1 Global transcriptional analysis of *Geobacter sulfurreducens* under palladium reducing

2 conditions reveals new key cytochromes involved

- 3
- 4 Alberto Hernández-Eligio,^a† Aurora M. Pat-Espadas,^{b,d}† Leticia Vega-Alvarado,^c Manuel
- 5 Huerta-Amparán,^a Francisco J. Cervantes,^b# Katy Juárez^a*
- 6
- ^aDepartamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad
- 8 Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
- 9 ^bDivisión de Ciencias Ambientales, Instituto Potosino de Investigación Científica y
- 10 Tecnológica (IPICYT), San Luis Potosí, SLP, Mexico.
- 11 ^cInstituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México,
- 12 Ciudad Universitaria, Ciudad de México, Mexico.
- ¹³ ^dInstituto de Geología, Universidad Nacional Autónoma de México, Hermosillo, Sonora,
- 14 Mexico
- 15 †CONACYT
- 16 #Address correspondence to Francisco J Cervantes: <u>fjcervantes@ipicyt.edu.mx.</u>
- 17 *Address correspondence to Katy Juárez: <u>katy@ibt.unam.mx.</u>
- 18
- 19 Running Head: Pd(II) reduction mechanism in Geobacter sulfurreducens
- 20
- 21
- 22
- 23

24 Abstract

25 Geobacter sulfurreducens is capable of reducing Pd(II) to Pd(0) using acetate as electron 26 donor; however, the biochemical and genetic mechanisms involved in this process have not 27 been described. In this work, we carried out transcriptome profiling analysis to identify the 28 genes involved in Pd(II) reduction in this bacterium. Our results showed that 252 genes 29 were upregulated while 141 were downregulated during Pd(II) reduction. Among the 30 upregulated genes, 12 were related to energy metabolism and electron transport; 50 were 31 classified as involved in protein synthesis; 42 were associated with regulatory functions and 32 transcription, and 47 have no homologs with known function. RT-aPCR data confirmed 33 upregulation of genes encoding PilA, the structural protein for the electrically conductive 34 pili, as well as *c*-type cytochromes GSU1062, GSU2513, GSU2808, GSU2934, GSU3107, 35 OmcH, OmcM, PpcA, PpcD under Pd(II)-reducing conditions. $\Delta pilA$ and $\Delta pilR$ mutant 36 strains showed 20% and 40% decrease in the Pd(II)-reducing capacity, respectively, 37 compared to the wild type strain, indicating the central role of the pili in this process. RT-38 qPCR data collected during Pd(II) reduction also confirmed downregulation of the *omcB*, 39 omcC, omcZ, and omcS genes, which have been shown to be involved in Fe(III) reduction 40 and electrodes. Based on these results, we propose mechanisms involved in Pd(II) reduction 41 by G. sulfurreducens.

42

43 **Importance**

Geobacter sulfurreducens is a versatile microorganism, known for its ability to reduce a
wide range of environmentally relevant metals. It has been reported that this bacterium

46 synthesizes palladium nanoparticles successfully. Yet, the biochemical and genetic 47 mechanisms involved in this process had not been described previously. By using a 48 transcriptome profile analysis to identify genes implicated in this process and genetic and 49 physiological data, we propose a model for the biological reduction of Pd(II) by G. 50 sulfurreducens. Moreover, the study also revealed the microbial reduction of Pd(II) coupled 51 to growth, which shows not only unexpected ideas about its complex metabolism, but some 52 key cytochromes involved in this pathway, which have not been previously associated with 53 other metal reducing process for this bacterium. In brief the present work contributes to a 54 better understanding of the biochemical and genetic mechanisms involved in Pd(II) 55 reduction and put forward novel insights about G. sulfurreducens metabolism.

56 Introduction

In the last two decades, the alternative of using bioreductive deposition of precious metals, such as the platinum-group (PGMs; e.g Pt, Pd, Rh), for their recovery has been widely explored. Special interest has been focused on palladium (Pd) due to its high value and extensive use as catalyst. Fe(III) reducing bacteria (IRB), such as *Shewanella oneidensis* (1)

61 and *Geobacter sulfurreducens* (2), as well as sulfate reducing bacteria (SRB), such as

62 Desulfovibrio desulfuricans (3), have extensively been explored for this purpose. Despite

63 the great demand for developing efficient microbial processes to recover this valued

64 element, the mechanisms involved in Pd(II) reduction and subsequent deposition of Pd(0)

65 are poorly understood.

66 Extracellular formation of Pd(0) nanoparticles (NP's) has been reported in *G*.

67 sulfurreducens (2). Moreover, differences regarding location of deposited NP's, depending

on the strain, have been documented (3). These findings could be related to specific

69	mechanisms used by each strain, as well as to experimental conditions prevailing; however,
70	further studies are required to fully elucidate the mechanisms involved.
71	Geobacter species are abundant in nature and have the ability to perform extracellular
72	electron transfer (EET) to reduce a broad array of heavy metals, such as Fe(III), Mn(IV),
73	U(VI), Co(III) and Ag(I), among others (4, 5, 6, 7). Regarding Pd(II) reduction, using
74	acetate as electron donor, G. sulfurreducens has been used to reduce up to 25 mg Pd(II)/L
75	with the concomitant deposition of $Pd(0)$ NP's (2). It has been proposed that the electron
76	transfer reported for iron reduction could also be involved in Pd(II) reduction (8).
77	Nevertheless, the genome of G. sulfurreducens has 111 predicted c-type cytochromes (9,
78	10), hence it is likely that other cytochromes, as well as conductive pili, could play a role in
79	Pd(II) reduction (11, 12). This is supported by the observation that some proteins or
80	cytochromes are specifically required to achieve the reduction of certain metal species, as it
81	has been reported for soluble Fe(III), Fe(III) oxides and U(VI) (9, 13, 14).
82	The purpose of this study was to elucidate the mechanisms involved in Pd(II) reduction by
83	G. sulfurreducens, based on global transcriptome analysis using RNA sequencing analysis.
84	Quantitative reverse transcription PCR, genetic and physiological tests were also performed
85	to identify genes involved in $Pd(II)$ reduction. The $Pd(II)$ reduction pathways in G.
86	sulfurreducens were proposed based on the obtained results.
87	

88 Materials and Methods

89 Culture procedures

90 Bacterial strains and oligonucleotides used in this study are listed in Table 1. G.

91 *sulfurreducens* PCA was grown anaerobically at 30 °C in NBAF medium, supplemented

- 93 reducing conditions" (15). For experiments conducted under "Pd(II)-reducing" conditions,
- 94 late logarithmic phase cultures of G. sulfurreducens were used. The protocol consisted of
- harvesting cells by centrifugation at 9,000 g for 20 min and washing with a sterilized,
- 96 osmotically balanced buffer. The reaction buffer composition was as follows (in grams per
- 97 liter): NaHCO₃, 2.5; NH₄Cl, 0.25; NaH₂PO₄·H₂O, 0.006; and KCl, 0.1. Reduction
- 98 experiments were performed in 120-ml glass serum bottles capped with rubber stoppers
- 99 including 100 ml of anaerobic basal medium, flushed with N_2/CO_2 (80:20, v/v). Cell
- 100 suspensions, as well as acetate and Na₂PdC₄ (Sigma-Aldrich) stock solutions were added to
- 101 yield a concentration of 800 mg l^{-1} cell dry weight (CDW), 5 mM and 25 mg l^{-1} ,
- 102 respectively (2, 8). RNA Later (Ambion) was added to cultures and cells for harvesting
- 103 cells. Bacterial pellets were flash frozen and stored at -70 °C.

104 **RNA extraction**

- 105 *G. sulfurreducens* cells from both "Pd(II) reduction" and "Non-Pd(II) reduction" conditions
- 106 were used for RNA-Seq and RT-qPCR analyses. All experiments were performed in
- 107 duplicates. For each biological sample, total RNA samples were extracted using the
- 108 RNeasy mini kit (Qiagen), then they were examined with an Agilent 2100 Bioanalyzer and
- 109 quantified using NanoDrop 200c (Thermo Scientific).

110 **RNA-Seq and data analysis**

- 111 RNA-Seq was performed using RNA samples extracted from two independently grown
- 112 cultures with and without Pd(II). Illumina sequencing was performed at the USMI (Unidad
- 113 de Secuenciación Masiva, UNAM, Mexico). Briefly, after removing residual DNA using
- 114 DNase I (ThermoScientific) and ribosomal RNA with Terminator 5'-Phosphate-dependent

115	exonuclease (Epicentre), the mRNA-enriched RNA was chemically fragmented to 150~200
116	bp. Based on these cleaved RNA fragments, cDNA was synthesized using a random
117	hexamer primer and reverse transcriptase. After end reparation and ligation of adaptors, the
118	products were amplified by PCR, further purified, and used to create the final cDNA library.
119	Libraries were sequenced on an Illumina Genome Analyzer IIx. Differential expression
120	analyses were performed through IDEAmex website (<u>http://zazil.ibt.unam.mx/ideamex/</u>)
121	using three methods: edgeR (16), DESeq (17) and NOISeq (18). edgeR and NOISeq were
122	performed by applying TMM (19) as the normalization method. To identify differentially
123	expressed genes, we selected those whose p value was <0.05 and fold change > 2 , for each
124	method. Finally, we considered as the best candidates, only genes that appeared
125	differentially expressed in the three methods. The functional annotation of differentially
126	expressed genes regarding the affected pathways was obtained from Kyoto Encyclopedia of
127	Genes and Genomes (KEGG) (20), using our own R's scripts. RNA-Seq transcriptome data
128	were deposited in the NCBI Gene Expression Omnibus database under accession number
129	GSE113152.

