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Abstract 

We address the challenge of detecting the contribution of noncoding mutation to disease with a deep-

learning-based framework that predicts specific regulatory effects and deleterious disease impact of 

genetic variants.  Applying this framework to 1,790 Autism Spectrum Disorder (ASD) simplex families 

reveals autism disease causality of noncoding mutations by demonstrating that ASD probands harbor 

transcriptional (TRDs) and post-transcriptional (RRDs) regulation-disrupting mutations of significantly 

higher functional impact than unaffected siblings.  Importantly, we detect this significant noncoding 

contribution at each level, transcriptional and post-transcriptional, independently. Further analysis 

suggests involvement of noncoding mutations in synaptic transmission and neuronal development and 

points to functional relevance of progenitor cell types to ASD. We demonstrate that sequences carrying 

prioritized proband de novo mutations possess transcriptional regulatory activity and drive expression 

differentially, and propose a potential link between the quantitative impact of noncoding versus coding 

mutations in ASD individuals to their IQ. Our predictive genomics framework illuminates the role of 
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noncoding variants in ASD, prioritizes high impact transcriptional and post-transcriptional regulatory 

mutations for further study, and is broadly applicable to complex human diseases. 
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Main Text 

Great progress has been made in the past decade in discovering genetic causes of autism spectrum 

disorder, establishing de novo mutations, including copy number variants (CNVs) and point mutations 

that likely disrupt protein-coding genes, as an important cause of ASD1,2. Yet all known ASD-associated 

genes together explain less than 3% of new cases, and it is estimated that overall de novo protein coding 

mutations, including CNVs, contribute to only about 30% of simplex ASD cases3 (Supplementary Note 

1). Despite the fact that the vast majority of the de novo mutations are located within intronic and 

intergenic regions, little is known with regard to the functions of these mutations and their contribution to 

the genetic architecture of disease in general, and ASD pathogenicity specifically.   

 

A potential role of noncoding mutations in complex human diseases including ASD has long been 

speculated. Human regulatory regions show signs of negative selection4, suggesting mutations within 

these regions lead to deleterious effects. Furthermore, noncoding mutations affecting gene expression 

have been discovered to cause Mendelian diseases5 and shown to be enriched in cancer6. Expression 

dosage effects have also been suggested as underlying the link between CNVs and ASD7. Recently, 

parentally-inherited structural noncoding variants have been linked to ASD8.  Also, on a small cohort of 

ASD families, some trends with limited sets of mutations have been reported9,10.  Likewise, despite the 

major role RNA-binding proteins (RBPs) play in post-transcriptional regulation, little is known of the 

pathogenic effect of noncoding mutations affecting RBPs outside of the canonical splice sites. Thus, 

noncoding mutations could be a cause of ASD, yet no conclusive connection of regulatory de novo 

noncoding mutations, either transcriptional or post-transcriptional, to ASD etiology has been established.  

 

Recent developments make it possible to perform large-scale studies that reliably identify noncoding de 

novo mutations at whole genome scale.  The Simons Simplex Collection (SSC) whole genome 

sequencing (WGS) data for 1,790 families differs from many previous large-scale studies in design by 

including matched unaffected siblings3,11–14.  These provide critical background controls for detecting 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/319681doi: bioRxiv preprint 

https://doi.org/10.1101/319681


 
 

 4 

excess of proband mutations, as it is otherwise hard to distinguish disease-relevant excess of mutations 

from irrelevant biological and technical variation, such as genetic background differences or artificial 

biases from sequencing, variant calling, and filtering procedures. These WGS data were generated in 

several phases, providing a natural replication framework, with a discovery cohort of 530 families and a 

validation cohort of 1,260 families. 

 

However, even with the study design with matched control individuals, detecting the noncoding 

contribution is still challenging, and establishing the role of the vast noncoding space in the genetic basis 

of autism remains elusive.  A recent study in fact demonstrated that even when considering a wide variety 

of possible functional annotation categories (e.g. mutations in known regulatory sites, mutations at the 

location of known histone marks, mutations near ASD- or disease-relevant gene sets), no significant 

noncoding ASD-proband-specific signal was observed15.  The challenge is the lack of a systematic 

approach that reliably identifies impactful noncoding mutations, analogous to the genetic codon code 

which allows demarcation of protein coding mutations that likely disrupt protein function from 

synonymous ones. This challenge is shared in studies of other psychiatric diseases with complex genetic 

bases, such as intellectual disabilities and schizophrenia16,17. In fact, little is known about the contribution 

of noncoding rare variants or de novo mutations to human diseases18 beyond the less common cases with 

Mendelian inheritance patterns5. 

