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ABSTRACT 
Since the discovery of 5-hydroxymethylcytosine (5hmC) as a prominent DNA base modification found in 

mammalian genomes, an emergent question has been what role this mark plays in gene regulation. 

5hmC is hypothesized to function as an intermediate in the demethylation of 5-methylcytosine (5mC) and 
also in reactivation of silenced regulatory elements, including promoters and enhancers. Further, weak 

positive correlations have been observed between gene body 5hmC and gene expression. We previously 

demonstrated that ME-Class, which uses a high-resolution model of whole-genome bisulfite sequencing 

data, is an effective tool to understand relationships between 5mC and expression. In this work, we 

present ME-Class2, a machine-learning based tool to perform integrative 5mCG, 5hmCG and expression 

analysis. Using ME-Class2 we analyze whole-genome single-base resolution 5mC and 5hmC datasets 

from 20 primary tissue and cell samples to uncover relationships between 5hmC and expression. The 

addition of 5hmC improves model performance for tissues with high-levels of 5hmC such as the brain. 
Our analysis further indicates that conversion of 5mC to 5hmC within 2kb of the transcription start site 

associates with distinct functions depending on the summed level of 5mC + 5hmC. Unchanged levels of 

5mC + 5hmC (i.e. conversion from 5mC to stable 5hmC) associate with repression. Meanwhile, 

decreases in 5mC + 5hmC (i.e. 5hmC-mediated demethylation) associate with gene activation. As more 

large-scale, genome-wide, differential DNA methylation studies become available, tools such as ME-

Class2 will prove invaluable to interpret epigenomic data and guide mechanistic studies into the function 

of 5hmC. 
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INTRODUCTION 
In mammalian genomes, cytosines are frequently covalently modified at the 5-position with methyl-, 

hydroxymethyl-, formyl-, and carboxy- groups. The initial modification occurs by addition of a methyl- 

group to the 5-position of the cytosine (5-methylcytosine, 5mC) by a DNA methyltransferase (Dnmt). The 
subsequent modifications are then formed through successive oxidation of 5mC by the Ten-eleven 

translocation (Tet) family of enzymes. While 5mC occurs at nearly 70% of all CG dinucleotides (CpG) in 

the genome in all tissues, 5-hydroxymethylcytosine (5hmC) appears to be primarily limited to embryonic 

stem cells, neurons, liver, breast, testis, and placenta tissues, occurring at 2-17% of CpGs depending on 

the tissue type (1-3). Meanwhile 5hmC’s oxidized derivatives, 5-formylcytosine (5fC) and 5-

carboxycytosine (5caC), are only found at very low levels, 10-1000 fold less than 5hmC (1). It is still 

unclear whether 5fC and 5caC are short-lived intermediates (2) or whether they have an independent 

biological function in vivo (3, 4). Of these marks, 5mC has been the most studied and is a well-
established player in maintaining inactivation of the silenced X chromosome, mono-allelic gene 

expression at imprinted loci, and silencing retrotransposons (5). Abnormal patterns of 5mC are also linked 

to transcriptional dysregulation in cancer.  

At the biochemical level, 5hmC likely plays a role in demethylation through both passive and active 

mechanisms. While Dnmt1 is responsible for copying and propagating 5mC during cell division, no similar 

mechanism has yet been discovered for 5hmC. Notably, 5hmC, 5fC, and 5caC are found at their highest 

levels in post-mitotic cells and are passively diluted during cell division. Active demethylation occurs 

through conversion of 5mC to 5caC via 5hmC and 5fC intermediates. 5caC is then converted to 
unmethylated cytosine through base excision repair or decarboxylation (6). In support of 5hmC’s role as 

an intermediate in demethylation in vivo, Tet2-/- mouse brains exhibit low level gains in methylation (7). 