130 Quantitative real-time RT-PCR (RT-qPCR)

131 To validate the quality of the sequencing data, some differentially expressed genes were

132 selected for RT-qPCR analysis. mRNA was extracted as described in the section "RNA

- 133 extraction" and DNA residual was removed using DNase I (Thermo Scientific). cDNA
- 134 synthesis was performed using RevertAid H Minus First Strand cDNA Synthesis kit
- 135 (Thermo Scientific). Subsequently, the RT-qPCR was performed using a Maxima SYBR
- 136 Green/ROXq PCR Master Mix (Thermo Scientific) in a 96-well plate with the Light-Cycler
- 137 II (Roche). Gene-specific primers used for RT-qPCR are shown in Table 1. recC was used

138	as gene internal	standard for PCF	amplification	. Normalized fold	changes of the relative

- 139 expression ratio were quantified by the $2^{-\Delta\Delta^{CT}}$ method (21). All experiments were
- 140 performed in triplicates and their average values were calculated.

141 **Cytochrome c content**

- 142 Membrane fractions of *G. sulfurreducens* were isolated as previously described (22, 23).
- 143 Outer membrane-enriched fractions were prepared by treating crude membranes with a
- 144 sarkosyl (sodium N-lauroyl sarcosinate solution at 1% wt/vol) to extract inner membrane
- 145 proteins. Outer membrane proteins were analyzed by Tris-Glycine denaturing
- 146 polyacrylamide gel electrophoresis, and *c*-type cytochromes were detected by staining with
- 147 N,N,N,N-tetramethylbenzidine, as previously described (24, 25). PageRuler pre-stained
- 148 protein standards were purchased from Thermo Scientific. The Tris-Glycine gel image was
- 149 digitized using a Gel-doc (Bio Rad).

150 Immunoblot analysis

151 Protein extraction from cultures performed under "Pd(II)-reducing" and "Non-Pd(II)-

152 reducing" conditions was conducted by western blot as follows: cells pellets were re-

153 suspended in 150 µl of B-PER II Bacterial Protein extraction reagent (Pierce) and incubated

- 154 for 15 min. 1.0 mg of total protein per sample was incubated with PAGE-Buffer and boiled
- 155 for 5 min and were separated on a 15% SDS-PAGE. After separation, proteins were
- 156 transferred to nitrocellulose membranes (Merck-Millipore) for immunoblot analysis using
- 157 rabbit polyclonal antibodies raised against G. sulfurreducens PilA. Blots were blocked with
- 158 3% BSA in PBS overnight at 4°C and then incubated with a 1/1,000 dilution of primary
- antibody for 4 h at room temperature, washed with PBS, and incubated with a 1/5,000

160	dilution of goat	anti-rabbit alk	aline phose	ohatase-coniu	gated secondar	v antibody	$\sqrt{10}$ for 3 h	at
					0	j		

- 161 room temperature. After being washed, blots were developed with 5-bromo-4-chloro-3-
- 162 indolylphosphatase (BCIP)-Nitro Blue Tetrazolium (Pierce) following the manufacturer's
- 163 instructions.

164 Viability assay

- 165 Cell viability assays after exposure to Pd(II) was performed by recovering the resting cells
- 166 in NBAF medium and incubated to measure microbial growth. Prior to inoculation, cell
- 167 suspensions under Pd(II)-reducing conditions were incubated for 3 h and further transferred
- 168 from there to NBAF medium with a cellular density of 0.05 (OD 600_{nm}). The cultures were
- 169 incubated at 30 $^{\circ}$ C, and growth was periodically monitored as OD 600_{nm}.

170 Microbial growth under Pd(II)-reducing conditions

- 171 *G. sulfurreducens* was grown in bicarbonate-buffered medium (26), supplemented with 15
- 172 mM pyruvate, 5 mg l^{-1} of Na₂PdCl₄ and 15 mM glutamine. Cultures were incubated at 30
- ^oC, and Pd(II) reduction, pyruvate consumption and growth were periodically monitored.
- 174 All experimental treatments were set-up in triplicate.

175 Analytical techniques

- 176 Reduction of Pd(II) was quantified as follows: 5 ml of Pd(II) medium, inoculated or non-
- 177 inoculated, were filtered using 0.22 µm membrane filters (Millipore, Bedford, USA).
- 178 Filtrate samples were then analyzed by inductively coupled plasma-optic emission
- 179 spectroscopy (ICP-OES, Varian 730-ES).
- 180 Pyruvate consumption was measured by a high performance liquid chromatography (HPLC,
- 181 Agilent Technologies 1200 Series, Santa Clara, CA, USA) equipped with an Aminex HPX-

182	87H column	(BIO-RAD)). The column was	maintained at 50	°C and wa	is eluted with 5 ml	M
-----	------------	-----------	-------------------	------------------	-----------	---------------------	---

- 183 H_2SO_4 at a flow rate of 0.6 ml min⁻¹. Pyruvate was detected by an UV detector at 210 nm.
- 184 The standard reagent for quantification was purchased from Sigma-Aldrich (St Louis, MO,
- 185 USA).

186 X-ray diffraction analysis

- 187 Analysis of the Pd(0) NP's deposited on the different strains of G. sulfurreducens was
- 188 conducted in an X-Ray diffractometer Bruker D8 Advance. Samples were treated as
- previously described (2). X-ray diffraction (XRD) patterns were recorded from $20^{\circ}-90^{\circ}$ 2θ
- 190 with a step time of 2 s and step size of $0.01^{\circ} 2\theta$.
- 191

192 **Results and Discussion**

193 Differentially expressed genes during Pd(II) reduction

194 Previous studies have shown that G. sulfurreducens is able to reduce Pd(II) to Pd(0) NP's

195 (2). However, the proteins involved in this respiratory process have not been identified. To

- 196 examine the transcriptional changes that occur in *G. sulfurreducens* during Pd(II) reduction,
- 197 we used RNA-Seq. The p-value and fold change were calculated by the statistical methods

198 DESeq, edgeR and NOISeq. Only genes that showed differential expression by all methods

- 199 were selected, resulting in 393 differentially expressed genes (Fig. 1A). A cut off p-value
- 200 < 0.05 and a fold change >2 was used.
- 201 Out of the 393 genes, 252 displayed statistically significant upregulation (>2 FC), and 141
- 202 downregulation under Pd(II)-reducing conditions. This accounted for approximately 11%
- 203 of the genes in the G. sulfurreducens genome, indicating that Pd(II) reduction triggered

204	significant global gene expression changes. The genes that showed significant differences
205	in transcript levels were classified into the following functional categories: regulatory
206	functions and transcription; energy metabolism and electron transport; DNA metabolism;
207	transport; carbohydrate metabolism; proteolysis; protein synthesis; amino acids metabolism;
208	mobile and extrachromosomal elements; metabolism of cofactors and vitamins; cell
209	envelope; lipid metabolism; unknown function; and others (Fig. 1B).
210	
211	The most differentially expressed genes were those involved in protein synthesis, where 50
212	genes were upregulated, while 11 were downregulated. Among the genes upregulated,
213	many are related to tRNA synthesis and ribosomal proteins, such as rpsU-1, rpsB, rpsB,
214	rpsT, rpmB, rplU and rpsL. The second group corresponds to genes involved in regulatory
215	functions and transcription with 55 genes (42 upregulated and 13 downregulated). The high
216	number of upregulated transcriptional regulators points out the response of this bacterium
217	to a non-common metal as electron acceptor. The third group of genes is involved in energy
218	metabolism and electron transport (12 upregulated and 29 downregulated), of which 20
219	code for <i>c</i> -type cytochromes.
220	

221 Expression of *c*-type cytochromes genes during Pd(II) reduction

About half of the differentially expressed genes involved in energy metabolism and

electron transport were related to *c*-type cytochromes (9 upregulated and 11

downregulated); 8 are located in the outer membrane, 8 in the periplasmic, 1 in the

225 cytoplasm, and 1 attached to the inner membrane, while the location of the remaining 2 is

unknown (Table 2).