 

To address this challenge, we used biochemical data demarcating DNA and RNA binding protien 

interactions to train and deploy a deep convolutional-neural-network-based framework that predicts the 

functional and disease impact of  127,140 de novo noncoding mutations in the SSC.  Our framework 

estimates, with single nucleotide resolution, the quantitative impact of each variant on 2,002 specific 

transcriptional and 232 specific post-transcriptional regulatory features, including histone marks, 

transcription factors and RNA-binding protein (RBP) profiles. Using this approach, we discovered a 

significantly elevated burden of disruptive de novo transcriptional-regulatory disrupting (TRD) and RBP-
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regulatory disrupting (RRD) proband mutations in ASD, providing evidence for causality of noncoding 

regulatory mutations in autism.   We also identify specific pathways and relevant cell types affected by 

these mutations, and demonstrate differential effect of coding and noncoding mutations on IQ in 

individuals ASD. 

 

Results 

 

Contribution of transcriptional regulatory noncoding mutations to ASD  

 

Analysis of noncoding effect contribution in ASD is challenging due to the difficulty of assessing which 

noncoding mutations are functional, and further, which of those contribute to the disease phenotype.  For 

predicting the regulatory impact of noncoding mutations, we constructed a deep convolutional network-

based framework to directly model the functional impact of each mutation and provide a biochemical 

interpretation including the disruption of transcription factor binding and chromatin mark establishment at 

the DNA level and of RBP binding at the RNA level  (Fig. S1).  At the DNA level, the framework 

includes cell-type specific transcriptional regulatory effect models from over 2,000 genome-wide histone 

marks, transcription factor binding and chromatin accessibility profiles (from ENCODE and Roadmap 

Epigenomics projects19,20), extending the deep learning-based method that we described previously9 with 

redesigned architecture (leading to significantly improved performance, p=6.7x10-123, Wilcoxon rank-sum 

test).  At the RNA level, our deep learning-based method was trained on the precise biochemical profiles 

of over 230 RBP-RNA interactions (CLIP) known to regulate a wide range of post-transcriptional 

regulation, including RNA splicing, localization and stability.  At both transcriptional and post-

transcriptional levels, our models are accurate and robust in whole chromosome holdout evaluations (Fig 

S1).  Our models utilize a large sequence context to provide single nucleotide resolution to our 

predictions, while also capturing dependencies and interactions between various biochemical factors (e.g. 

histone marks or RBPs).  This approach is data-driven, does not rely on known sequence information, 
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such as transcription factor binding motifs, and it can predict impact of any mutation regardless of 

whether it has been previously observed, which is essential for the analysis of ASD de novo mutations.  

Finally, to link the biochemical disruption caused by a variant with phenotypic impact, we trained a 

regularized linear model using a set of curated human disease regulatory mutations5 (HGMD) and rare 

variants from healthy individuals in the 1,000 Genomes populations21 to generate a predicted disease 

impact score for each autism variant based on its predicted transcriptional and post-transcriptional 

regulatory effects. 

 

By directly modeling functional impact of de novo mutations derived from 7,097 whole genomes from 

the SSC cohort with our framework, we detected a significant difference in probands compared to 

unaffected siblings, at both the transcriptional (p=5.6x10-4, one-side wilcoxon rank-sum test for all) and 

post-transcriptional (p=3.0x10-4) levels (Fig. 1).  We first observed proband-specific TRD and RRD 

burden in the discovery cohort (SSC phase 1 sequencing of 530 families), and this was subsequently 

replicated in an independent replication cohort (SSC sequencing of 1,260 remaining families).  Although 

this difference is significant in every cohort (discovery, replication, combined), the dysregulation effect 

size increases with expected ASD relevance - e.g. variants near or within ExAC strongly constrained 

genes22 (pLI > 0.9 from ExAC, 3,230 genes, TRD p=2.6x10-3; RRD p=1.8x10-3), in genes previously 

predicted to be associated with ASD21 (2,582 genes, TRD p=1.7x10-5) or biochemically identified as 

FMRP targets23 (1,246 genes, RRD p=1.8x10-4)  (Fig. 1B-D). Although previous work has demonstrated 

the challenge of detecting any significant proband-specific signal even with highly specific subsets of 

genes or functional genomics regions, we find significant proband-specific signal even across all 127,140 

de novo variants at sufficient cohort size (TRD p=9.4x10-3, RRD - all transcribed variants p=1.3x10-3). 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/319681doi: bioRxiv preprint 

https://doi.org/10.1101/319681


 
 

 7 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/319681doi: bioRxiv preprint 

https://doi.org/10.1101/319681


 
 

 8 

Figure 1. The elevated noncoding regulatory mutation burden in Autism Spectrum Disorder. 

