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Abstract
Whole genome sequencing (WGS) is increasingly used to aid the understand-
ing of pathogen transmission. A first step in analysing WGS data is usually
to define "transmission clusters", sets of cases that are potentially linked by
direct transmission. This is often done by including two cases in the same
cluster if they are separated by fewer SNPs than a specified threshold. How-
ever, there is little agreement as to what an appropriate threshold should
be. We propose a probabilistic alternative, suggesting that the key inferen-
tial target for transmission clusters is the number of transmissions separating
cases. We characterise this by combining the number of SNP differences and
the length of time over which those differences have accumulated, using in-
formation about case timing, molecular clock and transmission processes.
Our framework has the advantage of allowing for variable mutation rates
across the genome and can incorporate other epidemiological data. We use
two tuberculosis studies to illustrate the impact our approach: with British
Columbia data by using spatial divisions; with Republic of Moldova data
by incorporating antibiotic resistance. Simulation results indicate that our
transmission-based method is better at identifying direct transmissions than
a SNP threshold, with dissimilarity between clusterings of on average 0.27
bits compared to 0.37 bits for the SNP threshold method and 0.84 bits for
randomly permuted data. These results show that it is likely to outperform
the SNP threshold where clock rates are variable and sample collection times
are spread out. We implement the method in the R package transcluster.

Introduction

Whole genome sequencing (WGS) of pathogens has become an essential tool for
improving understanding of how infectious diseases spread between hosts, par-
ticularly in the case of tuberculosis (TB) (Hatherell et al. 2016). The phylogeny
derived from pathogen genomic data helps us to infer likely transmission events.
Typically, samples are taken from patients in the field, the date and other epi-
demiological data are recorded, and the pathogen’s genome is sequenced. A first
step is typically to assign cases to clusters; for infectious diseases, a cluster is a
group of closely related infections that is usually interpreted as resulting from re-
cent transmission (Poon 2016). These clusters are chosen primarily with the aim
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of making meaningful subdivisions of the data, with the added benefit of making
the amount of data fed into attempts to reconstruct outbreaks and to transmis-
sion inference models more tractable. However the assignation method is often
somewhat ad hoc.

The simplest way to determine sequence relatedness is to count the number
of single nucleotide polymorphisms (SNPs) that differ between two sequences.
The SNP threshold approach places two individuals in the same putative trans-
mission cluster if there are fewer than a threshold number of SNPs between their
sequenced pathogen genomes. Many existing methods to identify outbreak clus-
ters rely on SNP thresholds, as surveyed recently (Hatherell et al. 2016) in the case
of TB. Similar methods are also used for other pathogens (Dallman et al. 2015; Oc-
tavia et al. 2015). However, there is little agreement in the literature as to what
such a threshold should be – see Table 1 for TB SNP thresholds used in some re-
cent studies. The contexts in which these thresholds are applied differ from study
to study, so these numbers are not always strictly comparable, but they do indi-
cate the wide range of values that can reasonably be adopted when determining
whether or not cases are closely related. By itself, the number of SNP differences
between genomes does not directly imply a probability of recent transmission.
This is implicitly recognised in some sources. For example, we have from Walker
et al. (2013): "We predicted that the maximum number of genetic changes at 3
years would be five SNPs and at 10 years would be ten SNPs". Indeed, other
studies directly question the use of SNP thresholds, such as Guerra-Assunção
et al. (2015), Bergholz et al. (2014) in the context of food-borne pathogens, and
Azarian et al. (2016) in an analysis of the spread of methicillin-resistant Staphylo-
coccus aureus (MRSA). Nevertheless, the use of a single SNP threshold is often
employed in practice; for example the 12 SNP threshold, used for inferring likely
transmission between a pair of TB cases by Public Health England (Walker et al.
2014) amongst others, is perhaps the most common in TB.

The appropriate SNP cut-off for inferring transmission is likely to depend crit-
ically on the context. There are many sources of uncertainty. Nucleotide mutation
rates vary between pathogens, can vary at different stages of infection, and are
subject to the effects of selection pressure. Culture processes (e.g. liquid vs solid
culture, single colony picks vs sweeps) may affect the diversity in samples that are
sent for sequencing. Furthermore, the process of producing finalised SNP data
from patient-derived biological samples is a multi-stage procedure where there
are choices to be made - including how stringently quality filtering is applied
to raw genomic data - which will in general result in different SNP differences
being reported. As such, it is important that during every step of the pipeline
from sampling from patients and processing the data, to building the models and
drawing conclusions from them, that we are aware of sources of uncertainty and
attempt to propagate this uncertainty to any conclusions. It is also important that
as WGS is rolled out widely as a tool in infectious disease, we re-calibrate SNP-
based methods to accommodate changes in both sequencing technologies and in
the bioinformatics pipelines used to call variant SNPs. Clustering methods that
use variant SNP calls exclusively will be most sensitive to such changes.

The fundamental logic behind SNP cut-offs is that it takes time to accrue ge-
netic variation; even in organisms where the molecular clock is variable, it seems
uncontroversial to assume that two isolates that differ by only a few SNPs are
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Authors
Lower SNP
Threshold

Upper SNP
Threshold

Bryant et al. (2013b) ≤ 6 (relapse) > 1000 (re-infection)
Clark et al. (2013) < 50 > 50
Guerra-Assunção et al. (2015) ≤ 10 (relapse) > 100 (re-infection)
Lee et al. (2015) < 2 (not specified)
Roetzer et al. (2013) ≤ 3 (not specified)
Walker et al. (2013) ≤ 5 > 12
Yang et al. (2017) ≤ 12 (not specified)

Table 1: SNP thresholds used in recent TB studies. The lower threshold indicates the
number of SNPs below which cases are positively identified as belonging to the same
cluster. Where different, the upper threshold indicates the the number of SNPs above
which cases are identified as clearly not belonging together. Unless otherwise stated,
intermediate values are indeterminate.

more likely to be a result of recent transmission than isolates that are 50 SNPs
apart. However, the rate at which polymorphisms occur varies not only between
organisms (Kuo and Ochman 2009), but also across a genome; it is affected by
selection pressure and by horizontal gene transfer (HGT) (Novichkov et al. 2004),
though this is not an issue for TB and there are methods to remove recombination
and HGT prior to using SNP cut-offs. As per Barrick and Lenski (2013), it is also
important to distinguish between the mutation rate, the rate at which spontaneous
mutations occur, and the substitution rate, the rate of accumulation of changes in
a lineage; this depends on both the mutation rate and the effects of selection and
drift. Here, when we refer to the clock rate, we mean the substitution rate, as we
use the rate to interpret variants measured with sequencing technologies.

This distinction is particularly important for diseases like TB, where selec-
tion pressure due to antibiotics can be substantial. Whilst the background
SNP accumulation rate for Mycobacterium tuberculosis has been estimated at 0.5
SNPs/genome/year (Walker et al. 2013), selection pressure and antibiotic resis-
tance can influence this rate considerably. For example, in Eldholm et al. (2014)
we see the observation that “After exclusion of transient mutations in the patient
isolates, 4.3 mutations were acquired per year ... or 2.3 mutations per year when
excluding resistance mutations." The size of the population of bacteria within a
host could also affect the number of SNPs observed between that host and those
they infect. Unexplained larger variation is also encountered as documented in
Korhonen et al. (2016), though high SNP numbers could be a result of re-infection
or mixed infection rather than in-host evolution. Where we know that selection
or high substitution rates are likely to be present and detected, a higher rate is
therefore likely to be appropriate for clustering, and this will affect the relation-
ship between SNPs and transmission events.