227

228	The most upregulated c -type cytochromes under Pd(II)-reducing conditions were GSU1062,
229	GSU2808 and PpcA. GSU1062, a putative <i>c</i> -type cytochrome, is abundant under ferric
230	citrate reducing conditions (27). Similarly, gsu2808 encodes for an outer membrane
231	cytochrome that it is reported overexpressed under Fe(III)-reducing conditions and its
232	expression decreases in OmcB deficient conditions (28, 29). On the other hand, cytochrome
233	PpcA participates in electron transfer in the periplasm. A ppcA mutant strain showed a
234	decrease in Fe(III) and U(VI) reduction (30, 10). Additionally, the outer membrane
235	cytochromes OmcH and OmcM were also overexpressed under Pd(II)-reducing conditions.
236	Previous work has shown that omcH was overexpressed under growing conditions with
237	insoluble Fe(III) oxides; while mutations in the omcH and omcM genes compromise the
238	reduction of Fe(III) oxides (31). Overexpression of these cytochromes under Pd(II)-
239	reducing conditions suggests that they could be involved in the extracellular reduction of
240	Pd(II).
241	Other <i>c</i> -type cytochromes upregulated during Pd(II) reduction were PpcD, GSU2513,
242	GSU2934 and GSU3107. PpcD is overexpressed during the reduction of Mn(IV) oxides,
243	while the gsu2934 gene is overexpressed during reduction of Fe(III) oxides (31). The
244	putative cytochrome GSU2513 has not previously been reported and its function has yet to
245	be elucidated.
246	
247	Surprisingly, during Pd(II) reduction, cytochromes OmcB, OmcC, OmcS and OmcZ, which
248	are involved in the reduction of Fe(III), Mn(IV), and U(VI) (31) were downregulated. A
249	previous model of microbial reduction of Pd(II) by G. sulfurreducens suggested that

250 cytochromes OmcB and OmcS, important in the reduction of Fe(III), Mn(IV) or U(VI),

251	could be involved in the reduction process (8); however, our data suggest that the Pd(II)
252	reduction pathway does not involve those common cytochromes, but others with different
253	biochemical characteristics.

254

Transcriptional regulation genes expressed in Palladium reduction

256 The expression profile of some genes encoding proteins involved in transcriptional

257 regulation was considerably altered under Pd(II)-reducing conditions (Table 3). The *gnfK*,

258 gnfR and glnB genes were upregulated. It has previously been reported that gnfK, gnrR and

259 glnB are upregulated during nitrogen fixation in G. sulfurreducens (32). gnfK and gnfR

260 encode for a un orthodox two-component system, being GnfK a Histidine Kinase and GnrR

a Response Regulator. Phosphorylated GnfR, instead of acting as a transcriptional regulator,

as the majority of the Response Regulators, binds to the *nifH* mRNA, preventing the

263 formation of a stem-loop structure and therefore avoiding transcription termination (32). In

264 Geobacter species, overexpression of genes related to nitrogen fixation has been detected in

sediments contaminated with crude oil, groundwater contaminated with uranium, and in

266 microbial fuel cells (33, 34). Under such conditions, where nutrient limitation may exist, it

has been proposed that nitrogen fixation is critical for cell growth. Similarly, nitrogen

268 fixation may be an important process during Pd(II) reduction.

269 Unexpectedly, HgtR was upregulated more than 5.5 times under Pd(II)-reducing conditions.

270 HgtR has been reported as a global regulator for genes involved in biosynthesis and energy

271 generation in *Geobacter* species. Its expression was essential for growth with hydrogen,

during which hgtR expression was induced (35). Moreover, it represses the transcription of

several genes of the central metabolism and energy generation, such as *gltA* (citrate

274	synthase), nouA (NADH dehydrogenase I subunit), atpG (ATP synthase FoB '), srfB
275	Reductase B' subunit), <i>icd</i> (isocitrate dehydrogenase) and <i>gntR</i> (35).
276	We observed a decrease in the expression of <i>gltA</i> , <i>icd-mdh</i> , <i>atpG</i> and <i>nuo</i> genes, likely by
277	the upregulation of $hgtR$ under Pd(II)-reducing conditions. The increase in $hgtR$ expression
278	in our experiments was presumably due to the presence of Pd(II), and not to hydrogen,
279	because we used strict anaerobic conditions under a N_2/CO_2 (80/20%) atmosphere without
280	H ₂ . In addition, <i>nuoH</i> -1, <i>nouD</i> , <i>nuoL</i> -1 and <i>nuoF</i> -1, which form part of an operon of 14
281	genes that encode for the NADH dehydrogenase, were also downregulated (see Table S1).
282	
283	The transcriptional regulator Fur was also upregulated during Pd(II) reduction. Fur activity
284	is controlled by intracellular levels of Fe(II) and directly regulates the expression of the
285	feoAB, gsu2432, gsu2937, gsu3274, ideR and gsu1639 genes (36). However, the regulon
286	Fur also represses genes, such as citrate synthase (gltA), isocitrate dehydrogenase (icd), 2-
287	oxoglutarate oxidoreductase (gsu1467, gsu1468, gsu1469 and gsu1470), malate
288	dehydrogenase (mdh), NADH (gsu0346, gsu0347, gsu0348, gsu0349, gsu0350, gsu0351)
289	and OmcZ (gsu2076) (36). Fur upregulation during Pd(II) reduction may be the result of
290	iron limiting condition, so that cells would have been trying to overexpress genes related to
291	homeostasis and iron uptake. With these results, we can observe that during Pd(II)
292	reduction, gltA, icd, mdh, gsu1466, gsu1468, gsu0349 and omcZ were downregulated and
293	could be the result of Fur and HgtR overexpression.
294	
295	Among the genes coding for possible transcriptional regulators that are upregulated during
296	Pd(II) reduction are gsu1072, gsu0922, gsu1639, gsu2980, gsu3206, gsu2185 whose

297 function has not yet been elucidated. Overall, other genes coding for Histidine Kinases and

- 298 Response Regulators, as well as transcriptional activators and repressors associated with
- 299 Pd(II) reduction, were differentially expressed.
- 300

301 **Cytochrome** *c* and **PilA** proteins content during palladium reduction

- 302 In order to evaluate if mRNA expression correlates with protein content for some *c*-type
- 303 cytochromes differentially expressed under Pd(II)-reducing conditions, we examined their
- 304 level by heme-staining of protein gels. As shown in Figure 2A, preparations of soluble
- 305 fraction, inner membrane and outer membrane proteins, revealed differences in abundance
- 306 of *c*-type cytochromes in acetate-Pd(II) vs acetate-fumarate conditions. Those bands
- 307 corresponded to the OmcB and OmcC outer membrane multiheme *c*-type cytochromes,
- 308 required for Fe(III) reduction in G. sulfurreducens (29, 37). OmcS, which is required for
- 309 Fe(III) oxide reduction (38) and the outer membrane multiheme *c*-type cytochrome, OmcZ,
- 310 required for optimal current production in microbial fuel cells (39), were abundant in
- 311 acetate-fumarate in contrast to acetate-Pd(II) conditions.
- 312
- 313 We also examined the expression of *pilA* gene (GSU1496), which was upregulated under
- 314 Pd(II)-reducing conditions. To verify the PilA protein content under these conditions,
- 315 Immunobloting analysis was performed using anti-PilA antibodies. As shown in Figure 2B,
- 316 PilA was overproduced under these conditions. These results were surprising since the pili
- 317 is reported to be required for extracellular electron transfer to insoluble electron acceptors,
- 318 such as metal oxides and electrodes (12), but not to soluble metals.
- 319

320 Contribution of pili on Pd(II) reduction

321	In G. sulfurreducens, the pili is an important structure participating in long-distance
322	extracellular electron transfer to Fe(III) oxides, electron exchange between syntrophic
323	partners, as well as electrodes to generate bioelectricity (12, 40, 41). In order to evaluate the
324	contribution of pili to the reduction of Pd(II) to Pd(0), we studied this process in several
325	mutants that have a direct effect on PilA synthesis. Strain $\Delta pilR$ does not produce the PilR,
326	which is the major transcriptional activator of the <i>pilA</i> gene, which codes for pilin, the
327	structural protein of pili (12); therefore, in this mutant, PilA is severely diminished (23).
328	Thus, Pd(II) reduction in $\Delta pilA$ and $\Delta pilR$ mutant strains was quantified. We observed that
329	98% of Pd(II) is reduced to Pd(0) in the WT strain within the first hour of incubation, while
330	in the $\Delta pilA$ strain, 81% of Pd(II) was reduced during the same incubation period. When we
331	tested the $\Delta pilR$ strain, only 61% of Pd(II) reduction was reached after three hours (Fig.
332	3A). Pd(II) reduction was concomitant with an evident change in color of the biomass,
333	which turned black (Fig. 3A inset). To analyze the nature of the palladium NP's produced,
334	samples of cells covered with these metal were analyzed by XRD (Fig. 3B). The results
335	confirmed the formation of Pd(0) NP's. The pattern of XRD in all samples showed five
336	strong Bragg reflections at 2 < theta > values around 40.11, 46.66, 68.13, 82.11, which
337	correspond to planes (111), (200), (220), and (311) of a face-centered cubic lattice (fcc)
338	(XRD pattern was indexed to ICDD card 89-4897 (fcc palladium syn)). XRD pattern
339	showed that the Pd NPs were crystalline in nature.
340	