(A) Overall study design for deciphering the genome-wide de novo mutation contribution to ASD. 1,790 ASD 

simplex families whole genomes were sequenced to identify de novo mutations in the ASD probands and unaffected 

siblings. The identified 127,140 SNV de novo mutations were stratified by their predicted transcriptional (chromatin 

and TFs) and post-transcriptional (RNA-binding proteins) regulatory effect for comparison between probands and 

siblings. 

(B) ASD probands possess mutations with significantly (at genome-wide significance) higher predicted disease 

scores compared to their unaffected siblings. We observe significant burden of both transcriptional (DNA, n= 

69,328) and post-transcriptional regulation (RNA, n=4,593) altering mutations in probands near or within all protein 

coding genes. ASD probands possess significantly higher predicted disease score mutations near ExAC LoF 

intolerant (nDNA=14,873, nRNA=1,385) and ASD-relevant (DNA, n=13,991) or within FMRP target (RNA, n=716) 

genes. For analyses that include gene sets, variants were associated with the closest gene within 100kb of the 

representative TSS for transcriptional regulatory disruption (TRD) analysis.  For RNA regulatory disruption (RRD) 

analysis, variants located in the intronic regions flanking exons in alternative splicing regulatory regions were used.   

Wilcoxon rank sum test (one-sided) was used for computing the significance levels. All predicted disease impact 

scores were normalized by subtracting average predicted disease impact scores of sibling mutations for each 

comparison (95% CI). 

(C) Biological replication of genome-wide noncoding burden of de novo SNVs altering transcriptional and post-

transcriptional regulation. The initial detection of higher disease scores in ASD probands in our discovery cohort of 

530 simplex families (phase 1 of sequencing) was independently reproduced in a later generated replication cohort 

(1,260 families). Disease impact scores for all genes (nDNA,discovery=20,890, nRNA,discovery=1,412, nDNA,replication=48,438, 

nRNA,replication=3,181), ExAC LoF intolerant (nDNA,discovery=4,466, nRNA,discovery=394, nDNA,replication=10,407, 

nRNA,replication=991), ASD-relevant (DNA, ndiscovery=4,223, nreplication=9,768), FMRP target (RNA, ndiscovery=207, 

nreplication=509) genes.  

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/319681doi: bioRxiv preprint 

https://doi.org/10.1101/319681


 
 

 9 

Functional landscape of noncoding ASD-associated de novo mutations 

 

We then investigated which processes and pathways are impacted by de novo noncoding mutations in 

ASD.  Such analysis is challenging because in addition to the variability in functional impact of 

mutations, ASD probands appear highly heterogeneous in underlying causal genetic perturbations24 and 

single mutations could cause a widespread effect on downstream genes. Thus to detect genes and 

pathways relevant to the pathogenicity of ASD TRD and RRD mutations, we developed a network-based 

functional enrichment approach, which we coined NDEA (Network-neighborhood Differential 

Enrichment Analysis) (Fig. S2). We used a brain-specific functional network that probabilistically 

integrates a large compendium of public omics data (e.g. expression, PPI, motifs) to infer how likely two 

genes are to act together in a biological process25. When applied to ASD de novo mutations, the NDEA 

approach identifies genes whose functional network neighborhood is enriched for gene-neighbors with 

stronger predicted disease impact in proband mutations compared to sibling mutations (Supplementary 

Table 1).  

 

Globally, NDEA enrichment analysis pointed to a proband-specific role for noncoding mutations in 

affecting neuronal development, including in synaptic transmission and chromatin regulation (Figure 

2A), consistent with processes previously associated with ASD based on protein-coding variants2.  Genes 

with significant NDEA enrichment were specifically involved in neurogensis and grouped into two 

functionally coherent clusters with Louvain community detection algorithm (Figure 2B). The synaptic 

cluster is enriched in ion channels and receptors involved in neurogenesis (p=5.61x10-38), synaptic 

signaling (p=4.80x10-35) and synapse organization (p=1.52x10-18), including previously known ASD-

associated genes such as those involved in synapse organization genes SHANK2, NLGN2, NRXN2, 

synaptic signaling genes NTRK2 and NTRK3, ion channel genes CACNA1A/C/E/G, KCNQ2, and 

neurotransmission genes SYNGAP1, GABRB3, GRIA1, GRIN2A26.  The synapse cluster is also 

significantly enriched for plasma membrane proteins (p=3.88x10-24).  In contrast, the chromatin cluster, 
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representing chromatin regulation related processes, displayed an overrepresentation of nucleoplasm 

(p=2.11x10-9) proteins, with diverse functional roles including covalent chromatin modification 

(p=2.46x10-9), chromatin organization(5.17x10-8) and regulation of neurogenesis  (p=6.44x10-5). The 

chromatin cluster also includes many known ASD-associated genes such as chromatin remodeling protein 

CHD8, chromatin modifiers KMT2A, KDM6B, and Parkinson’s disease causal mutation gene PINK127 

which is also associated with ASD26. Overall, our results demonstrate pathway-level TRD and RRD 

mutation burden and identify distinct network level hot spots for high impact de novo mutations. 