It should be noted that there are other approaches to clustering, based on
molecular (but not WGS) data and including time and geographical data. For
example, Kammerer et al. (2013) apply three different statistical tools to spoligo-
type data and mycobacterial interspersed repetitive units (MIRU) data, together
with date and location of cases, to show that these tools can successfully identify
TB outbreaks. Donker et al. (2016) use variable number tandem repeat (VNTR)
data for MRSA cases, with time and location data, to identify clusters based on a
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hierarchical clustering method (Ypma et al. 2013). There are also software pack-
ages such as vimes (Jombart and Cori 2017), which provides tools allowing users
to integrate different types of data and detect outbreaks. These approaches treat
each of the underlying variables as independent inputs, without explicitly mod-
elling the connection between time and the accumulation of genetic differences.

We take a slightly different tack here, and jointly use the sample time and ge-
netic distance, together with a model of SNP acquisition over time and transmis-
sion events over time, to base putative transmission clusters on the probability
that cases are separated by a threshold number of transmission events. This is
motivated by a belief that the number of transmission events between two cases
is a natural and intuitive measure of how "clustered" they are in the sense of trans-
mission (and how likely they are to be part of the same outbreak). This cannot
usually be measured directly and must be inferred from other data. However,
it is reasonable to assume that appropriate incorporation of the time over which
the accumulation of SNPs occurs, as well as the likely time between transmission
events, give a more accurate and nuanced measure of the likelihood that cases
are linked by a small number of transmission events. We develop a probabilistic
approach which permits variation in the SNP accumulation process, allows for
faster SNP accumulation for sites under selection and allows for variation in the
speed with which individuals infect their contacts. We aim to provide a princi-
pled alternative to SNP cut-offs for clustering pathogen genomes into putative
transmission clusters.

New Approaches

Two samples are usually considered to be in the same transmission cluster if the
number of SNPs between them is less than or equal to a fixed cut-off, or threshold.
This is a quick way to explore relatedness among a group of isolates and gain an
approximate understanding of the extent of recent (low-distance) transmission,
but it is coarse and embeds a number of strong assumptions.

Our proposed probabilistic transmission approach, in contrast, is based on
sample pairs being clustered together if we estimate that there were fewer than
a threshold number of transmission events between them, with a given proba-
bility. It uses the same genetic (SNP) distance information as the SNP threshold
method, but in addition makes use of the sample times, knowledge of the SNP
accumulation and transmission processes. The essential inputs to our method
are: the number of SNP differences between sample pairs, the sample dates, the
assumed clock rate and the assumed transmission rate.

In addition, our method can readily be extended to incorporate other factors:
we show in Materials and Methods how this can be done for spatial data, and
for antibiotic resistance. Building these inputs into our model allows us to create
a more nuanced and principled way of identifying transmission clusters, and
allows us to apply the method consistently in varied settings - for example, in
those where drug resistance is suspected to be a factor.

We start by establishing probability distributions for the total length of time (h
years) along both lines of descent from the most recent common ancestor (MRCA)
of a pair of samples; this depends on the clock process, and helps define the
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distance between the two samples (there is h/2 years of elapsed time from the
MRCA to the earlier sampling date). We then compute the probability that at
least a threshold number of transmissions took place between the two sampled
cases over this time, where the probability distribution for the number of trans-
missions k is P(k|h) (see Table 6 for a summary of the symbols used and their
units). This approach gives the flexibility to incorporate sample time information
and other data. The method uses sample dates and aligned sequence data (vari-
ant calls) together with models of the clock and transmission processes. For a pair
of samples, we use the SNP distance N, the time difference between their sam-
pling dates (δ years) and the clock process to write down the probability distribu-
tion L(h|N, δ) for when the most recent common ancestor of the two sequences
existed; this must be before the first sampled case. Integrating over this unknown
time, we can find the probability that a certain number of transmissions separate
the two cases:

P(k|N, δ) =

∞∫
h=0

L(h|N, δ) P(k|h) dh

This is Equation (9), developed in more detail in Materials and Methods. To in-
corporate spatial data, a weighting w is applied to the probabilities to reflect that
spatial distance can affect estimates of the number of intermediate transmissions
between two sampled individuals; we express this in Equation (19):

P(k|N, δ, w) = w
∞∫

h=0

L(h|N, δ) P(k|h) dh

Results

We illustrate how the transmission method compares to the SNP threshold
method for a simple toy example. We define the "T cut-off" as the cut-off level
for the transmission method, using Equation (10); the samples are clustered to-
gether where the implied number of transmissions k is less than or equal to T
with a probability of 80%, given some clock rate λ and transmission rate β. We
see that the transmission method clusters the cases together in a different order to
the SNP threshold method as the cut-off level is incremented. Cases A and B are
the closest in SNP distance, but the time elapsed between their sampling dates
increases their distance by the transmission distance function relative to cases C
and D, which are sampled at the same time as each other. So when we take timing
into account, the clustering is altered (also illustrated in Figure 1).

We model the number of intermediate transmissions between two sampled
hosts given the total time over which SNPs have likely accumulated. Altering
the transmission rate β (by which we mean the rate at which intermediate cases
occur in the total time elapsed between the MRCA of two sampled hosts and the sam-
pling events; see Materials and Methods) alters the absolute transmission cut-off
level at which the clusters change – in this example, increasing β to 3.0 transmis-
sions/year gives the same clusters as in Figure 1 but at levels 9, 10 and 12 trans-
missions rather than 7, 8 and 9 transmissions respectively. This has no impact on
the order of the clustering as the level of the cut-off changes.
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Label Sample Date
SNP dist.

to A
SNP dist.

to B
SNP dist.

to C
SNP dist.

to D
A 1/1/2018 0 5 7 7
B 1/1/2014 5 0 8 8
C 1/1/2016 7 8 0 6
D 1/1/2016 7 8 6 0

Table 2: Model inputs for toy example data set.

Figure 1: Clustering on the toy example data set provided in Table 2. The left hand
panel shows the clusters obtained by applying the SNP threshold method with three
different thresholds, with the cut-off level denoted by S; samples are clustered together
where the SNP distance is less than or equal to S. The right hand panel shows the cluster-
ing obtained by applying the transmission method, using Equation (10), with the cut-off
level denoted by T; samples are clustered together where the implied number of trans-
missions k is less than or equal to T with a probability of 80%, with clock rate λ = 1.5
SNPs/genome/year and β = 2.3 transmissions/year.

By contrast, altering the clock rate does have a material impact on the way
clustering occurs as we increase the transmission threshold. For λ = 0.5
SNPs/genome/year, cases A and B are closest under the transmission method,
just as they are with the SNP threshold method, and so the clustering is the same
for both methods. At λ = 1.5 SNPs/genome/year, cases C and D are closest
under the transmission method, and the clustering evolves as shown in Figure 1.