341	It has been observed that under U(VI)-reducing conditions, using a $\Delta pilA$ mutant, the
342	production of some c -type cytochrome is diminished, which results in a slight decrease in
343	the reduction of $U(VI)$ to $U(IV)$ (42). It has been suggested that the slight reduction of
344	U(VI) in the pili-deficient strain is due to the decrease in outer membrane c -type
345	cytochromes and not to pili deficiency (43). Therefore, the slight negative effect on the
346	reduction of Pd(II) by the $\Delta pilA$ strain, in our experiments, could be due to a decrease in the
347	production of outer membrane c -type cytochromes, rather than a negative effect on the pili
348	itself, similarly to reports on U(VI) reduction (43). Since PilR is a transcriptional regulator
349	that controls the expression of at least 44 genes, among which are several <i>c</i> -type
350	cytochromes, we propose that the decreased in Pd(II) reduction observed in the $\Delta pilR$
351	mutant strain could be related to <i>c</i> -type cytochrome content rather than to pili absence.
352	Pd(II) is a toxic metal for many microorganisms; it may inhibit the activity of creatine
353	kinase, aldolase, succinate dehydrogenase, carbonic anhydrase, alkaline phosphatase and
354	prolyl hydroxylase (44). Pd(II) has been found to be toxic in Shewanella oneidensis;
355	however, exposed cells could be recovered when a suitable electron donor was provided (1).
356	Similar to S. oneidensis, G. sulfurreducens could recover viability after the reduction of
357	Pd(II) in NBAF medium, as shown in supplementary data (Fig. S1). In addition, the $\Delta pilA$
358	and $\Delta pilR$ mutant strains took slightly more time than the WT strain to recover viability
359	after exposure to Pd(II) (Fig. S1), which may be due to increased exposure to Pd(II),
360	resulting from the decreased capacity of these strains to reduce this metal (Fig. 3A).
361	

362 Growth of Geobacter sulfurreducens coupled to Pd(II) reduction

363 Because the biological reduction of Pd(II) by S. oneidensis, D. desulfuricans and G. 364 sulfurreducens was carried out with resting cells, it is unknown whether this process can be 365 coupled to microbial growth (3, 1, 2). In order to evaluate if G. sulfurreducens can couple 366 growth to Pd(II) reduction, incubations were performed in FW medium (see experimental 367 procedures) using acetate (20 mM), lactate (15 mM) or pyruvate (15 mM) as electron 368 donors, and Pd(II) (5 mg/mL) as electron acceptor. No microbial growth was observed with 369 acetate and lactate, which may be due to the fact that the RNA-Seq results showed that the 370 gltA (citrate synthase) and mdh (malate dehvdrogenase) genes were downregulated during 371 Pd(II) reduction, possibly exerting a negative effect on the TCA cycle and therefore on the 372 production of energy. However, by providing pyruvate as an electron donor, we would 373 expect that G. sulfurreducens could use an alternative pathway to that of acetate 374 metabolism, redirecting it to biomass biosynthesis (45). However, under these conditions, 375 neither growth nor Pd(II) reduction was observed (data not shown). To verify if the lack of 376 microbial growth observed, could be due to a limitation in the nitrogen source, because it is 377 worth noting that, under Pd(II)-reducing conditions, we observed the overexpression of 378 genes related to nitrogen fixation (gnfK, gnfR and glnB), glutamine was also added to the 379 culture medium. Interestingly, under these conditions, we observed microbial growth in 380 pyruvate-Pd(II) medium (Fig. 4A). Moreover, this growth was coupled to the reduction of 381 90% Pd(II) to Pd(0) (Fig. 4B) and to the consumption of up to 3 mM of pyruvate (Fig. 4C). 382 Our results imply complex linkages between central metabolism and Pd(II) reduction in G. 383 sulfurreducens. Future research is necessary to identify which nutritional elements are 384 conditioning factors to favor the bacterial growth in the presence of other rare metals.

However, to our knowledge, this paper reports, for the first time, the microbial reduction ofPd(II) coupled to growth.

387 Validation of selected differentially expressed genes using RT-qPCR

- 388 To verify results obtained from RNA-Seq experiments and to get quantitative data to
- 389 compare the transcript abundances under Pd(II)-reducing conditions, we performed RT-
- 390 qPCR analyses from 24 selected genes encoding proteins involved in electron transfer,
- transcriptional regulators and central metabolism (Table 4). These genes included the *c*-
- type cytochromes genes (*omcH*, *omcM*, *omcB*, *omcC*, *omcS*, *omcZ*, *ppcD*, *gsu1062*, *ppcB*,
- 393 *omcE*, *ccpA*, *gsu0615*, *gsu2937*, *gsu2513*, *gsu2808*, *omcQ* and *gsu2495*) and the cold shock
- 394 DNA/RNA-binding protein, gsu0207, the transcriptional regulators, hgtR and gsu0837, the
- 395 menaquinol oxidoreductase complex Cbc3, gsu1650, the pilin protein, pilA, the NADH
- dehydrogenase I, *nuoH*-1, and the citrate synthase I, *gltA*.
- 397
- 398 Upregulation of *omcH*, *omcM*, *gsu1062*, *gsu2513*, *gsu2808* and *ppcD* genes that encoded
- 399 for *c*-type cytochromes under Pd(II)-reducing conditions was confirmed by RT-qPCR.
- 400 Similarly, the expression of *pilA*, *gsu0207*, *hgtR* y *gsu1650* was high under these conditions
- 401 according to the RT-qPCR. On the other hand, the low transcription of *omcB*, *omcC*, *omcS*,
- 402 omcZ, gsu0837, gsu0345, gsu2813, gsu0615, gsu2937, omcQ, gsu2495 and gsu1106
- 403 observed in RNA-Seq analyses was confirmed by RT-qPCR. Furthermore, the low
- 404 transcription of *nuoH*-1 and *gltA* genes was also observed, in agreement with the high
- 405 expression of *hgtR*, a negative regulator for these genes (35).
- 406

407 Model for biological Pd(II) reduction by Geobacter sulfurreducens

408	Biological reduction of Pd(II) is a poorly studied process. To date, several bacteria have
409	been reported with the ability to reduce Pd(II) to Pd(0) NP's (46). In Desulfovibrio
410	fructosivorans and Escherichia coli, the biological reduction of Pd(II) to Pd(0) is linked to
411	the activity of a hydrogenase (47, 48). Shewanella oneidensis and D. desulfuricans present
412	a similar Pd(II) reduction mechanism, suggesting that hydrogenase and cytochrome c3 are
413	involved in the reduction process (3, 46).
414	Based on the results shown here, we propose the following Pd(II) reduction model:
415	Electrons derived from the anaerobic metabolism are transferred through the electron
416	carriers NADH dehydrogenase and MQ to the periplasmic cytochrome MacA, which
417	transfers the electrons to the tri-heme-periplasmic cytochromes PpcA/PpcD. PpcA/PpcD
418	then transport the electrons to the outer membrane cytochromes GSU2513, GSU2808,
419	OmcM and OmcH, which ultimately reduce Pd(II) to Pd(0) (Fig. 5). In addition, the
420	periplasmic cytochromes GSU1062 and CbcN could be intermediates in electron transfer
421	from MacA and/or PpcA/PpcD to the outer membrane cytochromes. Future analyses are
422	necessary to elucidate whether Pd(II) reduction proceeds in the periplasm.
423	

424 Acknowledgments

425 We thank Raunel Tinoco, Ramiro Baeza Jimenez, Ricardo Grande and Veronica Jiménez

426 for their technical support. This study was financially supported by CONACYT (Program

427 Frontiers in Science, Grant 1289 and Program Basic Science, Grant 255476). We thank

428 Enrique Morett for critically reading the manuscript. Finally, we greatly acknowledge the

429 support from the national laboratories USMB, LANBAMA and LINAN for their

430 contribution in sample analyses.

Λ	3	1
+	J	T

432 **References**

- 433 1. De Windt W, Boon N, Van den Bulcke J, Rubberecht L, Prata F, Mast J, Hennebel T,
- 434 Verstraete W. 2006. Biological control of the size and reactivity of catalytic Pd(0) produced
- 435 by Shewanella oneidensis. Antonie van Leeuwenhoek 90:377-389.

436

- 437 2. Pat-Espadas AM, Razo-Flores E, Rangel-Mendez JR, Cervantes FJ. 2013. Reduction of
- 438 palladium and production of nano-catalyst by *Geobacter sulfurreducens*. Appl Microbiol
- 439 Biotech 97:9553–9560.

440

3. Lloyd JR, Yong P, Macaskie LE. 1998. Enzymatic recovery of elemental palladium by
using sulfate-reducing bacteria. *Appl Environ Microbiol* 64(11):4607–4609.

443

- 444 4. Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ. 1994.
- 445 Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-

446 reducing microorganism. *Appl Environ Microbiol* 60:3752–3759.

447

- 448 5. Sanford RA, Wu Q, Sung Y, Thomas SH, Amos BK, Prince EK, Löffler FE. 2007.
- 449 Hexavalent uranium supports growth of Anaeromyxobacter dehalogenans and Geobacter
- 450 spp. with lower than predicted biomass yields. *Environ Microbiol* 9(11):2885–2893.