What is known about the biological roles of 5hmC and the Tet family of enzymes (Tet1, Tet2, Tet3) are 

mostly supported through a combination of genetic and correlative studies. Genomic analyses show that 

while the majority of the genome is marked by 5mC except for CpG islands (CGIs), gene promoters, and 

enhancers, 5hmC is enriched at enhancers, gene bodies, and CGI shores. Further, 5hmC is depleted 

from CGIs in ES cells and neurons and depleted from intergenic regions in ES cells (4-6). 5hmC starts at 
low levels in the developing brain, but accumulates in the adult brain (8). Tet1-/- mice do not show 

impaired differentiation (1, 9) and have normal brain morphology (10). However, they do show 

impairments in synaptic plasticity and memory extinction (10). Tet1-, Tet2-, Tet3-triple KO mice displayed 

impaired differentiation and embryonic development, and significant promoter hypermethylation (9). 

These data suggest compensatory effects between Tet family members. 5hmC may also play a role in 

enhancer regulation, as Tet2 deletion causes an increase in enhancer 5mC levels and reduced enhancer 

activity (11). 

There has been some evidence that 5hmC can play a regulatory role independent of its role as an 
intermediate in demethylation in post-mitotic neurons and ES cells. For example, MeCP2 displays 

reduced affinity for hmCG compared to mCG, and therefore conversion of mCG to stable hmCG in the 
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neuronal genome may lead to loss of functional binding sites for MeCP2 (11-13). However, screens for 

5hmC interacting factors have uncovered few 5hmC-specific interactors (4). In general, 5hmC in gene 

bodies is frequently associated with gene expression; this includes both as a stable mark in neurons, and 

as an intermediate for demethylation. More recent studies in human liver and lung tissues observed 
5hmC as a marker of active transcription associated with H3K4me1 at CpG island shores (12). However, 

whether 5hmC plays a role in promoter regulation is still unclear, and how 5mC and 5hmC signals in 

promoters and gene bodies synergize to affect gene silencing has not been studied.  

We previously developed ME-Class to model methylation both at the gene promoters and in gene 

bodies to identify genes with a high probability of association between 5mC and gene expression (13). 

Here, we extend its functionality to incorporate 5hmC to systematically interrogate how changes in 5mC 

and 5hmC associate with gene expression. Our results indicate that models that include both 5mC and 

5hmC out-perform 5mC only models, but only in tissues or cells (such as neuronal tissues) that have high 
levels of 5hmC. Further, our results indicate that 5hmC associates with gene activation when it is involved 

in demethylation and with gene repression when it is stably present at and around the promoter of a 

gene.  

 

MATERIALS AND METHODS 

WGBS, TAB-seq, oxBS-seq, and RNA-seq data 
Mapped sequence reads for whole genome bisulfite sequencing (WGBS), Tet-assisted bisulfite 

sequencing (TAB-seq), and RNA-seq in liver and lung tumor and matched normal samples were obtained 

from Li et al. (12) and from dendritic cells from Pacis et al. (14). WGBS, oxidative bisulfite sequencing 

(oxBS-seq), and RNA-seq from fetal and 6 week mouse brain samples were obtained from Lister et al. (7) 

and granule cells from Mellen et al. (15). WGBS and TAB-seq for human cortex are from Wen et al. (16). 

Corresponding RNA-seq data are from Brawand et al. (17) as used by Wen et al. (16). 

 

Estimation of 5mC and 5hmC levels  
5mC and 5hmC levels were estimated using maximum likelihood methylation levels (MLML) from either 
TAB-seq or oxBS-seq (18). MLML provides a simultaneous maximum likelihood based on binomial 

estimates of 5hmC and 5mC. We used MLML with a significance level of a=0.05 for the binomial test at 

each CpG site and an expectation maximization convergence threshold of 1e-10. Counts of individual 

CpGs with estimated 5hmC and 5mC in all samples can be found in Supplementary Table S1. 

