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Abstract 
 
Background: There are multiple existing and emerging therapeutic avenues for metastatic 
prostate cancer, with a common denominator, which is the need for predictive biomarkers. 
Circulating tumor DNA (ctDNA) has the potential to cost-efficiently accelerate precision 
medicine trials to improve clinical efficacy and diminish costs and toxicity. However, 
comprehensive ctDNA profiling in metastatic prostate cancer to date has been limited.   
 
Methods: A combination of targeted- and low-pass whole genome sequencing was performed 
on plasma cell-free DNA and matched white blood cell germline DNA in 364 blood samples from 
217 metastatic prostate cancer patients. 
 
Results: ctDNA was detected in 85.9% of baseline samples, correlated to line of therapy and 
was mirrored by circulating tumor cell enumeration of synchronous blood samples. 
Comprehensive profiling of the androgen receptor (AR) revealed a continuous increase in the 
fraction of patients with intra-AR structural variation, from 15.4% during first line mCRPC 
therapy to 45.2% in fourth line, indicating a continuous evolution of AR during the course of the 
disease. Patients displayed frequent alterations in DNA repair deficiency genes (18.0%). 
Additionally, the microsatellite instability phenotype was identified in 3.81% of eligible samples 
(≥0.1 ctDNA fraction). Sequencing of non-repetitive intronic- and exonic regions of PTEN, RB1 
and TP53 detected biallelic inactivation in 47.5%, 20.3% and 44.1% of samples with ≥0.2 ctDNA 
fraction, respectively. Only one patient carried a clonal high-impact variant without a detectable 
second hit. Intronic high-impact structural variation was twice as common as exonic mutations in 
PTEN and RB1. Finally, 14.6% of patients presented false positive variants due to clonal 
hematopoiesis, commonly ignored in commercially available assays.  
 
Conclusions: ctDNA profiles appear to mirror the genomic landscape of metastatic prostate 
cancer tissue and may cost-efficiently provide somatic information in clinical trials designed to 
identify predictive biomarkers. However, intronic sequencing of the interrogated tumor 
suppressors challenge the ubiquitous focus on coding regions and is vital, together with profiling 
of synchronous white blood cells, to minimize erroneous assignments which in turn may 
confound results and impede true associations in clinical trials.  
 
Keywords: Circulating tumor DNA, metastatic prostate cancer, microsatellite instability, 
structural rearrangement, clonal hematopoiesis.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/319855doi: bioRxiv preprint 

https://doi.org/10.1101/319855
http://creativecommons.org/licenses/by-nc-nd/4.0/


Background 
 
Prostate cancer is the most commonly detected male cancer in Europe and the third major 
cause of cancer-related death among men [1]. Although the majority of metastatic hormone-
naïve prostate cancers (mHNPCs) demonstrate a reliable response to initial androgen 
deprivation therapy which targets AR signaling, progression to a castrate resistant state is 
inevitable. However, the treatment landscape for metastatic castrate resistant prostate cancer 
(mCRPC) is evolving with the recent approval of several new drugs translating to an increased 
overall survival [2–6]. Multiple additional avenues exist as genomic profiling of metastatic tissue 
revealed that the majority of mCRPC patients harbor clinically relevant alterations beyond the 
AR signaling pathway [7].  
 
The most promising non-approved treatment avenue in metastatic prostate cancers (mPC) 
exploits synthetic lethality in treating homologous recombination deficient cancers with poly 
(ADP-ribose) polymerase (PARP) inhibitors [8]. Approximately one fifth of mCRPC carry 
mutations in DNA repair genes [7]. However, the mutational signatures of biallelic inactivation is 
heterogeneous between different DNA-repair genes [9] and future studies are therefore needed 
to determine which genes are associated with a response to PARP inhibition. Approximately 
three percent of mPC are driven by microsatellite instability (MSI) [7,10]. Pembrolizumab 
recently became the first drug to be approved by the U.S. Food and Drug Administration based 
on the MSI phenotype, irrespective of tumor type [11]. Although check-point blockade  did not 
confer a  survival advantage as compared with placebo for chemotherapy-relapsed mCRPC 
[12], anecdotal cases have been reported to display partial or complete responses [10,13–15].  
 