 

 

Figure 2.  Network analysis of TRD and RRD mutations converges on neurodevelopmental clusters focused 

on synaptic transmission and chromatin biology. 

(A) Neuronal function and development related processes show significant excess of proband mutation disease 

impact scores by NDEA (full list in Supplementary Table 2). The top processes (y-axis) and the p-values of 

proband excess (x-axis) are shown. All gene sets shown have FDR < 0.01. 

(B) Genes with significant network neighborhood excess of high-impact proband mutations form two functionally 

coherent clusters (see annotations for representative enriched gene sets in each cluster, full list is in Supplementary 

Table 3).  The brain functional network is visualized by computing two-dimensional embeddings with t-SNE 
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(Methods). Genes, but not network edges, are shown for visualization clarity. The network differential enrichment 

analysis (NDEA) was performed on disease impact scores of all mutations within 100kb to representative TSSs 

(DNA) and all intronic mutations within 400nt to exon boundary (RNA). Clustering was performed with Louvain 

community clustering. All genes in the two clusters shown are with FDR < 0.1. 

 

 

Cell type regulatory effect specificity of de novo mutations in autism 

 

We then examined the cell type specificity of the predicted effects from the noncoding proband mutations 

in ASD as our regulatory effect models are tissue-specific due to training on profiles from a wide range of 

tissues and cell types.  This provided a unique opportunity to probe the cell type of origin of ASD signal 

by identifying in which cell types the predicted regulatory effects show the most significant excess in 

proband mutations compared to unaffected sibling mutations. To avoid biases of representation of cell 

types in the training regulatory profile compendium, we performed a cross-tissue comparison restricted to 

the four histone marks (H3K4me3, H3K4me1, H3K27ac, and H3K9ac) that were systematically 

measured in 34 cell types (Fig. 3). Overall, we observed upranking of stem cells and progenitor cell types 

with respect to difference in proband vs sibling effect of noncoding mutations. Notably, eleven of the top 

fifteen ranked cell types are embryonic stem and progenitor cells, including neural progenitor cells (cell 

type-specific FDR<0.05). This suggests that noncoding ASD disease mutations may function in early 

neuronal development, consistent with the similar trend found in protein coding mutations in ASD 

patients28. 
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Figure 3. Specific cell types implicated by predicted effects of regulatory mutations. 

Cell types are ranked by the predicted effect excess in probands for four histone mark predictors (H3K4me3, 

H3K4me1, H3K27ac, and H3K9ac) for all de novo mutations.  Stem cells and their derived progenitor cells, at the 

top of the rankings, are labeled in red. The y-axis shows the lowest multiple hypothesis testing-adjusted p-value per 

cell type. Significance levels were based on Wilcoxon rank sum tests (one-sided) and adjusted by Benjamini-

Hochberg method. 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/319681doi: bioRxiv preprint 

https://doi.org/10.1101/319681


 
 

 13 

Experimental study of ASD noncoding mutation effects on gene expression 

 

Our analysis identified new candidate noncoding disease mutations with potential impact on ASD through 

regulation of gene expression. In order to add further evidence to a set of high confidence causal 

mutations, we experimentally studied allele-specific effects of predicted high-impact mutations in cell-

based assays. Thirty four genomic regions showed strong transcriptional activity with 94% proband 

variants (32 variants) showing robust differential activity (Fig. 4, Methods); demonstrating that our 

prioritized de novo TRD mutations do indeed lie in regions with transcriptional regulatory potential and 

the predicted effects translate to measurable allele-specific expression effects. Among these genes with 

the demonstrated strong differential activity mutations, NEUROG1 is an important regulator of initiation 

of neuronal differentiation and in the NDEA analysis had significant network neighborhood proband 

excess (p=8.5e-4), and DLGAP2 a guanylate kinase localized to the post-synaptic density in neurons. 