452	6. Law N	. Ansari S	Livens FR	. Renshaw JC	Lloyd JR	. 2008.	Formation	of nanoscale

- 453 elemental silver particles via enzymatic reduction by *Geobacter sulfurreducens*. Appl
- 454 *Environ Microbiol* 74(22):7090–7093.
- 455
- 456 7. Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M,
- 457 Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin K
- 458 P. 2011. Geobacter: the microbe electric's physiology, ecology, and practical applications.
- 459 Adv Microb Physiol 59:1-100.
- 460
- 461 8. Pat-Espadas AM, Razo-Flores E, Rangel-Mendez JR, Cervantes FJ. 2014. Direct and
- 462 Quinone-Mediated Palladium Reduction by Geobacter sulfurreducens: Mechanisms and

463 Modeling. *Environ Sci Technol* 48(5):2910–2919.

- 464
- 465 9. Ding YH, Hixson KK, Aklujkar MA, Lipton MS, Smith RD, Lovley DR, Mester T. 2008.
- 466 Proteome of *Geobacter sulfurreducens* grown with Fe(III) oxide or Fe(III) citrate as the

467 electron acceptor. *Biochim Biophys Acta* 1784(12): 1935–1941.

- 468
- 469 10. Mehta T, Coppi MV, Childers SE, Lovley DR. 2005. Outer membrane *c*-type
- 470 cytochromes required for Fe(III) and Mn(IV) oxide reduction in *Geobacter sulfurreducens*.
- 471 *Appl Environ Microbiol* 71(12):8634–8641.
- 472
- 473 11. Childers SE, Ciufo S, Lovley DR. 2002. *Geobacter metallireducens* accesses insoluble
- 474 Fe(III) oxide by chemotaxis. *Nature* 416 (6882):767–769.

475	12. Reguera G	. McCarthy	KD, M	ehta T. Nio	coll JS, Tuo	minen MT.	Lovley DR	R. 2005.

- 476 Extracellular electron transfer via microbial nanowires. *Nature* 435:1098-1101.
- 477
- 478 13. Shelobolina ES, Coppi MV, Korenevsky AA, DiDonato LN, Sullivan SA, Konishi H,
- 479 Xu H, Leang C, Butler JE, Kim BC, Lovley DR. 2007. Importance of *c*-type cytochromes
- 480 for U(VI) reduction by *Geobacter sulfurreducens*. *BMC Microbiol* 7:16.
- 481
- 482 14. Shi L, Squier TC, Zachara JM, Fredrickson JK. 2007. Respiration of metal (hydr)oxides
- 483 by Shewanella and Geobacter : a key role for multihaem c -type cytochromes. Mol
- 484 *Microbiol* 65(1):12–20.
- 485
- 486 15. Coppi MV, Leang C, Sandler SJ, Lovley DR. 2001. Development of a genetic system
- 487 for Geobacter sulfurreducens. Appl Environ Microbiol 67(7):3180-3187.
- 488
- 489 16. Robinson MD, McCarthy DJ, Smyth GK. 2010. EDGER: a Bioconductor package for
- 490 differential expression analysis of digital gene expression data. *Bioinformatics* 26:139-140.491
- 492 17. Anders S, Huber W. 2010. Differential expression analysis for sequence count data.
- 493 *Genome Biol* 11(10):R106.
- 494
- 495 18. Tarzona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. 2011. Differential
- 496 expression in RNA-Seq: a matter of depth. *Genome Res* 21(12): 2213-2223.
- 497

498	19. Robinson MD,	Oshlack A	2010 A scaling	normalization	method for	differential
T 70	1, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,	Osmack A.	$\Delta 010. \Lambda scamp$	<u>e normanzanon</u>	memou ioi	uniterential

- 499 expression analysis of RNA-Seq data. *Genome Biol* 11(3): R25.
- 500
- 501 20. Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of genes and genomes.
- 502 *Nucleic Acids Res* 28(1):27-30.
- 503
- 504 21. Livak K, Shmittgen TD. 2001. Analysis of relative gene expression data using real-time
- 505 quantitative PCR and the 2-(Delta Delta C(T)) method. *Methods* 25:402–408.
- 506
- 507 22. Kim BC, Leang C, Ding YH, Glaven RH, Coppi MV, Lovley DR. 2005. OmcF, a
- 508 putative *c*-type monoheme outer membrane cytochrome required for the expression of other
- 509 outer membrane cytochromes in *Geobacter sulfurreducens*. J Bacteriol 187(13):4505-4513.
- 510
- 511 23. Juárez K, Kim BC, Nevin K, Olvera L, Reguera G, Lovley DR, Methé BA. 2009. PilR,
- 512 a transcriptional regulator for pilin and other genes required for Fe(III) reduction in

513 Geobacter sulfurreducens. J Mol Microbiol Biotechnol 16:146-158.

- 516 detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate
- 517 polyacrylamide gels. Anal Biochem 75:168-176.
- 518
- 519 25. Francis RT Jr, Becker RR. 1984. Specific indication of hemoproteins in polyacrylamide
- 520 gel using a double-staining process. *Anal Biochem* 136(2):509-514.

^{515 24.} Thomas PE, Ryan D, Levin W. 1976. An improved staining procedures for the

- 521 26. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA,
- 522 Goodwin S. 1993. *Geobacter metallired* ucens gen. nov. sp. nov., a microorganism capable
- 523 of coupling the complete oxidation of organic compounds to the reduction of iron and other
- 524 metals. Arch Microbiol 159(4):336–344.
- 525
- 526 27. Ding YH, Hixson KK, Giometti CS, Stanley A, Esteve-Nuñez A, Khare T, Tollaksen
- 527 SL, Zhu W, Adkins JN, Lipton MS, Smith RD, Mester T, Lovley DR. 2006. The proteome
- 528 of dissimilatory metal-reducing microorganism *Geobacter sulfurreducens* under various
- 529 growth conditions. *Biochim Biophys Acta* 1764(7):1198-1206.
- 530
- 531 28. Methé BA, Webster J, Nevin K, Butler J, Lovley DR. 2005. DNA Microarray analysis
- 532 of nitrogen fixation and Fe(III) reduction in *Geobacter sulfurreducens*. App Environ
- 533 *Microbiol* 71(5): 2530-2538.
- 534
- 535 29. Leang C, Adams LA, Chin KJ, Nevin KP, Methé BA, Webster J, Sharma ML, Lovley
- 536 DR. 2005. Adaptation to disruption of the electron transfer pathway for Fe(III) reduction in

537 Geobacter sulfurreducens. J Bacteriol 187(17):5918-5926.

- 538
- 539 30. Lloyd JR, Leang C, Hodges MAL, Coppi MV, Cuifo S, Methe B, Sandler SJ, Lovley
- 540 DR. 2003. Biochemical and genetic characterization of PpcA, a periplasmic *c*-type
- 541 cytochrome in *Geobacter sulfurreducens*. *Biochem J* 369(1):153-161.
- 542
- 543 31. Aklujkar M, Coppi MV, Leang C, Kim BC, Chavan MA, Perpetua LA, Giloteaux L,
- 544 Liu A, Holmes DE. 2013. Proteins involved in electron transfer to Fe(III) and Mn(IV)

545	oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiol 159:515-
546	535.
547	
548	32. Ueki T, Lovley DR. 2010. Novel regulatory cascades controlling expression of
549	nitrogen-fixation genes in Geobacter sulfurreducens. Nucleic Acids Res 38(21):7485-7499.
550	
551	33. Holmes DE, Nevin KP, Lovley DR. 2004. In situ expression of <i>nifD</i> in Geobacteraceae
552	in subsurface sediments. Appl Environ Microbiol 70:7251-7259.
553	
554	34. Holmes DE, O'Neil RA, Chavan MA, N'Guessan LA, Vrionis HA, Perpetua LA,
555	Larrahondo MJ, DiDonato R, Liu A, Lovley DR. 2009. Transcriptome of Geobacter
556	uraniireducens growing in uranium-contaminated subsurface sediments. ISME J 3:216-230.
557	
558	35. Ueki T, Lovley DR. 2010. Genome-wide gene regulation of biosynthesis and energy
559	generation by a novel transcriptional repressor in Geobacter species. Nucleic Acids Res
560	38(3):810-821.
561	
562	36. Embree M, Qiu Y, Shieu W, Nagajaran H, O'Neil R, Lovley DR, Zengler K. 2014. The
563	iron stimulon and Fur regulon of Geobacter sulfurreducens and their role in energy
564	metabolism. App Environ Microbiol 80(9):2918-2927.
565	
566	37. Liu Y, Fredrickson JK, Zachara JM, Shi L. 2015. Direct involvement of ombB, omaB,
567	and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA.
568	Front Microbiol 6:1075.