 

Differential Expression from RNA-seq 
RNA-seq data from human liver, lung, and cortex samples were mapped to hg19 using HISAT2 (19). We 

used featureCounts to estimate feature counts over RefSeq reads (20). Differentially expressed genes 
were defined as abs[fold change] >=2 after applying a floor of cpm=1. To create a standardized gene set 

with high quality methylation data, we excluded genes with ambiguous or incomplete transcription start 
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site (TSS) annotations, genes shorter than 5kb, genes with <40 CpGs assayed within +/-5kb of the TSS, 

genes where, for all CpGs within +/-5kb of the TSS, the change in methylation (mCG/CG) was less than 

0.2, and genes with alternative promoters. These filters were used to exclude non-coding genes, 

pseudogenes, genes shorter than the interpolation boundary (see HRPS model description below), genes 
with low numbers of CpGs (to reduce bias caused by error in individual CpG measurements), and genes 

with no methylation changes at their respective promoters. We only included RefSeq genes with 

cdsStartStat and cdsEndStat flags marked as ‘cmpl’ according to the UCSC Table Browser. For any 

RefSeq genes with multiple RefSeq IDs corresponding to the same TSS location, we used a single 

RefSeq ID with the lowest accession number and excluded the remainder. This is a conservative method 

to simplify the annotations of genes with alternative promoter annotations. A full summary of differentially 

expressed filtered gene counts can be found in Supplementary Table S2. 

 

5hmC incorporation in ME-Class  
MLML produces an estimate of 5mC and 5hmC for each CpG site. ME-Class high-resolution promoter 
signature (HRPS), region of interest (ROI), and whole-scale gene (WSG) models described in Schlosberg 

et al. (13) were extended to add 5hmCG features (Fig. 1a,b). For the HRPS model, 5mCG and 5hmCG 

data were independently interpolated using PCHIP interpolation and Gaussian smoothing (50bp 

bandwidth) across the window +/- 5kb relative to each gene’s TSS. Interpolated curves for D5hmCG/CG 

and D5mCG/CG (i.e. the difference in 5hmCG and mCG levels between samples) were discretized to 

create feature vectors for classification using the average methylation in each 20bp segment. Bins for the 

ROI model were inspired by Lou et al. (21). Differential 5mCG and 5hmCG levels were computed for each 

bin, which was then used in the resultant feature vector. For the WSG model, 5mCG and 5hmCG data 

were scaled to a constant length between the TSS and RefSeq annotated transcription end site (TES). 

Feature vectors were created from 125 bins upstream of the gene, 125 bins downstream of the gene, and 

500 bins from the area between the TSS and TES. Differential 5mCG and 5hmCG levels were both 

computed for the entire set of bins and then combined to form the final feature vector. D5mCG/CG 

corresponds to the 5mC feature vector and D5hmCG/CG corresponds to the 5hmC feature vector. 

D5mCG/CG & D5hmCG/CG corresponds to concatenating 5mCG and 5hmCG feature vectors together 

for the classification. D5mCG/CG + D5hmCG/CG corresponds to summing 5mCG and 5hmCG values 

before creating the feature vector for classification. 

 

Evaluation Framework 
ME-Class2 uses a random forest classifier which uses feature vectors from 5mCG, 5hmCG or both data 

to predict the direction of expression change. Random forests were built using 5001 trees. For the fetal to 
6-week mouse brain comparison and dendritic cell analysis we used an intra-sample 10-fold cross 

validation. For the normal liver-lung and normal-tumor comparisons we performed cross-fold validation 

similar to that in Schlosberg et al. (13). In brief, we hold out each sample one by one for evaluation and 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/318808doi: bioRxiv preprint 

https://doi.org/10.1101/318808


  

then train on the remaining samples. To further minimize over-fitting, all genes from the validation sample 

are excluded from the samples used for training. For cortex-liver and cortex-lung comparisons, models 

were trained using 10-fold cross-validation, and all genes used for validation are excluded from the 

samples used for training. 
 