Mutations near HES1 and FEZF1 also carried significant differential effect on activator activities: 

neurogenin, HES, and FEZF family transcription factors act in concert during development, both 

receiving and sending inputs to Wnt and Notch signaling in the developing central nervous system and 

interestingly, the gut, to control stem cell fate decisions28–32; and Wnt and Notch pathways have been 

previously associated with autism24,33. SDC2 is a synaptic syndecan protein involved in dendritic spine 

formation and synaptic maturation, and a structural variant near the 3’ end of the gene was reported in an 

autistic individual (reviewed in Saied-Santiago, 201734). Thus, our method identified alleles of high 

predicted impact that do indeed show changes in transcriptional regulatory activity in cells. Since many 

autism genes are under strong evolutionary selection, only effects exerted through (more subtle) gene 

expression changes may be observable because complete loss of function mutations may be lethal. This 

implies that further study of the prioritized noncoding regulatory mutations will yield insights into the 

range of dysregulations associated with autism.  
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Figure 4. Allele-specific transcriptional activity of ASD noncoding mutations. 

Differential expression by proband or sibling alleles in a dual luciferase assay demonstrated that 32 predicted high 

disease impact mutations fall in active regulatory elements and the mutations confer substantial changes to the 

regulatory potential of the sequence. Y-axis shows the magnitude of transcription activation activity normalized to 

sibling allele. The error bar represents standard error of the mean. Significance levels were computed based on t-test 

(two-sided). 

 

 

Association of IQ with de novo noncoding mutations in ASD individuals 

 

Intellectual disability is estimated to impact 40-60% of autism children35, and ASD individuals 

can over-inherit common variants associated with high education attainment36. The genetic basis of this 

variation is not well understood. Despite the genetic complexity observed in association with ASD 

proband IQ, past efforts to identify mutations that contribute to ASD found that these mutations are also 
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negatively correlated with IQ.  Specifically, in analyses of exome sequencing data from different ASD 

cohorts, a significant association of higher burden of de novo coding likely-gene-disrupting (LGD) (also 

shown for WGS data in Fig. S3) and large copy number variation (CNV) mutations with lower proband 

IQ was observed2,7.  

 

For de novo noncoding mutations analyzed in this study, we observe a significant association between 

noncoding mutations and IQ in ASD individuals. Intriguingly, we find that higher IQ ASD individuals 

have a higher burden of TRDs, whereas for ExAC constrained genes lower IQ ASD individuals have a 

higher burden of RRDs (Fig. 5).  Thus, it is tempting to speculate that while mutations that are damaging 

to the protein through coding (LGD or large CNVs) or RNA processing (RRD) disruption are likely to 

increase the risk of lower IQ in ASD context, mutations affecting transcriptional regulation (TRDs) can 

affect ASD without the coupled negative effect on IQ.  

 

 

 

Figure 5. IQ association with de novo noncoding mutation effects on the transcriptional and post-

transcriptional levels. 

More severe TRD mutations were observed in probands with higher IQs and more severe RRD mutations were 

observed in probands with lower IQs. Proband IQ was shown on the x-axis and the normalized z-scores for 

maximum feature-level effect (absolute probability changes) of mutation was represented by the y-axis. The fitted 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/319681doi: bioRxiv preprint 

https://doi.org/10.1101/319681


 
 

 16 

linear regression line and 95% confidence interval was shown. All comparisons in this plot were made for mutations 

within 100kb of the representative TSSs for DNA and within 400nts of a AS regulatory region exon of a pLI>0.9 

gene for RNA). 

 

Conclusions 

 

Even with great strides in understanding the causes of ASD by sequencing and phenotyping of multiple 

cohorts in the recent years, much of the genetic basis underlying autism remains undiscovered.  While a 

number of coding variants have been associated with ASD, no systematic evidence of de novo noncoding 

effect has been observed.  Here we present a novel deep-learning based approach for quantitatively 

assessing the impact of noncoding mutations on human disease.  Our approach addresses the statistical 

challenge of detecting the contribution of noncoding mutations by predicting their specific effects on 

transcriptional and post-transcriptional level.  This approach is general and can be applied to study 

contributions of noncoding mutations to any complex disease or phenotype. 

 

Here, we apply it to ASD using the 1,790 whole genome sequenced families from the Simons Simplex 

Collection, and for the first time demonstrate significant proband-specific signal in regulatory noncoding 

space.  Importantly, we detect this signal not only at the transcriptional level, but also find significant 

proband-specific RRD burden. There’s been limited evidence for disease contribution of mutations 

disrupting post-transcriptional mechanisms outside of the canonical splice sites.  We demonstrate 

significant ASD disease association at the de novo mutation level for variants impacting a large collection 

of RBPs regulating post-transcriptional regulation. Overall, our results suggest that both transcriptional 

and posttranscriptional mechanisms play a significant role in ASD etiology and possibly other complex 

diseases.   
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Although previous work established that severe genetic perturbations such as CNVs and LGDs associated 

with ASD link to more severe intellectual disability and lower IQ, we show that this relationship is not 

universal for all ASD causal genetic perturbations. This is important as it provides evidence that ASD and 

IQ can be genetically uncoupled at de novo mutation level.  