British Columbia data

We analyse a data set from British Columbia, comparing the SNP threshold
method to the transmission method in Equation (10). The data set comprises
52 samples collected from 51 patients over a 14 year period, and has been pre-
filtered with the result that all samples are relatively close - within 25 SNPs. Con-
sequently, using the SNP threshold method with the threshold set to 13 SNPs or
higher, all samples are placed in one cluster. When the threshold is 9 SNPs, we
obtain a large 42-case cluster, a secondary 8-case cluster and some outliers. As we
reduce the threshold further down to 3, the large cluster breaks up but the 8-case
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cluster persists. We illustrate this in Figure 2.
We used the transmission method, using Equation (10) with β = 2.0

transmissions/year and two different average clock rates: λ = 0.5 and 1.5
SNPs/genome/year (1.5 is larger than the typical rate for TB but within other
outbreak estimates (Bryant et al. 2013a)). When λ is low we can obtain the same
clustering as with the SNP cut-off. When λ is higher, we have one cluster which
contains all the samples for T > 11. As with the SNP threshold method, at T = 11
we have a large 42 case cluster, a secondary 8-case cluster and some outliers. But
as we move to T = 10, the secondary cluster loses a member, whilst the main
cluster stays at size 42. This is because one of the members of the secondary
group is very close by the SNP distance to another member of that group, but
was sampled more than 10 years before. As with our simple toy example, timing
alters the effective distance between samples because the distance into account
the clock rate and the transmission rate, and so the timing information can affect
the clustering.

Furthermore, the probabilistic nature of the approach means that we can see
how strongly we predict cases to be linked; in Figure 3 we use thicker edges to
denote a higher probability of being linked by relatively few transmissions. In ad-
dition, we show the effect of incorporating spatial proximity, using Equation (19);
we assign each of the cases into one of six numbered regions. Including a spa-
tial weighting, reflecting the barrier to the infection moving between different
regions, and leaving all other parameters unaltered, changes the clustering that
is obtained.

Sensitivity to clock rate

An implicit assumption of the SNP threshold method is that each SNP contributes
equally towards the SNP distance. This implies that the clock rate or substitution
process is constant across the set of isolates and across the genome. When the
same threshold is used in different settings and across different pathogen sub-
types, the implicit assumption is that the same substitution process holds in these
settings. In our new transmission method, the effective distance between any two
samples is inversely proportional to the assumed mean clock rate. A lower clock
rate means that more time is needed in order for a fixed number of SNPs to be
generated; this gives room for more potential intermediate transmission events.
A higher clock rate means that the fixed time between samples has a greater ef-
fect on the clustering, as the time between samples places a greater constraint on
the range of possible heights h; the fixed time "uses up" more of the time avail-
able than it would under a low clock rate (because there is less total estimated
time available, a higher portion of it is in the time period δ). We show this in
Table 3: the transmission clustering method approaches the same results as the
SNP clustering method as the assumed clock rate is reduced. We use the varia-
tion of information dissimilarity measure given by clue (Meilă 2007) to compare
the clusters produced by the two methods.
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Figure 2: Clustering on the British Columbia data set. The left hand side shows the clus-
ters obtained by applying the SNP threshold method with three different thresholds, with
the cut-off level denoted by S. The largest cluster breaks up as the level is lowered whilst
the size 8 cluster remains intact. The right hand side shows the clustering obtained by
applying the transmission method, using Equation (10); samples are clustered together
where the implied number of transmissions k is less than or equal to T with a probability
of 80%. As shown in the top two thirds, with clock rate λ = 1.5 SNPs/genome/year and
β = 2.0 transmissions/year, the size 8 cluster loses a member whilst the largest cluster
stays the same as the level is lowered. When λ is low, h is larger, so the MRCA of a clus-
ter gets pushed back further in time. In this case, the value of δ between two cases has
a limited impact on the estimated number of transmissions; the SNP difference is dom-
inant, and we recover the same clustering that is obtained with the SNP cut-off. This is
shown in the lower third, where the clock rate λ = 0.5 SNPs/genome/year and β = 1.2
transmissions/year.
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Figure 3: Three views of the same British Columbia TB data illustrating the contrasting
effect of implementing the SNP and transmission methods and showing estimates of how
close individual cases are to each other. In the top figure, edges between nodes indicate
that cases are within 4 SNPs of each other. In the lower figures, edges indicate that cases
are 80% likely to be within 3 transmission events of each other, given a clock rate λ =
1.5 SNPs/genome/year and β = 2.0 transmissions/year. The middle figure is based
on Equation (10), and the bottom figure uses Equation (19), with weighting w = 20%
where two cases are assigned to differing regions. The thicker the edges, the closer the
cases are: for the SNP based clusters the thickest edges correspond to no SNP difference,
the thinnest to a distance 4 SNPs; for the transmission based clusters the thickest edges
correspond to one likely transmission event, the thinnest to 3.
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SNP
Threshold

Largest
cluster λ β

Trans.
Threshold

Largest
cluster

Dissimilarity
between SNP and

Trans. methods
S=12 50 0.5 1.2 T=22 50 0.000

S=9,10,11 42 0.5 1.2 T=16 42 0.000
S=6,7,8 41 0.5 1.2 T=10 41 0.000

S=5 37 0.5 1.2 T=8 37 0.000
S=4 31 0.5 1.2 T=7 31 0.139
S=3 29 0.5 1.2 T=6 29 0.052
S=2 28 0.5 1.2 T=3 28 0.113
S=12 50 1.0 1.2 T=11 50 0.000

S=9,10,11 42 1.0 1.2 T=8 42 0.000
S=6,7,8 41 1.0 1.2 T=5 41 0.058

S=5 37 1.0 1.2 T=4 37 0.113
S=4 31 1.0 1.2 T=3 29 0.374
S=3 29 1.0 1.2 T=3 29 0.174
S=2 28 1.0 1.2 T=1 28 0.113
S=12 50 1.5 1.2 T=7 52 0.163

S=9,10,11 42 1.5 1.2 T=6 42 0.000
S=6,7,8 41 1.5 1.2 T=4 41 0.058

S=5 37 1.5 1.2 T=2 35 0.289
S=4 31 1.5 1.2 T=2 35 0.400
S=3 29 1.5 1.2 T=1 29 0.240
S=2 28 1.5 1.2 T=1 29 0.290
S=12 50 2.0 1.2 T=6 52 0.163

S=9,10,11 42 2.0 1.2 T=4 42 0.058
S=6,7,8 41 2.0 1.2 T=4 42 0.149

S=5 37 2.0 1.2 T=2 37 0.412
S=4 31 2.0 1.2 T=1 29 0.447
S=3 29 2.0 1.2 T=1 29 0.230
S=2 28 2.0 1.2 T=1 29 0.240

Table 3: Effect of varying the clock rate using the British Columbia data. This table
shows how the clock rate affects the transmission method, using Equation (10), keeping
the transmission rate β constant. For the SNP threshold method, samples are clustered
together where the SNP distance is less than or equal to S. For the transmission method,
samples are clustered together where the implied number of transmissions k is less than
or equal to T with a probability of 80%. For a clock rate of 0.5 SNPs/genome/year, the
transmission method matches all SNP-based clusters for thresholds of 5 SNPs and above.
As the clock rate increases, the transmission clustering diverges further from the SNP
clustering. As we vary the other parameters, the choice of β is effectively a scale factor
and does not affect the pattern of clustering. We use the variation of information dissim-
ilarity measure given by clue (Meilă 2007) to compare the results of the two methods.
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SNP
Threshold λ β

Trans.
Threshold

Dissimilarity
SNP and Trans.