5	60
J	02

570	38. Qian X, Mester T, Morgado L, Arakawa T, Sharma ML, Inoue K, Joseph C, Salgueiro
571	CA, Maroney MJ, Lovley DR. 2011. Biochemical characterization of purified OmcS, a c-
572	type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens.
573	Biochim Biophys Acta 1807(4):404-412.
574	
575	39. Inoue K, Leang C, Franks AE, Woodard TL, Nevin KP, Lovley DR. 2011. Specific
576	localization of the c -type cytochrome OmcZ at the anode surface in current-producing
577	biofilms of Geobacter sulfurreducens. Environ Microbiol Rep 3(2):211-217.
578	
579	40. Smith JA, Lovley DR, Tremblay PL. 2013. Outer cell surface components essential for
580	Fe(III) oxide reduction by Geobacter metallireducens. Appl Environ Microbiol 79:901–907.
581	
582	41. Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR. 2010.
583	Direct exchange of electrons within aggregates of an evolved syntrophic coculture of
584	anaerobic bacteria. Science 330:1413-1415.
585	
586	42. Cologgi DL, Lampa-Pastirk S, Speers AM, Kelly SD, Reguera G. 2011. Extracellular
587	reduction of uranium via Geobacter conductive pili as a protective cellular mechanism.
588	<i>Proc Natl Acad Sci</i> 108(37):15248 –15252.
589	
590	43. Orellana R, Leavitt J, Comolli LR, Csencsits R, Janot N, Flanagan KA, Gray AS, Leang
591	C, Izallalen M, Mester T, Lovley DR. 2013. U(VI) Reduction by diverse outer surface c-
592	type cytochromes of Geobacter sulfurreducens. Appl Environ Microbiol 79:6369-6374.

- 44. Liu TZ, Lee SD, Bhatnagar RS. 1979. Toxicity of palladium. *Toxicol Lett* 4(6):469–473.
 595
- 596 45. Wilkins MJ, Wrighton KC, Nicora CD, Williams KH, McCue LA, Handley KM, Miller
- 597 C S, Giloteaux L, Montgomery AP, Lovley DR, Banfield JF, Long PE, Lipton MS. 2013.
- 598 Fluctuations in species-level protein expression occur during element and nutrient cycling
- in the subsurface. *PLoS One* 8(3): e57819
- 600
- 601 46. De Corte S, Hennebel T, De Gusseme B, Verstraete W, Boon N. 2012. Bio-palladium:
- from metal recovery to catalytic applications. *Microb Biotechnol* 5(1):5-17.
- 603
- 47. Mikheenko IP, Rousset M, Dementin S, Macaskie LE. 2008. Bioaccumulation of
- 605 palladium by *Desulfovibrio fructosivorans* wild-type and hydrogenase-deficient strains.
- 606 *Appl Environ Microbiol* 74: 6144–6146.
- 607
- 48. Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE. 2010. Involvement
- of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of
- 610 Pd(II) using *Escherichia coli* mutant strains. *Microbiol* 156(9):2630-2640.
- 611
- 612 49. Gardy JL, Spencer C, Wang K, Ester M, Tusnády GE, Simon I, Hua S, deFays K,
- 613 Lambert C, Nakai K, Brinkman FS. 2003. PSORT-B: Improving protein subcellular
- 614 localization prediction for Gram-negative bacteria. *Nucleic Acids Res* 31(13):3613-3617.
- 615

616	50. Emanuelsson O, Brunak S, von Heijne G, Nielsen H. 2007. Locating proteins in the cell
617	using TargetP, SignalP, and related tools. Nat Protoc 2(4):953-971.
618	
619	Figure Legends
620	FIG 1. Transcriptome analysis results from Geobacter sulfurreducens under Pd(II)-
621	reducing conditions. (A) Venn diagram representing differential gene expression analysis
622	from Pd(II)-reducing conditions by three statistical methods. (B) Functional overview of
623	the genes that were differentially expressed during Palladium reduction.
624	
625	FIG 2. <i>c</i> -type cytochrome and PilA protein content found under Pd(II)-reducing conditions.
626	(A) SDS-PAGE heme stained. Outer membrane (OM), inner membrane (IM) and soluble
627	fraction (SF) were prepared from PCA strain with acetate-fumarate (Ac-F) or acetate-Pd(II)
628	(Ac-Pd(II)). The localization of OmcC, OmcB, OmcS, OmcZ and PpcA were labeled based
629	on expected molecular weight (78.96, 74.89, 42.94, 47.09 and 7.72 kDa, respectively). (B)
630	Immunoblot analysis for PilA. The PageRuler Pre-stained Protein Ladder standard
631	(ThermoScientific) was used as a molecular weight.
632	
633	FIG 3. Palladium reduction by different strains of G. sulfurreducens. (A) Kinetics of Pd(II)
634	reduction. Photograph of bottles applied for Pd(II) reduction is shown in the inset. (B)
635	Comparison of XRD patters corresponding to cells and black precipitates obtained from
636	cultures of WT, $\Delta pilA$ and $\Delta pilR$ strains under Pd(II)-reducing conditions. In (A) and (B),
637	WT strain line blue, $\Delta pilA$ strain line black, $\Delta pilR$ strain line orange.
638	

- **FIG 4.** Growth of *Geobacter sulfurreducens* coupled to Pd(II) reduction. (A) Growth. (B)
- 640 Pd(II) reduction. (C) Consumption of pyruvate. In A, B and C, line with squares, pyruvate-
- 641 Pd(II) supplemented with glutamine; line with rhombi, pyruvate-Pd(II).
- **FIG 5.** Model of Pd(II) reduction by *Geobacter sulfurreducens*.

648	TABLE 1 Bacterial strain an	d primer sequences u	used in this work and for F	RT-qPCR
-----	-----------------------------	----------------------	-----------------------------	---------

649 validations

Strain	Description	Reference/source
Geobacter sulfurreduc	cens	I
PCA strain	Wild type	4
$\Delta pilR$ strain	pilR::kan, kanamicin resistance	23
$\Delta pilA$ strain	pilA::kan, kanamicin resistance	12
Oligonucleotides	Sequence 5´ → 3´	
qPCRrecCfw	CTGTCGTCACCCTTTGTTCC	This study
qPCRrecCrev	GAAAGGGATAGGAGCCGTTC	This study
qPCRomcMfw	TGGAGACTACCCATGCTGAA	This study
qPCRomcMrev	AGACGTCGAGGTGCTCGTAT	This study
qPCRomcHfw	ATGGACGTGAATGGAAGGAG	This study
qPCRomcHrev	TGGCAGTCAGTACAGGTGGA	This study

qPCRppcDfw	CAGCACTCACCCTGTTCTGT	This study
qPCRppcDrev	TGCTTTTTGTGGTCGAAGGT	This study
qPCRhgtRfw	GAGAGAAAATCCGCGGTACA	This study
qPCRhgtRrev	TAGCCTCCCTCATGATGTCC	This study
qPCRGSU1062fw	TCCAGGATTCCGAAACTCAA	This study
qPCRGSU1062rev	CGGCTCTATTTCGCTCTCAG	This study
qPCRGSU0207fw	AGCAAGGGCTTTGGTTTTCT	This study
qPCRGSU0207rev	TTACCCTATCGCCTTCAGCA	This study
qPCRGSU1650fw	TACCCCGTGTTTCGCTATCT	This study
qPCRGSU1650rev	CCGTGGAAATCGAAGAATTT	This study
qPCRGSU0837fw	GCATTGAACGGATCTTCGAC	This study
qPCRGSU0837rev	GCGGACGTACTGTTCATGTC	This study
qPCRGSU0345fw	CGAGTCACTCTCGTTGCAGA	This study
qPCRGSU0345rev	TGCGAGAGAGCAGATGAAGA	This study
qPCRGSU2813fw	CGGTTCTCAACTCGGTCTTC	This study
qPCRGSU2813rev	GACATAGTCGGGGGATGCTGT	This study
qPCRGSU0615fw	ACTTTGCCCTCTGTTTCACG	This study
qPCRGSU0615rev	GAATCCGCTCTTTGACAAGC	This study
qPCRGSU2937fw	GTCACCAGGAAGTCCACGAT	This study
qPCRGSU2937rev	TCAGGTGCTCAACTTTCACG	This study
qPCRGSU1106fw	AGTTCCCCAGTACGTGTTCG	This study
qPCRGSU1106rev	GCGAACTTGGAATCCTTTTG	This study
qPCRomcBfw	GGAGTATGTGGCATCCCTTG	This study

qPCRomcBrev	ACCGTTGGCATTCGTATCTC	This study
qPCRomcCfw	AGAGTACGTGGCATCCCTTG	This study
qPCRomcCrev	CCGTTGGCATTCGTATCTCT	This study
qPCRomcSfw	TCCTACCAGAACAGCAACGA	This study
qPCRomcSrev	ATAGGAACCGCTCAGGGACT	This study
qPCRomcZfw	AAGCCGACTGTCTCGAGTGT	This study
qPCRomcZrev	CGGAGGTATTGATGCAGCTT	This study
qPCRomcEfw	CCAGATCTGCGTGTTCTGTC	This study
qPCRomcErev	CATGCTGCTGGACGAGTAGA	This study
qPCRppcBfw	CCACAAGAAACACCAGACGA	This study
qPCRppcBrev	CACCCCTTGCAGGACTTG	This study
qPCRpilAfw	AATTACCCCCATACCCCAAC	This study
qPCRpilArev	AGCAGCTCGATAAGGGTGAA	This study
qPCRGSU2513Fw	GACCAGGCCCAGTTCAAGTA	This study
qPCRGSU2513Rv	GGTGTCGATTTCAATTTCCTG	This study
qPCRGSU2808Fw	CGAAATGCCATACCTCCACT	This study
qPCRGSU2808Rv	TATATTGCCCCGAGTTGTCC	This study
qPCRGSU0592Fw	GGAGTATTCCCCCTGAAGGA	This study
qPCRGSU0592Rv	ATGTTTCTGGTGGCTGAAGG	This study
qPCRGSU2495Fw	ACCAGCTCTGCTTCGACTGT	This study
qPCRGSU2495Rv	GGTTGTGGCAGAGGGTACAT	This study