 

Our analyses also demonstrate the potential of predicting disease phenotypes from genetic information 

including de novo noncoding mutations.  We provide a resource for further research into understanding 

the mechanism of noncoding impact on ASD, including computationally prioritized TRD and RRD 

mutations with strong predicted regulatory effects, as well as potentially disease contributing ASD 

proband mutations with experimentally confirmed effects (Supplementary Table 4-5).  

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/319681doi: bioRxiv preprint 

https://doi.org/10.1101/319681


 
 

 18 

 
Methods 

 

De novo mutation calling and filtering 

 

The Simons Simplex Collection WGS data was made available via Simons Foundation Autism Research 

Initiative (SFARI), and was processed to generate variant calls via the standard GATK pipeline. To call 

de novo single nucleotide substitutions, inherited mutations were removed, and candidate de novo 

mutations were selected from the GATK variant calls where the alleles were not present in parents and 

the parents were homozygous with the same allele. DNMFilter classifier was then used to score each 

candidate de novo mutation and a threshold of probability > 0.75 was applied to phase 1 and 2 and a 

threshold of probability > 0.5 was applied to phase 3 to obtain a comparable number of high-confidence 

DNM calls across phases. 

 

The DNMFilter49 classifier was trained with an expanded training set combining the original training 

standards with the verified DNMs from the pilot WGS studies for the 40 SSC families families16. De novo 

mutations calls within the repeat regions from RepeatMasker50 were removed. The WGS DNM calls were 

compared against exome sequencing de novo mutations calls and previously validated SSC de novo 

mutations37: 91.1% of the exome sequencing mutations calls and 93.2% of the validated mutations were 

rediscovered in our mutations calls. Further filtering was then applied to remove variants that were called 

in more than one SSC families.  

 

Training of DNA transcriptional regulatory effects and RNA posttranscriptional effects models  

 

For training the transcriptional regulatory effects model, training labels, such as histone marks, 

transcription factors, and DNase I profiles, were processed from uniformly processed ENCODE and 
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Roadmap Epigenomics data releases. The training procedure is as described in Zhou and Troyanskaya20 

with the following modifications. The model architecture was extended to double the number of 

convolution layers for increased model depth (see Supplementary Note 2 for details). Input features 

were expanded to include all of the released Roadmap Epigenomics histone marks and DNase I profiles, 

resulting in 2,002 total features (Supplementary Table 6) compared to 919 original features.  

 

For training the post-transcriptional regulatory effects model, we utilized the DeepSEA network 

architecture and training procedure with RNA-binding protein (RBP) profiles as training labels (full list 

of parameters used in model is in Supplementary Note 2). We uniformly process RNA features 

composed of 231 CLIP binding profiles for 82 unique RBPs (ENCODE and previously published CLIP 

datasets) and a branchpoint mapping profile as input features (full list of experimental features listed in 

Supplementary Table 7). CLIP data processing followed our previous detailed pipeline38, all CLIP peaks 

with p-value < 0.1 were used for training with an additional filter requirement of two-fold enrichment 

over input for ENCODE eCLIP data. In contrast to the DeepSEA, only transcribed genic regions were 

considered as training labels for the post-transcriptional regulatory effects model. Specifically, all gene 

regions defined by Ensembl (mouse build 80, human build 75) were split into 50nt bins in the transcribed 

strand sequence. For each sequence bin, RBP profiles that overlapped more than half were assigned a 

positive label for the corresponding RBP model. Negative labels for a given RBP model were assigned to 

sequence bins where other RBP’s non-overlapping peaks were observed. Note that our deep learning 

models, both transcriptional and post-transcriptional, does not use any mutation data for training, thus it 

can predict impacts for any mutation regardless of whether it has been previously observed. 

 

 

 

 

Disease impact score prediction  
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We used curated disease regulatory mutations and rare variants from healthy individuals to train a model 

that prioritizes likely disease-impacting mutations based on the predicted transcriptional or post-

transcriptional regulatory impacts of these mutations.  As positive examples, we used regulatory 

mutations curated in the Human Gene Mutation Database (HGMD). As negative examples of background 

mutations, we used rare variants that were only observed once within the healthy individuals from the 

1000 Genomes project 21. Absolute predicted probability differences computed by the convolutional 

network transcriptional regulatory effects model (described above) were used as input features for each of 

the 2,002 transcriptional regulatory features and for the 232 post-transcriptional regulatory features in the 

disease impact model. Input features were standardized to unit variance and zero mean before being used 

for training. We separately trained a L2 regularized logistic regression model for transcriptional effect 

model (lambda=10) and post-transcriptional effect model (lambda=10, using only genic region variant 

examples) with the xgboost package (https://github.com/dmlc/xgboost). 