Unsupervised Clustering of 5hmCG and 5mC 

Unsupervised hierarchical agglomerative clustering (complete linkage) was performed on D5mCG/CG 

and D5hmCG/CG in the region [0, +2kb] for the TSS for correctly predicted genes from ME-Class2. Sub-

setting our predictions required setting a working threshold for the probability of prediction. Therefore, we 

set the following range of probabilities of prediction for each experiment based on 90% accuracy at: [0.68, 
1.0] fetal-6wk mouse, [0.8, 1.0] normal liver-tumor, [0.7, 1.0] normal-tumor liver and lung. Ranges were 

set at [0.8-1.0] for cortex-liver and cortex-lung based on 95% accuracy due to the large number of genes 

accurately predicted for these samples. In the metagene plots of unsupervised results, 

D5mCG/CG+D5hmCG/CG corresponds to the summation of 5mCG and 5hmCG.  

 
RESULTS 

Differential 5hmCG at promoter and promoter-proximal regions is more important than gene-body 
5hmCG in predicting expression changes 

We extended ME-Class to simultaneously incorporate 5mCG and 5hmCG information from high 

resolution genomic data from WGBS, TAB-seq and oxBS-seq. We used the three best performing models 

for associating 5mCG and gene expression (13) to understand which model performed the best at the 

new task of using combined 5mCG and 5hmCG data (Fig. 1a). The first is a high-resolution promoter 

signature (HRPS) that interpolates a signature around the window +/- 5kb of the TSS for both 5mCG and 

5hmCG signals. We previously identified this model as optimal for associating 5mCG and expression 

changes (13). The second model, which we call “regions of interest” (ROI), bins methylation data 
upstream of the TSS and across gene features such as first and internal exons and introns (21). We 

further compared these methods to a whole-scaled gene (WSG) approach, which is based on a scaling 

method to compare whole gene signals across genes and is commonly used to capture correlations 

between gene body methylation and expression (8).  

We initially benchmarked these models using a set of WGBS and TAB-seq data from fetal and 6-week 

mouse brains. To evaluate performance, we plot the accuracy versus 1- reject rate for each model. This 

performance metric allows us to focus on only the genes with the highest quality predictions given some 

confidence threshold. The underlying premise is that only some genes should have associated DNA 
methylation and expression changes, not all. We demonstrate good performance to predict gene 

expression change as measured by both accuracy versus 1-reject rate (Fig. 1c) and ROC analysis (Fig. 

1d) for all models. In the HRPS model we predict differential expression in 216 genes with greater than 
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90% accuracy, which outperforms ROI and WSG models for which we detect a similar number of genes, 

but at only 83% and 88% accuracy respectively. Both methods that capture the area around the TSS at 

high resolution (HRPS and WSG) out-perform other methods. Interestingly, models that incorporate 

features from the gene body (ROI and WSG) do not perform better than those that only model the data 
around the TSS at high resolution (HRPS). Further, direct addition of gene-body features to the HRPS 

model (HRPS+ROI) does not increase performance. Random forest feature importance analysis indicates 

that 5mCG and 5hmCG changes within 2kb and primarily downstream of the TSS into the first intron are 

the most important regions for successful classification (Fig. 2).  

 
Addition of 5hmCG data improves ME-Class2 performance 

We next sought to determine whether models trained using both 5hmCG and 5mcG data outperformed 

those trained only using 5mCG data. Figure 3a-c shows that including 5mCG and 5hmCG as 
independent features boosts ME-Class2 performance in the comparison of mouse fetal and 6-week 

brains and human cortex versus liver and lung using the HRPS model (corresponding ROC curves are in 

Supplementary Fig. S1). For mouse brain comparisons, the model using 5hmCG and 5mCG data 

predicted 112 genes at greater than 90% accuracy. Using 5mCG or 5hmCG data alone, the accuracy for 

a similar number of genes was only 82% and 75% respectively. Similar increases in performance with the 

inclusion of 5hmCG data were observed for other models including WSG, ROI, and HRPS + ROI 

(Supplementary Fig. S2). Using the HRPS model, D5mCG + D5hmC, which is effectively what is 

measured by only WGBS data in the absence of a 5hmC-specific assay, performed equivalent to D5mCG 

alone (Supplementary Fig. S3). 