Dissimilarity
SNP and Trans.
with resistance

S=12 1.0 1.2 T=11 0.000 0.132
S=10 1.0 1.2 T=9 0.000 0.164
S=8 1.0 1.2 T=7 0.000 0.128
S=7 1.0 1.2 T=6 0.000 0.245
S=6 1.0 1.2 T=5 0.000 0.090
S=5 1.0 1.2 T=4 0.000 0.047
S=4 1.0 1.2 T=3 0.000 0.023
S=11 2.0 1.2 T=4 0.000 0.233
S=9 2.0 1.2 T=3 0.000 0.128
S=7 2.0 1.2 T=2 0.000 0.308
S=4 2.0 1.2 T=1 0.000 0.023

Table 4: Comparison of methods with the Moldova data, taking drug resistance into ac-
count. This table shows how the clock rate affects the transmission method, using Equa-
tion (10), keeping the transmission rate β constant, and the effect of including resistance
using Equation (18). For λ = 1.0 and 2.0 SNPs/genome/year, the pattern of clusters
is identical using the SNP and transmission methods across a range of thresholds, but
differs when resistance-conferring SNPs are taken into account. For the SNP threshold
method, samples are clustered together where the SNP distance is less than or equal to
S. For the transmission method, samples are clustered together where the implied num-
ber of transmissions k is less than or equal to T with a probability of 80%. We use the
variation of information dissimilarity measure given by clue (Meilă 2007) to compare the
results of the methods.

Moldova data

This data set comprises 422 samples collected over a period of less than 2 years.
For this data – with any reasonable choices of parameters and a fixed substitution
rate for all sites – as shown in Table 4, our new transmission method does not
differ from the SNP threshold method. This can be explained by two factors
that work together: the small distance in time between any two samples and the
large SNP differences between cases. There isn’t enough variation in the timing
information relative to the SNP distances for an appreciable difference to emerge
between the two clustering methods.

Use of drug resistance-conferring SNPs

We can, however, explore the role of drug resistance-conferring SNPs on the clus-
tering. Information on the location of resistance-conferring sites for TB was ob-
tained using PhyResSE (Feuerriegel et al. 2015) and a resistance-conferring SNP
distance matrix was computed for the Moldova data by filtering against this in-
formation. Selection is likely to lead to resistance-conferring SNPs arising more
quickly than other SNPs: for example, one TB study (Eldholm et al. 2014) gives
a mutation rate of 4.3 SNPs per genome per year when they are included, in
contrast to the 0.5 SNPs per genome per year that is typically estimated for TB
(Walker et al. 2013). Resistance acquisition may further increase the rate of acqui-
sition of additional SNPs through multiple resistance, compensatory mutations
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or other mechanisms. For this analysis we used a clock rate for the drug-resistant
sites, as in Equation (18), which is five times higher than for the sites which are
not resistance-conferring.

Overall, resistance-conferring SNPs in the Moldova data set form only 0.6%
of the total number of SNPs. However, restricting to those sample pairs where
the SNP distance is less than or equal to 20, they form 8% of the total. If a high
proportion of the SNPs between two cases are resistance-conferring SNPs, then
this effectively shortens the distance between the cases, making them more likely
to be joined together in a transmission cluster. For several sample pairs in this
data set, the proportion of resistance-conferring SNPs that differ between the two
samples is approaching 35%, whilst for some other pairs there are none at all.
For this reason we see a difference when we take resistance into consideration,
as seen in Table 4 and Figure 4. The largest cluster is not shown in detail in the
figure and is more robust with respect to the effect of resistance-conferring SNPs
than the smaller clusters.

Simulated data

To explore the performance of the clustering methods in a setting where the
"ground truth" is known, we simulate data and compare the SNP and transmis-
sion (as given by Equation (10)) methods. The "true" clusters are generated from
simulated transmission networks produced by TransPhylo.

We consider clustering cases based on direct transmission, so that two cases
are joined in a cluster if one infected the other, and we compare clusters generated
by the SNP threshold method with those generated by the transmission method.
In order to compare to the appropriate set of clusters, we find the best match that
the method achieves against the true cluster over an appropriately wide range of
threshold levels. Then we use the variation of information dissimilarity measure
given by clue (Meilă 2007) to compare the results of the two methods to the true
clusters. We also compare randomly permuted simulated data to the simulated
clusters to provide a yardstick of accuracy. This is achieved by fixing the number
of clusters to be the number of the true clusters, and then randomly allocating
each sample case to one one of those clusters. The results in Table 5 show that
the transmission method is consistently better than the SNP threshold method
at identifying direct transmissions within an outbreak. Both methods perform
significantly better than the randomly generated data.

Identifying direct transmissions is not the aim of either the SNP cut-off or
transmission clustering method; rather, both aim to simply group cases into sets
of isolates for onward, more intensive (model-specific, Bayesian for example) out-
break reconstructions. Testing the ability of SNP vs transmission-based methods
to accomplish this using simulated data would require an appropriate simula-
tion set-up, which in turn would have a lot of flexibility (and could no doubt be
tweaked to ensure that the transmission method performs well, or that the SNP
cut-off does). For example, one approach would to simulate the introduction of
new cases whose SNP distance is 25 from existing cases in an existing outbreak.
The SNP threshold method with a threshold of 12 SNPs will always correctly
place such new introductions in a new cluster, and will group their descending
infections correctly until one or more of them is more than 12 SNPs away from
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Clock Rate Transmission method SNP threshold method Random
0.5 0.250 0.366 0.871
1.0 0.261 0.366 0.845
1.5 0.265 0.366 0.795
2.0 0.282 0.366 0.842
2.5 0.293 0.366 0.845
3.0 0.303 0.366 0.848

Table 5: Dissimilarity measure comparing both the SNP and transmission methods
against simulated data, averaged over the full set of simulations. We use the variation
of information dissimilarity measure given by clue (Meilă 2007) to compare the results
of the methods. Lower numbers indicate sets of clusters that are more similar to the
true clusters. An outbreak was simulated 100 times with 10 sampled cases from a total
of between 20 and 30 cases, depending on the simulation. The measure is obtained by
comparing clusters from a range of thresholds to the known clusters, and picking the
one with the lowest score. The averages are 0.27 bits for the transmission method, 0.366
for the SNP threshold method and 0.84 for the randomly permuted data. The clock rate
is the rate used by the transmission method only to relate the number of SNPs to the
time distribution, and thus does not affect the SNP threshold method results - this is
why the SNP threshold method has the same dissimilarity compared to the simulated
data whatever the clock rate. The table shows how the dissimilarity varies as the clock
rate varies, for a fixed β = 3.0 transmissions/year, as compared to simulated samples
connected by direct transmission. The random column shows the dissimilarity obtained
for randomly allocated simulated clusters.