 

Discriminative transcriptional regulatory features and cell type relevance ranking 

 

For each of the 2,002 transcriptional feature sequence predictors, we tested for significant differences 

between predicted proband mutation effects and sibling mutation effects within 100kb to any 

representative TSS. Transcriptional regulatory feature effects were computed as the difference between 

transcriptional regulatory feature probabilities computed for the reference (sibling) allele and the 

alternative (proband) allele.   

 

For ranking the cell type relevance of noncoding ASD mutations, we used 34 cell types that each had all 

four sequence-based chromatin predictors (H3K4me3, H3K4me1, H3K27ac, and H3K9ac). We ranked 

the cell types based on minimum Benjamini-Hochberg-adjusted p-value for proband predicted effect 

excess compared to siblings across the four histone mark predictors. 
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Gene sets and resources 

 

Gene sets used included: ASD exome sequencing LGD genes compiled by Krishnan et al.24, top decile 

predicted ASD relevant genes from Krishnan et al.24, and constrained gene lists with pLI scores from the 

ExAC project22.   

 

We determined the representative TSS for each gene based on FANTOM CAGE transcription initiation 

counts relative to GENCODE gene models. Specifically, a CAGE peak is associated to a GENCODE 

gene if it is within 1000bp from a GENCODE v24 annotated transcription start site39,40. Peaks within 

1000bp to rRNA, snRNA, snoRNA or tRNA genes were removed to avoid confusion. Next, we selected 

the most abundant CAGE peak for each gene, and took the TSS position reported for the CAGE peak as 

the selected representative TSS for the Gene. For genes with no CAGE peaks assigned, we kept the 

GENCODE annotated gene start position as the representative TSS. FANTOM CAGE peak abundance 

data were downloaded at http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/ and the CAGE 

read counts were aggregated over all FANTOM 5 tissue or cell types.  GENCODE v24 annotation lifted 

to GRCh37 coordinates were downloaded from http://www.gencodegenes.org/releases/24lift37.html. All 

chromatin profiles used from ENCODE and Roadmap Epigenomics projects were listed in 

Supplementary Table 6. The HGMD mutations are from HGMD professional version 2018.1.  

 

Human exons that are alternatively spliced (AS) were obtained from a recent study that has examined 

publicly available human RNA-seq data to annotate an extensive catalog of AS events41. Internal exon 

regions (both 5’SS & 3’SS flanking introns), upstream exon (5’SS flanking introns), and downstream 

terminal exon (3’SS flanking introns) were used for alternative exon definition types of cassette, mutually 

exclusive, tandem cassette exons. Terminal exon region was used for intron retention, alternative 3’ or 5’ 

exon AS exon types. All selected exon-flanking intronic regions (400nts from exon boundary) were 
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collapsed into a final set of genomic intervals used to subset SNVs that are located within alternative 

splicing regulatory region. An extend list of FMRP targets were used derived from 3 additional biological 

replicates and including the original 7 replicates FMRP-CLIP23 (1,246 genes, FDR < 0.05). 

 

Network differential enrichment analysis (NDEA) 

 

Brain-specific functional relationship networks integrate a wide-range of functional genomic data in a 

tissue-specific manner and predicted the probability of functional association between any pair of genes25. 

This network was filtered to only include edges with >0.01 probability (above Bayesian prior) to reduce 

the impact of noisy low-confidence edges. 

 

For each gene 𝑖, we designed the neighborhood excess significance test which is a specific form of 

weighted t-test, specifically the t statistic is computed by 

𝑡! = 𝜇!! − 𝜇!! /𝑆!   
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!!" ! !!!∈!
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, in which 𝜇!! and 𝜇!! are weighted averages of disease impact scores 𝑑! of all proband mutations 𝑃 or 

all sibling mutations 𝑆. 𝑊!" !  are network edge scores (interpreted as functional relationship probability) 

between gene 𝑖 and gene 𝑗(𝑚), where 𝑗(𝑚) indicate the implicated gene of the mutation 𝑚. 𝑃 and 𝑆 are 

the set of all proband mutations and the set of all sibling mutations included in the analysis.   𝑉!! and 
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𝑉!!  are the unbiased estimates of population variance of 𝜇!! and 𝜇!!. 𝑁!! and 𝑁!! are the effective sample 

sizes of proband and sibling mutations after network-based weighting for gene i. 

 

Under null hypothesis of the two groups have no difference, the above t statistic approximately follows a 

t-distribution with the following degree of freedom: 

𝑑𝑓 =

𝑉!!
𝑁!!