We also observe similar performance gains in human cortex vs liver and lung comparisons (Fig. 3). 

For cortex versus liver, differential expression of an average of 480 genes per sample (493, 493, and 453 
for each sample respectively) could be predicted at 90% accuracy using 5hmCG and 5mCG changes, but 

this accuracy fell to 82% and 77% for 5mCG and 5hmCG alone respectively. Meanwhile for cortex versus 

lung, differential expression of an average of 278 genes per sample (359, 266, and 209 for each sample 

respectively) could be predicted at 90% accuracy using 5hmCG and 5mCG changes, but this accuracy 

fell to 81% and 72% for 5mCG and 5hmCG alone respectively. We also observed an increase in 

performance comparing bacterially infected and non-infected dendritic cells, although the addition of 

5hmCG data only allowed the prediction of differential expression for 16 total genes at greater than 93% 
accuracy (Fig. 3f, Supplementary Table S3). However, we do not observe such performance gains for all 

samples. We did not observe any substantial difference between 5mCG only and 5mCG and 5hmCG 

models in comparisons involving human lung and liver tissues across three individuals (Fig. 3d,g,h), or in 

normal-tumor comparisons from three lung and two liver tumors (Fig. 3e,g,h). Feature importance 

analysis of cortex vs liver, cortex vs lung, and infected dendritic cells all support the region within 2-3 kb 

of the TSS as most important for predicting expression change (Supplementary Fig. S4). 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/318808doi: bioRxiv preprint 

https://doi.org/10.1101/318808


  

Predictive methylation signatures in non-brain tissues and tumors are solely dependent on 
changes in 5mCG 

Similar unsupervised clustering of highly predictive liver-lung and cancer-specific genes show why the 

addition of 5hmCG data did not increase performance in these comparisons (Supplementary Fig. S5). 

The differential methylation signatures produced from these clusters in each case show that the net 

D5mCG + D5hmCG levels closely follow the D5mCG levels, with little difference in 5hmCG in all clusters. 

The observed 5mCG patterns in each cluster resemble those we previously found in other tissues(13) 
and cancer cell lines (22). This implies that promoter 5mCG, rather than 5hmCG, is primarily associated 

with gene expression change in cancer. 

 
ME-Class2 identifies 5hmCG and 5mCG signatures in brain tissues 

To better understand why we observed a boost in performance by including 5hmCG in brain and cortex 

comparisons, we conducted post-hoc unsupervised clustering analysis of identified signatures of 5hmCG 

and 5mCG that associate with expression change using the mouse fetal and 6-week brain comparison. 

We observe three distinct classes of differential 5hmCG and 5mCG signatures (Fig. 4a-c). In Figure 4a, 
we observe increases in both 5mCG and 5hmCG 3’ proximal to the TSS, which associate with a decrease 

in expression. This contrasts to the signature observed in cluster C2 (Fig. 4b). These genes also 

decrease in expression; however, while the 5mCG signal decreases 3’ proximal to the TSS, the 5hmCG 

increases over the same region. There is no substantial change in the net D5mCG + D5hmCG level, 

indicating that the primary feature in this cluster is a conversion from 5mCG to stable 5hmCG rather than 
demethylation. While most of the observed patterns cluster because of changes in 5mC data, observation 

of the C2 cluster is entirely dependent on the addition of 5hmC data. A third cluster (C3, Fig. 4c) 

comprises a set of genes that increase in expression and are again characterized by 5mCG decreases 

and 5hmCG increase 3’ proximal to the TSS. In this case however, the net amount of 5mCG + 5hmCG 

decreases indicating 5hmCG plays a role as an intermediate toward demethylation. Differential 

methylation signatures similar to those found in clusters C1 and C3 were also observed in human cortex 

versus liver and lung comparisons (Supplementary Fig. S6). 

