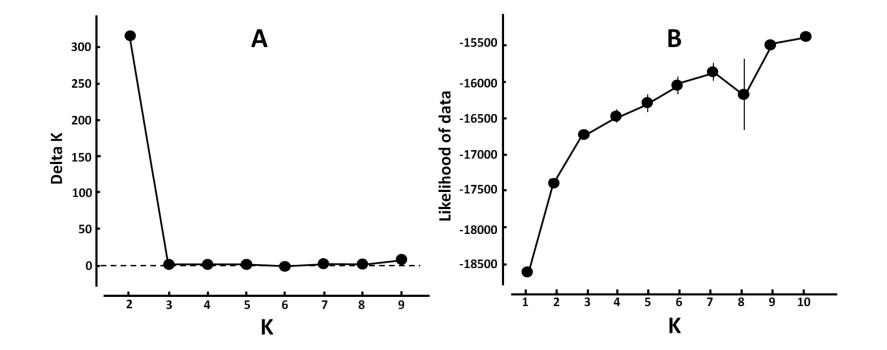
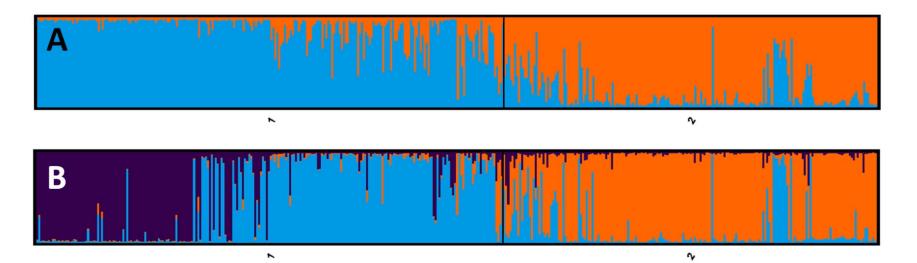



Fig. 3

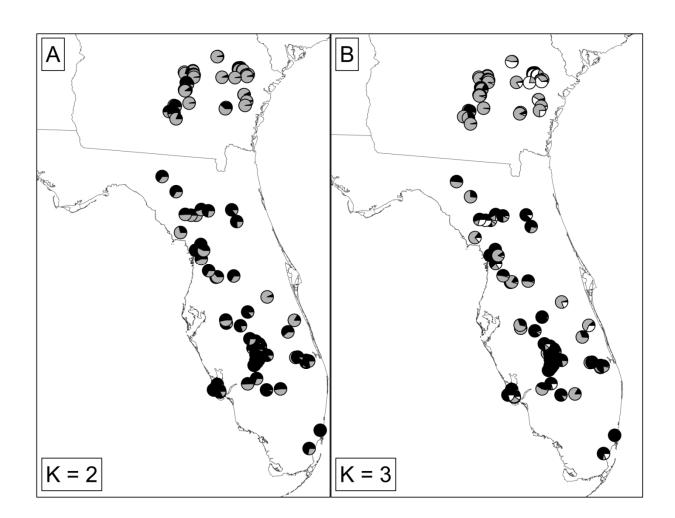


Fig. 5

bioRxiv preprint doi: https://doi.org/10.1101/318766; this version posted May 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

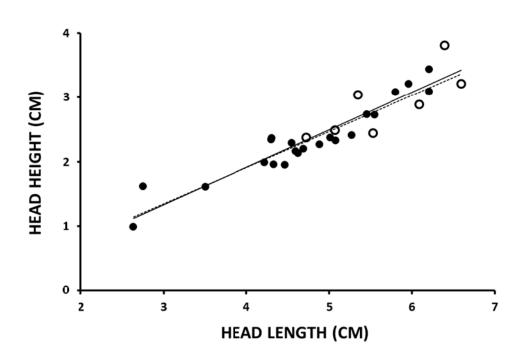


Fig. 6

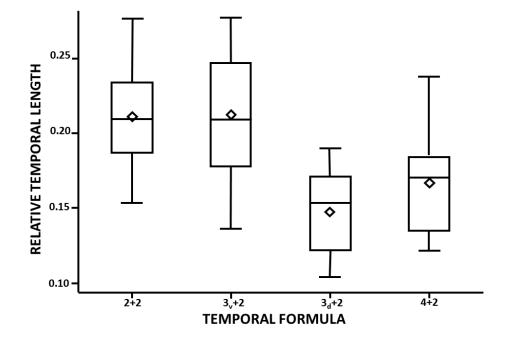


Fig. 7

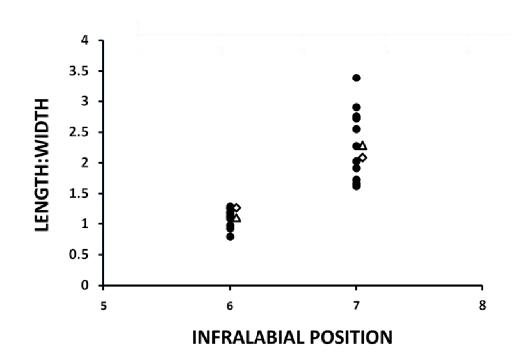


Fig. 8