+
𝑉!!
𝑁!!

!

𝑉!!
!

𝑁!!
! (𝑁!! − 1)

+
𝑉!!
!

𝑁!!
!(𝑁!! − 1)

 

 

For testing significance difference between proband and sibling mutations, mutations within 100kb of the 

representative TSS of all genes and all intronic mutations within 400bp to exon boundary were included 

in this analysis. RNA model disease impact score z-scores were used as the mutation score for intronic 

mutations within 400bp to exon boundary and DNA model disease impact score z-scores were used for 

other mutations. 

 

For gene set level NDEA, we create a meta-node that represents all genes that are annotated to the gene 

set (e.g. GO term). Then, the average of network edge scores for all genes in the meta-node is used as the 

weights to any given gene not part of the gene set. GO term annotations were pooled from human (EBI 

5/9/2017), mouse (MGI 5/26/2017) and rat (RGD 4/8/2017). Query GO terms were obtained from the 

merged set of curated GO consortium42 slims from Generic, Synapse, ChEMBL, and supplemented by 

PANTHER43 GO-slim and terms from NIGO44. 

 

Network visualization and clustering 

 

For network visualization, we computed a two-dimensional embedding with t-SNE45 by directly taking a 

distance matrix of all pairs of genes as the input. The distance matrix was computed as -log(probability) 
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from the edge probability score matrix in the brain-specific functional relationship network. The Barnes-

Hut t-SNE algorithm implemented in the Rtsne package was used for the computation. Louvain 

community clustering were performed on the subnetwork containing all protein-coding genes with top 

10% NDEA FDR.  

 

Cloning of Variant Allele Genomic Regions 

 

All genomic sequences were retrieved from the hg19 human genome assembly. For experimental testing, 

we selected variants of high predicted disease impact scores larger than 0.5 and included mutations near 

genes with evidence for ASD association, including those with LGD mutations (e.g. CACNA2D3) and a 

proximal structural variant (e.g. SDC2). For each allele (sibling or proband), we either cloned 230 

nucleotides of genomic sequence amplified from proband lymphoblastoid cell lines or used fragments 

synthesized by Genewiz (Supplementary Table 5). In both cases, 15 nucleotide flanks on 5’ and 3’ ends 

matched each flank of the plasmid cloning sites. The 5’ sequence was TGGCCGGTACCTGAG and the 

3’ sequence was ATCAAGATCTGGCCT. Synthesized fragments were cut with KpnI and BglII and 

cloned into pGL4.23 (Promega) cut with the same enzymes. PCR-amplified genomic DNA was cloned 

into pNL3.1 blunt-end cut with EcoRV and Eco53kI using GeneArtCloning method from Thermofisher 

Scientific. All constructs were verified by Sanger sequencing.  

 

Luciferase Reporter Assays 

 

2x104 human neuroblastoma BE(2)-C cells were plated in 96-well plates, and 24 hours later transfected 

with Lipofectamine 3000 (L3000-015, Thermofisher Scientific) and 75ng of Promega pGL4.23 firefly 

luciferase vector containing the 230nt of human genomic DNA from the loci of interest (Supplementary 

Table 5), and 4ng of pNL3.1 NanoLuc (shrimp luciferase) plasmid, for normalization of transfection 

conditions. 42 hours after transfection, luminescence for each plasmid was detected with the Promega 
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NanoGlo Dual Luciferase assay system (N1630) and BioTek Synergy plate reader. Four to six replicates 

per variant were tested in each experiment. For each sequence tested, the ratio of firefly luminescence 

(ASD allele) to NanoLuc luminescence (transfection control) was calculated and then normalized to 

empty vector (pGL4.23 with no insert). Statistics were calculated from fold over empty vector values 

from each biological replicate. High-confidence differentially-expressing alleles were defined by their 

ability to show the same effect in each biological replicate (n=3, minimum), drive higher than control 

empty-vector level gene expression, and the two alleles had significantly different level of luciferase 

activity by two-sided t-test. For presentation of the data, we normalized the fold over empty vector value 

of the proband allele to that of the sibling allele. 

 

Transcriptional and post-transcriptional effect association with IQ 

 

To analyze the association between transcriptional or post-transcriptional effect with IQ, we computed the 

maximum probability differences across features for each mutation, and tested for its association with IQ 

using linear regression with two-sided Wald test on the slope coefficient. For DNA analysis, we use all 

variants that are within 100kb from the TSS. For RNA analysis, we restrict the mutations to genes with 

ExAC pLI >0.9 and are intronic within 400nts to an exon in an alternatively splicing regulatory region.  
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