To better understand whether 5hmCG marked promoters associated with gene repression we 
examined expression levels of genes in each cluster across mouse development. Cluster C2 genes which 

are marked by 5mCG alone in the fetal cortex have much lower expression as a whole than genes that 

gain 5mCG and 5hmCG found in cluster C1 (p < 0.009, Wilcoxon test, Fig. 4d-f). This is in agreement 

with our finding that 5hmCG within 2kb of the TSS associates with the repression of transcription. To test 

whether this conclusion would hold true in an alternative dataset, we first used feature importance 

analysis (Fig. 2a) to identify the region from [-800bp, 2100bp] around the TSS for both 5mCG and 

5hmCG signals that contributes the greatest to classification in the fetal-6wk brain comparison. Next, we 
calculated the average 5mC, 5hmC, and unmodified C content across this region for all genes in granule 
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cells. Agreeing with our hypothesis, genes primarily marked with high levels of either 5mCG (p < 2e-16, 

Bonferroni adjusted Wilcoxon test) or 5hmCG (p < 2e-7, Bonferroni adjusted Wilcoxon test) are generally 

not expressed (Fig. 4g). 

Lastly to understand whether the conversion or demethylation events are a potential cause of 
transcriptional change, we examined whether genes from each cluster identified in fetal-6wk comparison 

above were differentially expressed in Tet1-/- mouse cortex (10). Cluster C1 is characterized by 

predominantly increased 5mCG levels and thus, as expected, there was no significant difference in the 

expression of these genes after removal of Tet1. Genes in cluster C2 that were down-regulated in 6-week 

mouse brain, which had undergone a conversion of 5mCG to 5hmCG (with no net decrease of 

5mCG+5hmCG), were found to generally increase in expression in Tet1 -/- mouse cortex relative to WT 

(p = 0.037, Bonferroni adjusted Wilcoxon test). Surprisingly, there was also no change in expression for 

genes undergoing Tet-mediated demethylation (cluster C3). This could be because 5hmC-mediated 
demethylation occurs as a consequence of transcription. In agreement, transcription factor complexes 

have been implicated to recruit Tet1 leading to 5hmC mediated demethylation mediated by PPARg in 

differentiated ES cells (23). However, our analysis has several limitations that could explain the lack of an 

observed effect. The promoters of selected genes that are differentially expressed in Tet1 -/- cortex and 

hippocampus were shown to increase in 5mCG levels by only 11-50%, which may be insufficient for many 
genes to show a change in expression (10). Additionally, we cannot rule out that other Tet members play 

a compensatory role in the absence of Tet1. In support of the fact that the observed demethylation may 

activate transcription, a gene found in cluster C3, regulator of G protein signaling RGS14, was shown 

previously to up-regulate after demethylation of neural progenitors using Dnmt inhibitors(24). In summary, 

while these data support a role for 5hmCG as a functional repressor, whether demethylation is a cause or 

consequence of transcriptional silencing or whether there is a context-dependent component is unclear.  

 

ME-Class2 identifies genes associated with neurodevelopmental disorders and neuronal 
development 

Gene ontology analysis using DAVID (25) revealed genes associated with neurodevelopmental disorders 

and basic neuronal development in all clusters (Supplementary Table S4). Several of these have been 

implicated to have differential methylation associated with different disorders including Shank2 in cluster 

C2 and Nrxn1, Pacsin1, and Grin1 in cluster C3. Shank2, a synaptic protein, has previously been shown 
to change methylation in the developing human brain and is associated with neurodevelopmental 

disorders (26). Methylation of Grin1, a component of NMDA receptor complexes,  is associated with 

depression in children (27). Nrxn1 has previously been discovered as having a high ranking meQTL in 

110 human hippocampus samples (28). Age-related DNA methylation changes have been found in 