other sampled cases in the cluster. Conversely, if new introductions were only
12 SNPs from existing cases the SNP threshold method would mis-classify them
as linked to existing clusters. In the transmission method, we can compute the
probability that a newly introduced case that is 25 SNPs from existing cases will
fall within a certain number of transmission events. This gives us the probabil-
ity that we would infer an incorrect link to an existing cluster. With λ = 1.2
SNPs/genome/year and β = 1.5 transmissions/year, the probability that there
are more than 10 transmissions for cases 25 SNPs apart is 99.9%. This falls to
98.3% for more than 15 transmissions. Accordingly, the simulation approach for
introducing new clusters will greatly affect the performance of both the SNP and
transmission-based methods, and so we have not chosen to perform extensive
simulations to compare the methods.
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Figure 4: Clusters in the Moldova data set illustrating the effect of accounting for
resistance-conferring SNPs in the transmission method, using Equation (18). Clusters
B, C and D are the second to fourth largest clusters in the Moldova data using the SNP
threshold method. The largest cluster A, with 93 members for S = 10 is shown for com-
pleteness. Isolated cases are shown with no enclosing oval. Colours are chosen to enable
identification of the same cases in the four different scenarios. The left hand panel shows
the clusters obtained by applying the SNP threshold method with two different thresh-
olds, with the cut-off level denoted by S; samples are clustered together where the SNP
distance is less than or equal to S. The right hand panel shows the clustering obtained
by applying the transmission method, using Equation (10), with the cut-off level denoted
by T; samples are clustered together where the implied number of transmissions k is less
than or equal to T with a probability of 80%, with clock rate λ = 1.5 SNPs/genome/year
and β = 2.0 transmissions/year.
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Discussion

We have demonstrated how our approach can be consistently applied in differ-
ent contexts, with timing information, with spatial data in the case of British
Columbia, and with resistance data in the case of Moldova. This is an advance on
what is possible with the fixed SNP threshold approach, where there is no general
way to adjust thresholds to take this context-specific information into account.

A fixed number of SNPs can arise from different numbers of transmissions
depending on other factors, including the timing of transmission, selection for
resistance, the substitution process, location and factors we have not explicitly
modelled (social contacts, host risk factors, pathogen factors). We have seen
that sampled cases which are relatively close in genetic distance can neverthe-
less be separated by large distances in time. In this scenario, a simple SNP cut-off
may place samples too close together for outbreak clustering purposes. In con-
trast, our new method is robust with respect to outlying cases which have been
sampled at very different times compared to the majority of cases. These cases
can make inference of timed phylogenetic trees challenging because the low ge-
netic variation is hard to reconcile with the large time distance. Furthermore,
true transmission clusters need not be clades in phylogenetic trees, because one
cluster could descend from another but be separated by a long time or a large ge-
netic distance (due to sampling effects). Accordingly, the clusters obtained by our
method do not necessarily correspond to phylogenetic clades. We briefly discuss
the application of our method to timed phylogenetic trees in the supplementary
data, with an example cluster which is not a clade.

Our probabilistic transmission method has certain advantages. It is relatively
simple, requiring only the implementation of fast-running algorithms to estimate
the time distributions; the heavy machinery to run large simulation methodolo-
gies (like MCMC) is not required. The amount of information required for the
model is limited and consists of as little as the SNP distances, the timing data
and a knowledge about the substitution and transmission processes. Neverthe-
less it has the flexibility to be able to handle SNPs under selection, SNPs with a
different substitution process and variability in the substitution and transmission
processes, and it has the scope for extensions to include more epidemiological
data. Even in data sets where there is not much timing information to work with,
we have seen that the integration of information on resistance-conferring sites can
be used within our framework to fine tune the clustering. Using two distinct pro-
cesses – transmission, and the accumulation of measurable genetic variation – to
define clusters carries the advantage that these processes may be estimable from
data. This enables transmission clusters to be formed based on focused discus-
sion and estimation of measurable processes rather than based on fixed cutoffs,
and it allows ready adaptation for new pipelines that detect variation.

There are some limitations. Prior knowledge of the substitution and transmis-
sion processes is required, and there is some uncertainty in choosing appropriate
values. However, the model is typically robust with respect to changes in these
variables; in particular, varying the transmission rate does not have a material
impact on the clustering because a re-scaling of the cut-off will compensate. The
choice of a time-varying transmission function β(t) is, however, likely to have
an impact on results. In particular we would expect a low probability of very
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quick transmission – as the pathogen numbers are building up in a new host – to
have a significant impact, compared to the use of a constant transmission rate, as
would a fast rate early diminishing to a much lower rate later. Note also that the
parameter t in our model represents the total time since infection to both the sam-
ple dates: so we are not modelling the variation of transmission rates in calendar
time.

In some diseases, such as TB, there is considerable variation in the latency
period, during which the mutation rate may be lower than it is during active
disease. This variability can be incorporated into the negative binomial model
as expressed in equation (14). We do not explicitly model within-host diversity,
though this is relevant to identifying direct transmission events (Worby et al. 2014;
Hall et al. 2015, 2016; Didelot et al. 2014, 2017). Cases of direct transmission will be
clustered together with high probability in our method despite slight inaccuracy
in the timing due to both branches of the pair’s two-case tree spending time in the
same host. Pairs of cases for which the clustering decision is ambiguous are likely
to have several intermediate cases between them, with a larger tree height, and so
the contribution of in-host diversity in either sampled case will be small. In-host
diversity in unsampled cases would not affect our estimates unless it contributed
to changes in the molecular clock rate.

WGS data has been noted to be helpful in ruling out transmission but insuffi-
cient, on its own, to resolve transmission events (Casali et al. 2016; Campbell et al.
2018). If the primary use of WGS data is only to refute transmission, one might
ask why clustering matters. We would argue that the transmissions that are not
refuted by WGS are then presumably considered to be possible recent, or direct,
or clustered transmissions. Even if the primary use of WGS data is to refute di-
rect transmission, there is a trade-off between the strength of that refutation and
the possibility of mistakenly refuting genuine recent transmission events. This is
more likely, using SNP cut-offs, where selection (say for antibiotic resistance) has
led to higher SNP differences than expected. In addition, in practice WGS data
are not only used to refute direct transmission, but to produce clusters that inform
onward analyses, reports on the extent of recent transmission, outbreak analysis
and reconstruction and even public health policy; see (Guthrie et al. 2018) for one
example.

We have accommodated the possibility of low substitution rates in latency
with a non-Poisson model for the clock process, λ, in Equation (5) (though we
have not implemented this) and to some extent with the option of a non-constant
transmission rate. However, we have not modelled the possibility of a direct
relationship between low SNP accumulation and low probability transmission.
If this relationship exists – for example if latent cases both do not transmit and
do not accumulate SNPs (Colangeli et al. 2014) – then low SNP differences could
correspond to fewer intermediate hosts despite long elapsed times. This is an
implicit assumption of a SNP-only method; while it may be correct it is a strong
assumption, and there is evidence that mutation rates in latency are not reduced
compared to active disease (Ford et al. 2011; Lillebaek et al. 2016).

We have not used the probability of sampling in forming our clusters, in con-
trast to other tools including the vimes package (Jombart and Cori 2017). For
example, if it is known that surveillance is strong, then it would be less likely
for 10 intermediate cases to be unsampled than for 5 intermediate cases, and this
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could be built in to a clustering method. Our rationale for not taking this into ac-
count is to provide a clustering approach that is as parallel as possible to the SNP
cut-offs currently in widespread use while taking additional information on tim-
ing, molecular evolution and transmission into account. It is often the case that
the true sampling rate is not known and may change over time, and – particu-
larly for TB in high-resource settings – cases can be missed because they are hard
to identify (perhaps being at higher risk of TB due to homelessness or other fac-
tors, as in Casali et al. (2016)). In many settings the sampling probability may be
uncertain. We have taken the approach of defining the clusters themselves with-
out explicit reference to the sampling probability, with the view that the clusters
are central inputs to other analyses which will take sampling into account (as is
done for example in TransPhylo (Didelot et al. 2017)). However, in our approach,
changes in the sampling probability would likely be apparent in changes in the
temporal and genetic distance between cases over time.