659 **TABLE 2.** *c*-type cytochrome and putative cytochrome genes that were differentially expressed in palladium reduction

Cytochromes genes that were upregulated in RNA-Seq experiments

	Gene	Fold			Signal	
Locus ID Gene annotation	name	change	log2 FC	P-value	peptide	Cellular location
GSU0612 Cytochromec3, 3 heme-binding sites	ррсА	0.381	1.390	1.4E-06	Yes	Periplasmic
GSU1024 Cytochromec3, 3 heme-binding sites	ppcD	0.440	1.186	2.4E-03	Yes	Periplasmic
GSU1062 Cytochrome c putative, 1 heme-binding site	-	0.281	1.830	4.1E-05	Yes	Periplasmic
GSU2513 Cytochrome c family protein, 1 heme-binding site	-	0.423	1.243	2.4E-02	Yes	Unknown
GSU2808 Cytochrome c family protein, 5 heme-binding sites	-	0.338	1.563	3.0E-05	Yes	Outer membrane
GSU2934 Cytochrome c family protein, 9 heme-binding sites	cbcN	0.476	1.071	2.6E-04	Yes	Periplasmic
GSU3107 Ribosomal protein L31, 1 heme-binding site	rpmE	0.404	1.307	5.5E-03	NO	Cytoplasmic
GSU2883 Cytochrome c family protein, 18 heme-binding sites	omcH ^a	0.789	0.342	1.0E+00	Yes	Outer membrane
GSU2294 Cytochrome c family protein, 4 heme-binding sites	omcM ^a	0.530	0.917	5.8E-02	Yes	Outer membrane

Cytochromes genes that were downregulated in RNA-Seq experiments

	Gene	Fold			Signal	
Locus ID Gene annotation	name	change	log2 FC	P-value	peptide	Cellular location
GSU0283 Sensor histidine kinase, 1 heme-binding site	-	2.442	-1.288	7.9E-05	NO	Cytoplasmic membrane
GSU0592 Cytochrome c family protein, 11 heme-binding sites	omcQ	2.491	-1.317	1.6E-05	Yes	Outer membrane
GSU0615 Cytochrome c family protein, 5 heme-binding sites	-	4.283	-2.099	1.9E-03	Yes	Periplasmic
GSU2076 Cytochrome c family protein, 5 heme-binding sites	omcZ	2.181	-1.125	4.8E-06	Yes	Outer membrane
GSU2495 Cytochrome c family protein, 22 heme-binding sites	-	3.333	-1.737	2.5E-03	NO	Unknown
GSU2731 Polyheme membrane-associated cytochrome c, 8 heme-binding sites	omcC	2.125	-1.088	2.3E-03	Yes	Outer membrane
GSU2737 Polyheme membrane-associated cytochrome c, 8 heme-binding sites	omcB	4.047	-2.017	4.6E-02	Yes	Outer membrane
GSU2811 Cytochrome c Hsc, 1 heme-binding site	cccA	2.657	-1.410	6.8E-16	Yes	Periplasmic
GSU2813 Cytochrome c551 peroxidase, 2 heme-binding sites	ссрА	3.285	-1.716	4.5E-13	Yes	Periplasmic
GSU2937 Cytochrome c family protein, 5 heme-binding sites	-	3.523	-1.817	9.9E-03	Yes	Periplasmic
GSU2504 Cytochrome c family protein, 1 heme-binding site	omcS ^a	1.829	-0.871	1.0E+00	Yes	Outer membrane

660 Protein cellular location was predicted with PSORT-B (49) and SignalP 3.0 Server (50).

^a values are out of cut off for Fold change but validated by RT-qPCR

TABLE 3. Genes encoding transcriptional regulators differentially expressed in during palladium reduction

Genes encoding proteins involved in transcriptional regulation that were upregulated in RNA-Seq experiments

Locus ID Gene annotation	Gene name	Fold change	log FC	P-value
GSU0284 TraR/DksA family, zinc finger transcriptional regulator	dksA	0.324	1.63	5.7E-05
GSU0298 Two-component system	fgrM-N	0.347	1.53	8.0E-23
GSU0475 Sensor histidine kinase, PAS domain-containing	-	0.401	1.32	1.4E-02
GSU0596 Response receiver	-	0.304	1.72	2.1E-11
GSU0849 Regulator of cell morphogenesis and NO signaling	scdA	0.328	1.61	2.8E-03
GSU0863 Regulatory protein	-	0.292	1.78	2.7E-03
GSU0877 Response regulator, PilZ domain-containing	-	0.203	2.30	7.4E-04
GSU0941 Nitrogen fixation transcript antitermination sensor histidine kinase	gnfK	0.134	2.90	6.1E-08
GSU0962 Two-component system, NtrC family, sensor kinase	-	0.186	2.42	1.5E-04
GSU1038 Response receiver histidine kinase	-	0.338	1.57	6.2E-03
GSU1072 IclR family, transcriptional regulator	-	0.070	3.83	2.3E-08
GSU1117 Response regulator	-	0.243	2.04	3.5E-04

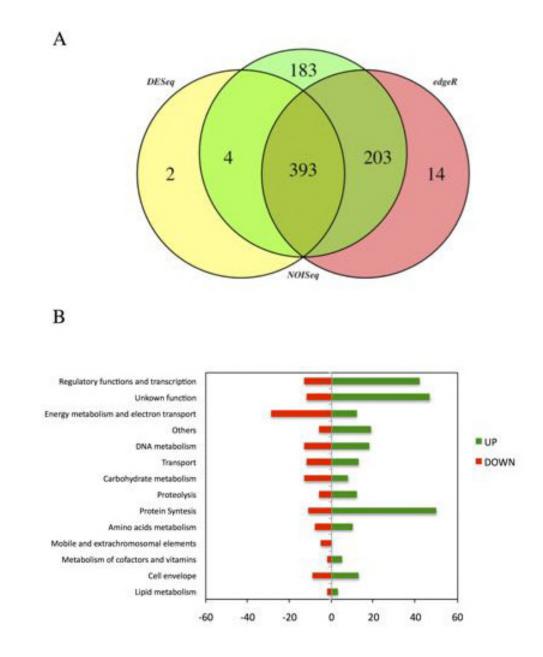
GSU1345 BadM/Rrf2 family, transcriptional regulator	-	0.203	2.30 2.5E-03
GSU1379 Transcriptional regulator, ferric uptake regulator	fur	0.275	1.86 1.0E-07
GSU1419 Cro/CI family, transcriptional regulator	-	0.278	1.85 5.3E-04
GSU1521 Integration host factor, alpha subunit	ihfA-1	0.250	2.00 2.8E-14
GSU1639 BadM/Rrf2 family, transcriptional regulator	-	0.082	3.61 1.6E-16
GSU1658 Response regulator receiver modulated diguanylate cyclase	-	0.263	1.93 1.9E-07
GSU1836 Nitrogen regulatory protein P-II	glnB	0.094	3.41 1.0E-16
GSU1999 RNA-binding protein Hfq	hfq	0.481	1.06 2.5E-03
GSU2016 Sensor diguanylate cyclase/phosphodiesterase	-	0.428	1.23 5.7E-03
GSU2046 Response regulator	-	0.436	1.20 5.0E-05
GSU2287 response regulator	-	0.358	1.48 4.6E-05
GSU2288 Sensor histidine kinase	-	0.298	1.75 1.4E-03
GSU2384 sensor histidine kinase, GAF domain-containing	-	0.275	1.86 2.3E-03
GSU2625 ArsR family, transcriptional regulator	-	0.194	2.36 2.0E-03
GSU2641 PATAN domain GTPase-activating protein	-	0.138	2.86 1.4E-33
GSU2666 TetR family, transcriptional regulator	-	0.443	1.17 1.3E-05

GSU2735 TetR family, transcriptional regulator	-	0.268 1.90 1.8E-03
GSU2741 TetR family, transcriptional regulator	-	0.200 2.32 1.8E-02
GSU2809 Fur family, transcriptional regulator	-	0.333 1.59 1.3E-05
GSU2822 Response regulator receiver and ANTAR domain protein	gnfR	0.055 4.19 4.5E-06
GSU2980 CopG family transcriptional regulator, nickel-responsive regulator	nikR	0.117 3.09 2.9E-04
GSU3127 AraC family, transcriptional regulator	-	0.441 1.18 5.0E-02
GSU3206 TraR/DksA family, zinc finger transcriptional regulator	-	0.147 2.77 9.0E-07
GSU3261 Response regulator	-	0.439 1.19 2.9E-04
GSU3292 Fur family, transcriptional regulator	-	0.438 1.19 1.9E-07
GSU3298 Cro/CI family, transcriptional regulator	-	0.208 2.26 8.4E-04
GSU3364 Transcriptional regulator	hgtR	0.021 5.54 3.6E-16
GSU2185 FlgM family, anti-sigma-28 factor	-	0.135 2.89 9.9E-07