The emergence of additional drugs, both towards common and rare mPC phenotypes such as 
PTEN-deficient [16,17] and neuroendocrine cancers [18], raises questions of how to efficiently 
translate the multitude of treatment options to improved patient outcomes. The genomic 
heterogeneity of mCRPC [7] and in turn, the low response rates of currently approved drugs [2–
5,19,20], argue for the urgent need of predictive biomarkers. Ineffective trial-and-error decisions 
inevitably lead to unnecessary side-effects and unsustainable costs [21]. The AR splice variant 
7 (AR-V7) [22] demonstrated promising results as a negative response biomarker for 
abiraterone and enzalutamide [23]. However, follow-up studies did not validate the initial clear-
cut finding and the clinical value of AR-V7-assays remain debated [24].  
 
The lack of predictive biomarkers is in part due to the difficulty of obtaining temporally matched 
metastatic tissue as the majority of mPCs metastasise to the bone. Multiple studies on the 
acquisition of tumor tissue with or without direct image-guidance report a range of success rates 
[25–28]. A recent effort, focusing on methodological improvements, obtained >20% cell content 
in the majority of bone biopsies [29]. Circulating tumor DNA is a viable alternative to metastatic 
tissue with demonstrated high fractions of ctDNA [30–33] enabling sensitive detection of 
somatic variation and direct comparisons to metastatic tissue reveal high concordance 
[30,34,35]. Circulating tumor DNA has several advantages as sampling through simple blood 
draws is fast, cost efficient, without side-effects, allows for longitudinal monitoring and the 
detection of multiple resistance alleles during therapy [35,36].  
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Although ctDNA has the potential to accelerate biomarker-driven trials in mPC several questions 
remain unanswered, e.g. if it is possible to detect MSI directly from liquid biopsies and how 
ctDNA fractions correlate to line of therapy. The ctDNA fraction determines the sensitivity to 
detect somatic variation which in turn has consequences for the design of prospective 
biomarker studies relying on liquid biopsies. Here we present a retrospective analysis of 217 
cases and 364 blood samples covering the entire spectrum of mPC. The purpose of this study 
was to gather information relevant for future liquid biopsy-driven biomarker studies with a focus 
on 1) how ctDNA fractions vary from mHNPC to end stage castration-resistant disease; 2) a 
rationale for how to treat samples with low ctDNA fraction; 3) the relative impact of different 
types of somatic variation, affecting the sequencing strategy; 4) the detection of potentially 
predictive biomarkers; 5) and finally, how clonal expansions in the hematopoietic stem cells [37–
40] impact liquid biopsy profiling. 
 
Methods 
 
Patient cohorts. The ProBio (Prostate Biomarkers) cohort was collected in the Stockholm area 
during 2015-2017 with the goal to perform retrospective hypothesis-generating liquid biopsy 
analysis for future studies. Metastatic prostate cancer patients ranging from hormone-naïve to  
castration-resistant were invited to participate and asked to donate blood. Anonymous healthy 
donor blood was collected from healthy men at Hötorgets Blood Centre in central Stockholm. 
Additionally, mCRPC cases were recruited in Belgium via a non-interventional clinical study 
(CORE-ARV-CTC study) between March 2014 and April 2017. The purpose of this cohort study 
was to investigate if profiling androgen receptor splice variants in circulating tumor cells (CTCs) 
may predict enzalutamide and abiraterone treatment response. Leftover plasma was biobanked 
simultaneously and used for ctDNA profiling, described here. Accounting for both cohorts, cell-
free DNA and germline DNA profiling was performed on 217 mPC and 36 healthy donors (Table 
1). In addition, the FDA-cleared CellSearch CTC technology (Menarini Silicon Biosystems, Italy) 
was applied for CTC enumeration on 340 out of 364 blood samples processed for ctDNA 
analysis. Ethical approval was obtained from ethical committees in Belgium (Antwerp University 
Hospital, registration number: B300201524217) and Sweden (Stockholm Regional Ethical 
Vetting Board registration numbers: 2016/101-32, amendment 2017/252-32; 2009/780-31/4, 
amendment 2014/1564-32). All patients provided a written informed consent document. 
 