We have also not modelled changes in the transmission process over time in
a community (eg due to depletion of susceptible individuals, improved infec-
tion control, etc). As with including sampling, this may best be done in a more
nuanced analysis after the initial clustering rather than as part of the clustering
itself, but in principle, changes to the transmission function over calendar time
could be incorporated into the mathematics behind Equation (8). However, this
would raise interpretation challenges because of the fact that our transmission
process reflects the rate of the pathogen moving between hosts where it is known
that there is an infected host at the "end" of the chain (since each pair consists
of two sampled hosts, whose pathogen was sequenced and who were therefore
certainly infected). We do not model the number of contacts over which trans-
mission could have occurred.

The choice of a particular SNP cut-off also takes no account of the inevitable
uncertainties involved in the gathering and processing of raw read data, and does
not allow for the modelling of this uncertainty. Different bioinformatics pipelines
- and different parameters used within those pipelines - can have a substantial ef-
fect on the number of SNP differences reported between cases. It is usual for SNP
differences to be taken as given and, although sometimes details are provided –
see for example Katz et al. (2013) – it is important to recognise that there can be
considerable variation between SNPs reported using different pipelines and pa-
rameters. For example, the level of quality scores and read depth cut-offs used
will generally have a high impact, as will the precise way in which hyper-variable
sites and repeat regions are handled (or excluded). As technology improves we
may begin to capture variation in repeat regions, or types of variation (eg in-
sertions/deletions) that are currently masked, and in that new pipeline 12 SNPs
may not carry the interpretation it does today. The model could easily incorpo-
rate more genomic information, resulting in a more sophisticated version of the
distance function. In particular, large-scale genomic features can readily help to
establish that cases belong to separate and therefore distantly related lineages.
As variation-calling pipelines evolve, our method could be used to relate each
pipeline to numbers of transmissions or to estimated divergence time; this would
form an approach to compare bioinformatics pipelines and data sources, and to
curate their use in defining distances between isolates.

TB has distinct phylogeographic lineages which have been reported to have
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different mutation rates, with lineage 2 (the East Asian and Beijing lineage) hav-
ing higher mutation rates than lineage 4 (Euro-American) (Ford et al. 2013). Our
approach could unify clustering despite such differences, as the same transmis-
sion and probability settings could be used under different SNP accumulation
rates. This would provide a consistent approach to clustering in areas where
multiple lineages co-circulate, and allow comparison of TB clustering patterns in
different settings. The same would be true for adapting to differing natural histo-
ries across different pathogen lineages or sub-populations: the choice of β could
reflect transmission differences while the other settings remained the same.

The long-term aim of changing how cases are assigned to clusters is to im-
prove the way that WGS and epidemiological data are used and to best capture
clusters that correspond to transmissions of an infectious disease. We have found
that basing clusters on the number of transmission events, with a probabilistic
cut-off, is feasible, can integrate timing and other data, and compares favourably
to clustering based on SNP cut-offs.

Materials and Methods

Data

In this paper we focus on TB, but our approach is applicable to other pathogens
for which whole genome sequencing can be carried out and where it is appro-
priate to use SNPs to compare closely-related isolates (naturally, parameters will
vary). TB provides a convenient model as it avoids the complications associated
with horizontal gene transfer, it is an important pathogen worldwide, it has very
diverse epidemiological settings and WGS tools are increasingly used for public
health purposes.

British Columbia The British Columbia Centre for Disease Control (BCCDC)’s
Public Health Laboratory (BCPHL) receives all Mycobacterium tuberculosis (Mtb)
cultures for the province and performs routine MIRU-VNTR genotyping on
all Mtb isolates. Mtb isolates belonging to MIRU-VNTR cluster MClust-012
were revived from archived stocks, DNA extracted, and sequenced using 125bp
paired-end reads on the Illumina HiSeqX platform at the Michael Smith Genome
Sciences Centre (Vancouver, BC). The resulting fastq files were analyzed using
a pipeline developed by Oxford University and Public Health England. Reads
were aligned to the Mtb H37Rv reference genome (GenBank ID: NC000962.2),
with an average of 92% of the reference genome covered. Single nucleotide
variants (SNVs) were identified across all mapped non-repetitive sites. Fastq
files for all genomes are available at NCBI under BioProject PRJNA413593.

Republic of Moldova Sample collection and epidemiological data: The study popula-
tion included patients diagnosed with culture positive tuberculosis at the Munic-
ipal hospital from October 2013 – December 2014 in the Republic of Moldova. All
epidemiological and laboratory data from TB patients are routinely entered into a
country-wide web-based TB electronic medical record (EMR) database. Epidemi-
ological data including age, sex, previous TB history, results of chest radiograph,
history of incarceration, and place of residence were collected. Laboratory data,
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including mycobacterial smear grade, culture and drug-susceptibility testing to
first and second line anti-tuberculosis agents, were extracted from the EMR. As
part of this study, all M. tuberculosis patient isolates were subcultured and frozen
for genomic analysis.

Variant calling and phylogenetic analysis: DNA was extracted from M. tubercu-
losis grown on Lowenstein-Jensen slants as described previously. Paired-end (250
base pair) sequences were generated on the Illumina MiSeq platform. Raw fastq
reads were filtered for length and trimmed for low-quality trailing base pairs us-
ing Trim Galore, aligned to the H37Rv NC000962.3 reference genome using BWA,
with duplicate reads removed using PicardTools. The mpileup function in sam-
tools was used for single-isolate variant calling. Isolates with a high proportion
of apparent mixed or heterozygous single nucleotide polymorphism (SNP) calls
(i.e. those with >25% reads supporting the reference allele) were excluded from
analysis. SNPs within 15 base pairs of insertions or deletions (indels) or with
variant quality scores < 100 were excluded. SNPs in or within 50 base pairs of
hypervariable PPE/PE gene families, repeat regions, and mobile elements were
excluded (Eldholm et al. 2015). A phylogenetic tree was constructed in RAxML
(GTR-gamma for nucleotide substitution and correcting for SNP ascertainment
bias) and annotated with DST results and drug-resistance associated variants
from Mykrobe Predictor (Bradley et al. 2015). Representative strains from other
studies in the region, including L4 (LAM, Haarlem, Ural) and L2 (Casali et al.
2014; Merker et al. 2015), were also included. Percy256 (Lineage 7) was included
as an outgroup. Fastq files for all genomes are available at NCBI under Accession
number SRP156366.

Clustering approach

The overall approach is to use the SNPs and case timing to derive a distribution
for the time to the MRCA of each pair of samples, condition on that time to write
the probability that the samples were separated by some number of transmission
events, and then integrate out the unknown time to the pairs’ MRCA. The first
step makes use of the molecular clock process and depends on the clock rate and
on the numbers of SNPs under a form of selection (like antibiotic resistance). The
second step using information about the transmission process and the natural
history of the pathogen.

For each sample, we start with the date on which the sample was taken and
the aligned nucleotide sequence for the set of variable sites in our set of samples.
For any two samples S1 and S2, we have the SNP distance N = N(S1, S2) which
is equal to the Hamming distance between their respective nucleotide sequences.
We also have the sampling time difference δ = δ(S1, S2). Without loss of gen-
erality, we can assume that S1 is sampled either at the same time as, or before,
S2. What we do not know a priori, and therefore we have to estimate, is the total
amount of time h over which the SNPs have accumulated (on both branches in
total) since the date of the MCRA of S1 and S2. We also refer to h as the "height".