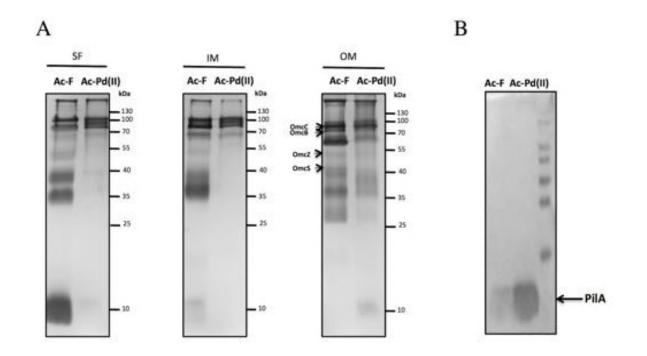
Genes encoding proteins involved in transcriptional regulation that were downregulated in RNAseq experiments

Locus ID	Gene annotation	Gene name	Fold change	log FC	P-value
GSU0013	MarR family, transcriptional regulator	-	3.228	-1.69	5.9E-08
GSU0452	Sensor histidine kinase	-	2.315	-1.21	4.5E-04
GSU0534	BadM/Rrf2 family, transcriptional regulator	iscR-1	2.065	-1.05	5.8E-12
GSU0537	Sensor diguanylate cyclase/phosphodiesterase, PAS domain-containing	-	2.134	-1.09	1.1E-03
GSU0811	Fis family, transcriptional regulator	-	3.363	-1.75	4.1E-02
GSU0836	RNA polymerase-binding protein Rnk	rnk-2	91.515	-6.52	4.2E-28
GSU0837	Response regulator	-	99.620	-6.64	2.0E-30
GSU0841	NtrC family, response regulator	-	39.998	-5.32	4.3E-04
G G L L A A A			15.100		
GSU0842	Sensor histidine kinase response regulator, GAF and PAS domain- containing	-	15.129	-3.92	3.6E-46
GSU1119	Response receiver histidine kinase	-	2.417	-1.27	4.7E-03
GSU1671	Response receiver-modulated diguanylate cyclase	-	2.223	-1.15	5.6E-04
GSU2602	Integration host factor, subunit beta	ihfB-2	3.979	-1.99	1.1E-02
GSU2815	Sensor histidine kinase, PAS domain-containing	-	2.419	-1.27	3.3E-02

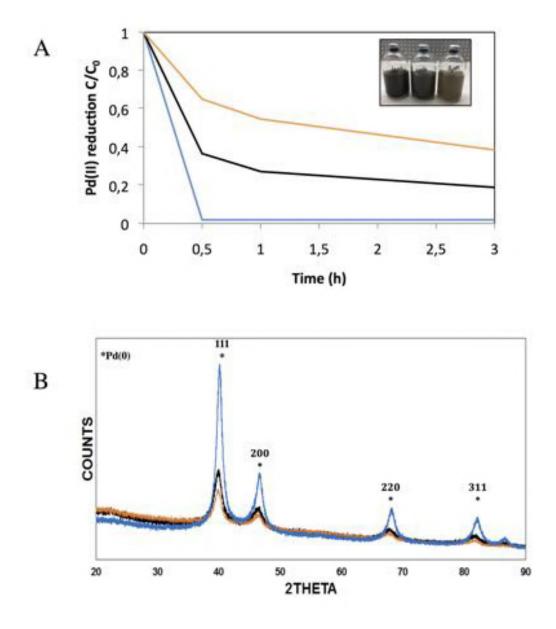
664 **TABLE 4.** Expression of genes with relevant phenotype observed in RNA-Seq analysis


665 validated by RT-qPCR

Locus ID	Common name	Avg +Pd/Avg -Pd
GSU2294	OmcH, cytochrome c	2.87
GSU2883	OmcM, cytochrome c	1.29
GSU1024	PpcD, cytochrome c	5.80
GSU1062	Cytochrome c, 1 heme-binding site	5.63
GSU0207	Cold shock DNA/RNA-binding protein	12.91
GSU1650	Cytochrome b/b6 complex	2.14
GSU3364	HgtR, hydrogen-dependent growth transcriptional regulator	9.42
GSU1945	PilA, pilin protein	1.50
GSU2513	Cytochrome c, 1 heme-binding site	1.91
GSU2808	Cytochrome c, 5 heme-binding site	9.44
GSU2737	OmcB, lipoprotein cytochrome c	0.28
GSU3731	OmcC, lipoprotein cytochrome c	0.33
GSU2076	OmcZ, cytochrome c	0.28
GSU0618	OmcE, cytochrome c	0.88
GSU2504	OmcS, cytochrome c	0.56
GSU0364	PpcB, cytochrome c	0.98
GSU0592	OmcQ, cytochrome c	0.40
GSU2495	Cytochrome c, 22 heme-binding site	0.20
GSU0837	Response regulator	0.04
GSU0345	nuoH-1, NADH dehydrogenase I	0.74


GSU2813	CcpA, cytochrome c peroxidase	0.35
GSU0615	Cytochrome c, 5 heme-binding site	0.28
GSU2937	Cytochrome c, 5 heme-binding site	0.49
GSU1106	GltA, type I citrate synthase	0.48

- n-fold change were calculated based on the 2^{-DDCT} method (21). Avg= Average; -Pd=
- 668 without palladium and +Pd= with palladium.



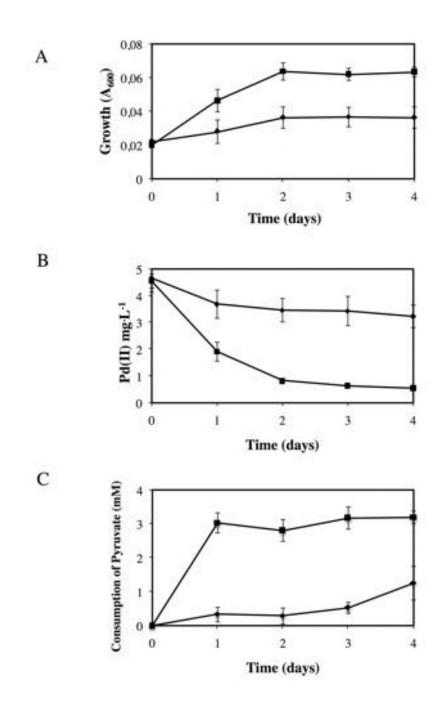

FIG 1. Transcriptome analysis results from *Geobacter sulfurreducens* under Pd(II)reducing conditions. (A) Venn diagram representing differential gene expression analysis from Pd(II)-reducing conditions by three statistical methods. (B) Functional overview of the genes that were differentially expressed during Palladium reduction.

FIG 2. *c*-type cytochrome and PilA protein content found under Pd(II)-reducing conditions. (A) SDS-PAGE heme stained. Outer membrane (OM), inner membrane (IM) and soluble fraction (SF) were prepared from PCA strain with acetate-fumarate (Ac-F) or acetate-Pd(II) (Ac-Pd(II)). The localization of OmcC, OmcB, OmcS, OmcZ and PpcA were labeled based on expected molecular weight (78.96, 74.89, 42.94, 47.09 and 7.72 kDa, respectively). (B) Immunoblot analysis for PilA. The PageRuler Pre-stained Protein Ladder standard (ThermoScientific) was used as a molecular weight.

FIG 3. Palladium reduction by different strains of *G. sulfurreducens*. (A) Kinetics of Pd(II) reduction. Photograph of bottles applied for Pd(II) reduction is shown in the inset. (B) Comparison of XRD patters corresponding to cells and black precipitates obtained from cultures of WT, $\Delta pilA$ and $\Delta pilR$ strains under Pd(II)-reducing conditions. In (A) and (B), WT strain line blue, $\Delta pilA$ strain line black, $\Delta pilR$ strain line orange.

FIG 4. Growth of *Geobacter sulfurreducens* coupled to Pd(II) reduction. (A) Growth. (B) Pd(II) reduction. (C) Consumption of pyruvate. In A, B and C, line with squares, pyruvate-Pd(II) supplemented with glutamine; line with rhombi, pyruvate-Pd(II).

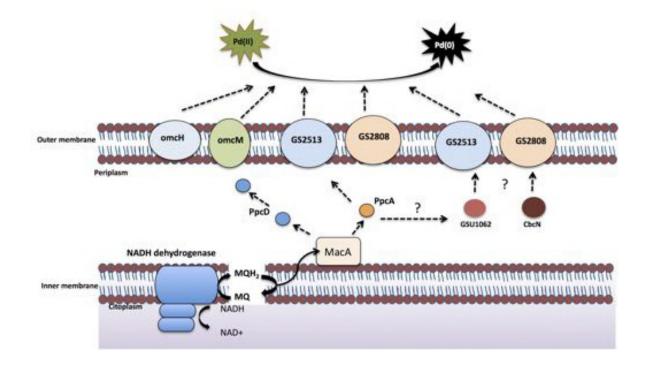


FIG 5. Model of Pd(II) reduction by *Geobacter sulfurreducens*.