Nrxn1, which has been implicated in schizophrenia and autism (29). Methylation of PACSIN1 is 

associated with substance-use risk (30). Importantly, our analysis suggests that 5hmCG may regulate 

disease-risk genes differently depending on whether it plays a role in repression or demethylation. 
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DISCUSSION 
We successfully extended ME-Class to predict gene expression classification from both 5hmCG and 

5mCG. Feature importance analysis shows that even in tissues with substantial 5hmCG, 5mCG is still the 

most useful mark for predicting expression changes (Fig. 2, Supplementary Fig. S4). 5hmCG models 

alone perform very poorly, which demonstrates the importance of considering 5hmC in the context of 

5mC to understand potential associations and effects on transcription. Unsupervised analysis revealed a 
set of down-regulated genes with no net change in 5mCG + 5hmCG levels, but for which 5mCG levels 

decrease and 5hmCG levels rise. Models using only WGBS data would miss these genes since WGBS 

only observes the net change in 5mCG + 5hmCG. For other tissues with minimal amounts of 5hmCG it is 

unlikely that obtaining TAB- or oxBS-seq data will provide more information over what is already found 

using WGBS (5mCG + 5hmCG).  

Our results suggest that the incorporation of 5mCG and 5hmCG marks in the gene body or outside a 

2-3kb window from the TSS has little impact on the ability to associate methylation and transcription 
changes. The direct addition of gene body features based on differential methylation of internal exons and 

introns using the ROI approach led to no boost in performance. Feature importance analysis (Fig. 2, 

Supplementary Fig. S4) clearly indicates that for all models, the features within 2-3 kb of the TSS are 

most essential for prediction and that gene body features greater than 2-3 kb from the TSS are of limited 

utility. Taken together, this implies either that average gene body 5hmCG plays little functional role in the 

regulation of transcription, or that gene body information is redundant with that found within 2-3 kb of the 

promoter. Another alternative is that gene body 5hmCG plays a subtle effect on gene regulation that can 

only be uncovered with additional training data. For example, these models do not effectively incorporate 
individual regulatory elements such as enhancers or cryptic promoters found in the gene body that may 

have context-dependent contributions. 

Our results further show that the addition of 5hmCG data has the greatest effect on performance in 

samples with substantial amounts of 5hmCG such as found in the brain. 5hmCG accumulates in the adult 

brain as can be observed in Fig. 4a, where 5hmCG increases in most regions around the TSS in 6wk 

relative to fetal mouse brain. Post-mitotic neurons have high 5hmCG levels and thus these samples 

benefit the most from inclusion of 5hmCG for predictions. 5hmCG exists at relatively low levels in liver 

(2.27%-5.68%) and lung (1.94-3.04%) (12) in comparison to mouse brain (17.2%) (7) and human cortex 
(13%) (16) tissue. 5hmCG is an intermediate cytosine modification which is not replicated during mitosis. 

Lack of gene expression correlating 5hmCG patterns in normal lung and liver may be because dividing 

cells in these tissues passively dilute 5hmCG from their genomes. Thus, the scarcity of 5hmCG might 

explain its lack of predictive ability for expression class change in non-neuronal tissues. In agreement, 

clustering analysis of 5mCG and 5hmCG signals of predictive genes did not reveal a cluster of 5mCG to 

5hmCG conversion as we observed in the model of mouse brain development. Instead, the patterns of 

differential 5hmCG and 5mCG closely follows that of 5mCG alone across all predictive signatures. 
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However, we cannot rule out that 5hmCG inclusion in tissues with low amounts of 5hmCG might facilitate 

the identification of a few rare genes regulated by 5hmCG, which cannot be assessed with the limited 

amount of training data currently available.  