Given the time h, we can use a transmission process to estimate the probability
that there are more than some threshold number of transmission events T in a
total time h; we integrate over the unknown h. This transmission process need
not be homogeneous.
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Symbol Meaning Units
λ Clock rate SNPs/genome/year
β Transmission rate Transmissions/year
h Total time over which SNPs occur over both

lines of descent before the first sampling date Years
δ Time between two sample dates Years
N No. SNP differences between two cases
Nδ No. SNP differences occurring after first sample
k Number of transmissions
S Cut-off threshold for SNP threshold method
T Cut-off threshold for transmission method

Table 6: Symbols used in the model and their meaning.

We make various assumptions in setting up the model. Both substitutions and
transmissions occur according to (possibly non-homogeneous) Poisson processes
over time. Unless it is otherwise stated, the population from which the samples
are drawn is homogeneous, so transmission is random and equally likely be-
tween hosts irrespective of factors such as location of abode, individual lifestyle
etc. We do not assume that all infected cases are reported and sequenced. How-
ever, where we do have sequence data, we assume that it is correct and complete.
Reported cases may be sampled more than once. We do not explicitly model
reporting and sampling rates. If these change over time, then this would be re-
flected in the time and genetic distance between nearby cases and consequently
in the estimated number of intermediate transmissions between reported cases.
Once infected, we assume that a patient becomes infectious immediately, either
with a constant probability of infection per unit of time, or in a process yielding
a gamma-distributed time to the next infection. This "natural history" model is
assumed not to change with calendar time, such that the course of infectiousness
proceeds in the same manner from infection to infecting others independent of
the calendar time of infection. Our approach is intended to group sequences into
clusters, and does not model reported cases for whom there is no sequence data.

Noting that δ is fixed by the sampling times in the data, we estimate the dis-
tribution of the time h/2 over which the SNPs have had to accumulate before the
sample date of S1. This is equivalent to estimating the date of the MRCA of S1
and S2. Because both branches are free to evolve over this time, h/2 + h/2 = h
is the effective overall time between the MRCA and S1, and δ + h is therefore the
total evolutionary time separating the two cases.

Estimate of the height where sample dates are the same

The simplest model for the number of SNPs per unit time is a Poisson process
with a constant rate λ; we can also accommodate overdispersion, reflecting a
more variable SNP accumulation process suitable for pathogens whose substi-
tutions are not as clock-like (see below). The standard Poisson distribution with
parameter λh gives the probability density of the number of SNPs on a given time
interval h:

P(N|h) = e−λh(λh)N

N!
(1)
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However we are interested in the likelihood of the time h as a function of the
specified number of SNPs.

We know by standard theory that the arrival time density – that is, the time
density until the next SNP – can be modelled by the exponential density func-
tion λe−λh. Furthermore, the waiting time until the N-th SNP is also a Poisson
process, as the arrivals are assumed to be independent and identically Poisson
distributed. It can be shown (for example in Chapter 2 of (Gallagher 2013)) by
repeated convolution of densities that the distribution of the Nth arrival time AN
is given by

PDFAN =
λNhN−1e−λh

(N − 1)!
(2)

for N > 0. This is the Erlang distribution, with mean = N/λ, as expected.
We know that exactly N SNPs have already occurred on a time interval of

uncertain length h, and we are interested in the likelihood of h given the data N.
Since we already have N SNPs and are waiting for the (N + 1)-th, this is given
by the arrival time density for the (N + 1)-th SNP; by replacing N with N + 1 in
the above and interpreting it as a function of h, we have:

L(h|N) =
λN+1hNe−λh

N!
(3)

Note that when N = 0, this reduces to λe−λh.
Alternatively, we can generalise the arrival time density to a gamma distribu-

tion, where the extra parameter allows us to fix the mean but change the variance.
This allows us to be more flexible with respect to dispersion than with using the
exponential distribution. The gamma density, with two parameters a and b, is

f (h; a, b) =
baha−1e−bh

Γ(a)
(4)

The mean is a/b and the variance a/b2. Note that we can recover the Poisson
model result by setting a = 1 and b = λ (Cameron and Trivedi 2013). In this case
the arrival time density for the (N + 1)-th SNP is given by

f (h; a(N + 1), b) =
ba(N+1)ha(N+1)−1e−bh

Γ(a(N + 1))
(5)

by standard properties of the gamma distribution.

Estimate of the height where sampling times differ

In this case, we account for the fact that some of the SNPs may have occured
in the the fixed time interval of length δ between the two sample dates. Again,
we begin with the simple model in which the number of SNPs occurring in this
time is given by a Poisson distribution, in this case with parameter λδ. We write
N = Nh + Nδ, where Nδ is Poisson distributed with parameter λδ.

The number of SNPs Nδ accumulated on the fixed interval of length δ is some-
where between 0 and N inclusive; 0 ≤ Nδ ≤ N. Unconstrained, Nδ is Poisson
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Figure 5: On the left is a schematic illustration of the notation. h is the total time in
years over which SNPs accumulate between two cases before the first sample is taken,
whereas the total time over which SNPs can occur is h + δ years. δ is known and fixed; h
is unknown. On the right is a plot of h + δ, where h is given by Equation (4), for values of
δ ranging from 0 through 6 years, with N = 3, λ = 0.9 SNPs/genome/year, and β = 1.2
transmissions/year. Since h + δ > δ, the lines corresponding to higher values of δ begin
above 0.

distributed with parameter λδ. Conditioning on the probability that Nδ does not
exceed N gives us the probability density

P(Nδ|δ) =
( e−λδ(λδ)Nδ

Nδ!

)/ N

∑
i=0

e−λδ(λδ)i/i!

and writing F(Nδ) for ∑N
i=0 e−λδ(λδ)i/i!

P(Nδ|δ) =
( e−λδ(λδ)Nδ

Nδ!

)/
F(Nδ) (6)

To obtain the expression for L(h|N, δ), we sum over all the possible values of Nδ,
giving

L(h|N, δ) =
N

∑
i=0
L(h|i, δ)P((N − i)|δ)

Substituting into our earlier expression,

L(h|N, δ) =
N

∑
i=0

(λi+1hie−λh

i!

)( e−λδ(λδ)(N−i)

(N − i)!

)/
F(N)

L(h|N, δ) =
e−λ(h+δ)λN+1

F(N)

N

∑
i=0

hiδN−i

i!(N − i)!
(7)

An example plot for the equation above is shown in Figure 5.

Modelling transmissions

We connect SNP distances to transmissions using a model for the number of
transmissions likely to have occurred over a given total time period, conditional
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on the two cases being infected at or before the sampling times. This means that
unlike a transmission rate in a population-level epidemic model, which typically
describes the rate of transmission per unit time given contact between a suscep-
tible and an infectious individual, our transmission process is better described in
terms of the rate at which a pathogen lineage will jump to a new host. This is, of
course, distinct from the rate at which new transmissions occur in a community
and the per-contact rate of transmission of infection between two individuals.
We first assume for simplicity that β is a constant function, and that it is a Poisson
process; we allow a more general model later. The amount of time over which
transmissions can occur between our two cases is h + δ, and the expected num-
ber of transmissions is β(h + δ). The number of transmission events k is therefore
given by

P(k|h, δ) =
βk(h + δ)ke−β(h+δ)

k!
(8)

Integrating over h, we have

P(k|N, δ) =

∞∫
h=0

L(h|N, δ) P(k|h) dh (9)

=
e−δ(λ+β)λN+1βk

k!F(N)

∞∫
h=0

e−h(λ+β)(h + δ)k
N

∑
i=0

hi
( δN−i

i!(N − i)!

)
dh (10)

This equation expresses the key relationship that allows us to translate raw
SNP differences and sample time differences into transmission probability dis-
tributions - examples are shown in Figure 6. As the sample time between cases
increases, it can be seen that this factor makes an increasingly important contri-
bution, relative to the SNP distance, to the distance between cases.

Unless stated otherwise, Equation (10) is used to generate the data presented
in the Results Section.
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Figure 6: Probability density for the number of transmissions, given by Equation (10),
with clock rate λ = 0.9 SNPs/genome/year and β = 1.5 transmissions/year. The upper
two panels show the densities for delta values of 0 and 4 years for a range of SNP distance
between 0 and 20. The lower four panels show the densities for 0, 4, 8 and 12 SNP distance
respectively, for δ = 0, 4, 8, 12, 16 years.

Time varying transmissions

In our context, a transmission event should be understood as an event in which a
pathogen is transferred to a new host, ultimately causing a secondary case in that
host. While there may be undetected transmission events in which the secondary
cases never develop disease, our data are on sampled cases with active disease,
and the time between successive transmissions should approximately reflect the
serial interval between cases with active disease. We allow the number of trans-
missions β = β(t) to be a function of time since infection, allowing for a variable
risk of infecting others during the course of infection. Once a host is infected, the
details of the natural history of the pathogen affect the generation time - the exact
form of the function β(t) allows us to incorporate the varying rates of progres-
sion from infection to active disease, and then on to transmission. This illustrates
that our framework has the flexibility to include more detailed and accurate mod-
elling of the underlying disease dynamics. As stated in Didelot et al. (2017), the
generation time distribution can take any form (Fine 2003; Wallinga and Lipsitch
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2007), but gamma distributions are often used, as for example in Conlan et al.
(2010). We apply the gamma distribution with parameters shape α and scale θ, so
that:

β(t) = β(t; α, θ) =
1

Γ(α)θα
tα−1e−t/θ (11)

and the mean value is αθ ∗ dt in a given time interval dt.
Putting this together with our Poisson model for the number of SNPs on a

time interval (Equation (1)), we obtain:

P(N|λ, β(t; α, θ)) =

∞∫
t=0

e−λt(λt)N

N!

( 1
Γ(α)θα

tα−1e−t/θ
)

dt (12)

=

(
N + α− 1

N

)(
1− θλ

θλ + 1
)α( θλ

θλ + 1
)N (13)

This is a negative binomial (denoted NB) distribution for the number of SNPs for
one transmission generation,

P(N|λ, β(t; α, θ)) ∼ NB
(
α;

θλ

θλ + 1
)

Assuming transmission events are independent of each other, it then follows (by
standard properties of the negative binomial) that the probability of N given k
transmissions is also distributed as a negative binomial, with

P(N|k, λ, β(t; α, θ)) ∼ NB
(
kα;

θλ

θλ + 1
)

P(N|k, λ, β(t; α, θ)) =

(
N + kα− 1

N

)(
1− θλ

θλ + 1
)kα( θλ

θλ + 1
)N (14)

Modelling resistance-conferring SNPs

Suppose that we know that there are resistance-conferring SNPs in our sample
population, or perhaps other SNPs at sites known to be under selection or simply
to have a different rate of substitution. Let us assume they account for a certain
fixed proportion of the observed SNP differences. Given N SNPs, assume that m
are not resistance-conferring and n are, so N = m + n. Their respective mutation
rates are given by λm and λn, where λn > λm. Assuming independence, on a
given time interval of length h we have

P(N|h) = P(m|h, λm)P(n|h, λn)

=
(λm

mhme−λmh

m!

)(λn
nhne−λnh

n!

)
=
(λm

mλn
n

m!n!

)
hme−λmhhne−λnh

= Λmnhm+ne−(λm+λn)h (15)

where
Λmn =

λm
mλn

n
m!n!

(16)
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Compare this to Equation (1), which we can recover by setting m = N, n = 0,
λ = λm, and λn = 0.

We have a Poisson process which is the sum of two independent Poisson pro-
cesses with λ = λm + λn. As before, we can derive expressions for L(h|N =
n + m) and P(k|N = n + m), so

L(h|m, n) = Λ
′
mnhm+ne−(λm+λn)h (17)

where

Λ
′
mn =

λm+1
m λn+1

n
m!n!

A way to illustrate the effect of including resistance-conferring SNPs is to con-
sider the expected value of h. Recall that under Equation (1), the mean is given by
N/λ. Thinking of our resistance and non-resistance-conferring SNP processes,
they have means respectively of n/λn and m/λm. Thus the combined process
has mean n/λn + m/λm, and we can write the rate parameter λ∗ of the combined
process as

λ∗ =
n + m

n/λn + m/λm
(18)

Note that for large λm, λ∗ tends to λn ∗ (n + m)/n. The larger the value of
λm as compared to λn, the smaller the contribution that the resistance-conferring
SNPs make to the value of h - accordingly, 4 SNPs likely to have arisen due to
inappropriate treatment or another selection process should not contribute as
strongly towards separating two cases into different transmission clusters as 4
"neutral" SNPs. Ideally, the value of λm should be estimated from data. Once
resistance SNPs have occurred in an individual, they are likely to be transmit-
ted onwards when the individual infects others. These secondary cases share the
resistance SNPs with each other (n = 0 in these pairs) and they are likely to be
placed in the same cluster. Between each secondary case and the infecting case,
n > 0; our method allows the resistance SNPs to "count for" less time than other
SNPs, and the index case is likely clustered with the onward cases.

Spatial proximity and other individual data

Other factors that affect the likelihood of transmission, such as spatial proxim-
ity or other covariate data including contact tracing, demographics or other host
factors, can be built into the model.

To incorporate spatial proximity, we assign each of the cases into one of a
number of regions Ri where i is the region index. For the British Columbia data
set, there are six regions defined, as shown in Figure 3. For any pair of cases, a
probability weighting is assigned which is equal to 1 in the case that both cases
belong to the same region, and a value below 1 for cases which belong to differ-
ent regions. This weighting w is then applied to the probability of obtaining k
transmissions given N SNPs, giving us a modified version of Equation (10)

P(k|N, δ, w) = w
∞∫

h=0

L(h|N, δ) P(k|h) dh (19)
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Simulations

We generate simulated outbreaks and compare the SNP and transmission meth-
ods on them with a technique that measures the similarity of clusters using an
information-theoretic approach (Meilă 2007). Outbreaks are simulated using
TransPhylo (Didelot et al. 2017), which generates a dated transmission network
for each simulation, containing both sampled and unsampled cases. From these,
and for all the cases, phylogenetic trees are extracted using phyloTop (Kendall et al.
2016). Sequences are then generated with phangorn (Schliep 2011) and output as
fasta format files. For the sampled, and therefore "known", cases we generate sets
of clusters using the SNP and transmission methods for a range of cut-off lev-
els. We also generate the "true" clustering of the sampled cases implied by the
simulated TransPhylo transmission networks.

Software availability

The methods presented here are available as R functions in the transcluster
package, available at https://github.com/JamesStimson/transcluster.
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