Lastly our work points to a potential new mechanism of 5hmCG mediated repression of gene 
promoters independent of that observed by 5mCG. We identify that conversion of 5mCG to 5hmCG 

primarily is associated with the downregulation of gene expression and many of these genes are up-

regulated upon the removal of Tet1. Since there have been very few proteins identified that specifically 

bind 5hmC relative to 5mC (4), it is possible that 5hmCG-associated gene silencing could instead be 

caused by Tet1-recruitment of interacting partners, such as Sin3A and OGT, which have been shown to 

be involved in Tet1-dependent silencing of LINE-1 (31). It is further unclear at this point why 5hmCG 

would stabilize in some genes versus other, and complicating matters is that how much active versus 

passive demethylation occurs via 5hmCG is still a point of contention. It may be that demethylation is the 
dominant mechanism prior to neurons exiting the cell cycle, while stable 5hmCG occurs after.  

ME-Class2 demonstrates that incorporating 5hmCG information is critical for prediction of gene 

expression changes in samples with high levels of 5hmC such as the brain and neurons. ME-Class2 has 

identified a class 5mCG/5hmCG patterns that show the conversion from 5mCG to 5hmCG in the 3’ 

proximal region of the promoter in a model of mouse brain development. We speculate that these 

patterns of 5mCG and 5hmCG coordinate with additional silencing factors potentially recruited either 

directly by 5hmCG or by the Tet enzymes in a context-specific manner. As the field continues to collect 

genome-wide, differential DNA methylation (including both 5mC and 5hmC), tools such as ME-Class2 will 
prove invaluable for the interpretation of this epigenomic data and will guide mechanistic studies into the 

integrated function of 5mC and 5hmC in human disease. 
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FIGURES 

 
Figure. 1. (a) Cartoon example showing different models to encode methylation features for a gene for 

ME-Class2 analysis. D5mCG/CG and D5hmCG/CG refer to the differences between two samples. HRPS 

is high-resolution promoter signature; ROI is region of interest; WSG is whole-scale gene. TSS is 
transcription start site. Blue dots show example differential methylation (5hmCG or 5mCG). (b) ME-

Class2 workflow. (c,d) Performance of different gene models using ME-Class2 5mCG and 5hmCG data 

from fetal and 6-week mouse brain as evaluated using accuracy versus 1-reject rate (c) and ROC 

(receiver operating characteristic) curve analysis (d). 1 – reject rate is the fraction of genes with predicted 

associations between methylation and expression. ROC AUC are HRPS: 0.727, HRPS + ROI: 0.735, 

WSG: 0.739, ROI: 0.699. 
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Figure 2. Feature importance for the ME-Class2 random forest classifier for fetal-6wk mouse brain 5mCG 

and 5hmCG data for (a) HRPS, (b) WSG, and (c) ROI data representations. 
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Figure. 3. (a-f) ME-Class2 performance (accuracy versus 1-reject rate) for different 5mCG and 5hmCG 

datasets using the HRPS feature model. The 5mCG and 5mCG & 5hmCG curves directly overlap in panel 

d. Corresponding detailed ROC (receiver operating characteristic) curves are in Supplementary Fig. S2. 

(g) Area under the curve (AUC) for the accuracy vs 1-reject rate curves and (h) ROC AUC for each 
individual sample comparison used in a-f.  
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Figure 4. (a-c) Metagene plots for clusters of similar differential methylation signatures (6 wk - fetal) that 

are predictive of expression in the fetal-6wk mouse brain comparison. Shading indicates the 68% 

bootstrapped confidence interval. Cluster C1: n=76, C2: n=29, and C3: n=70. (d-f) Average expression of 

all genes found in C1, C2, and C3 clusters across mouse brain development. Shading indicates the 95% 

confidence interval. (g) mRNA expression in granule cells of genes whose promoters (defined as [-800bp, 

+2kb] around the TSS) are greater than 50% marked by mCG, hmCG, a combination of mCG and hmCG, 

or CG (unmethylated). Outliers have been cropped for clarity. The original plot can be found in 
Supplementary Fig. S7. (h) Log2 expression changes in cortex from Tet1-/- mice versus cortex from WT 

mouse. All dn and all up correspond to all down- and up-regulated genes, respectively, in 6wk compared 

to fetal mouse brain. P-values computed using a Bonferroni adjusted Wilcoxon test.  
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