Sample processing and sequencing. In ProBio, plasma was enriched from 2x10 ml EDTA 
blood whereas 4-5 ml of blood was available from the CORE-ARV-CTC study. Germline DNA 
was extracted from leftover EDTA blood after plasma centrifugation. In both studies, the EDTA 
blood tubes were processed within the same working day, allowing for high-quality ctDNA 
profiling [41]. Blood collected in CellSave tubes were shipped to the GZA Sint-Augustinus 
hospital in Antwerp, to perform CTC counting within 72 hours, as previously described [42]. The 
plasma was stored at -80°C until cell-free DNA (cfDNA) isolation. cfDNA was isolated using the 
QiaSymphony system (Qiagen, Germany). Purified cfDNA was subjected to fragment analysis 
for quality control. Germline DNA from WBCs was isolated using the AllPrep DNA/RNA Micro 
Kit (Qiagen, Germany). Library prep was mainly performed using the ThruPLEX Plasma-seq kit 
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(Rubicon Genomics, USA). 0.1 – 50 ng of cfDNA and 50 ng of germline DNA was used to 
create the sequencing libraries. Cell-free DNA profiling was performed with a mix of low-pass 
whole genome sequencing and targeted sequencing allowing for identification of copy-number 
alterations (CNAs), small mutations and structural variation. The SeqCap EZ system (Roche 
Nimblegen, USA) was applied for targeted sequencing. The targeted regions were designed to 
capture unique regions in the human genome commonly mutated in prostate cancer, identified 
through literature review. The designs are described in Supplementary table 1. Briefly, the 
comprehensive designs were aimed at progression samples, targeting common single 
nucleotide polymorphisms at a certain intervals to enable CNA detection. The smaller designs 
were tailored for cost efficient deep sequencing in combination with low-pass whole genome 
sequencing for profiling CNAs. Follow-up samples and samples with <5 ng of cfDNA available 
were profiled with a smaller, focused design, to enable cost-efficient saturation of the library. 
Low-pass whole genome sequencing was applied to baseline samples with <5 ng cfDNA to 
enable CNA analysis.  
 
Sequence data analysis. Low-level processing of the sequencing data was performed as 
previously described [33]. Statistical analysis and filtering of variants was conducted in R [43]. 
Twenty-five plasma samples displayed significantly increased fraction of discordantly mapped 
read pairs and low allele frequency variants. Five had previously been profiled from the same 
blood draw without any quality issues [33]. To avoid false positives, these samples were not 
included for structural variation- or MSI analysis. In addition, mutations below five percent allele 
fraction were discarded unless they were detected in another sample of the same individual. 
The data from our previous publications [33,41] was merged with samples that were processed 
again to increase coverage. Only non-default settings are displayed for the analysis tools below. 
Germline small variants in blood samples were identified with FreeBayes [44] (version: 1.0.1, 
settings: --min-alternate-fraction 0.01 --min-coverage 20, then filtered on QUAL > 5) and 
annotated with VEP [45] (version: 83, settings: --pick --filter_common  --check_alleles --
check_existing  --total_length --allele_number --no_escape --no_stats --everything --offline). 
Heterozygous SNPs were identified and their allele ratio in the cfDNA samples were used in 
analysis of copy number alteration and loss of heterozygosity. Downstream analysis of putative 
oncogenic germline variants was performed in R. Variants were required to be supported by 
≥12 reads and ≥20% allele ratio, and to be either annotated as pathogenic or likely pathogenic 
in ClinVar [46], or introduce a premature stop or frameshift in a coding sequence. Findings were 
inspected manually and annotated for evidence of somatic LOH based on the cfDNA copy 
number profiles and their allele ratio of heterozygous SNPs. 
  
Somatic point mutations in cfDNA samples were identified with VarDict [47] (settings: -f 0.01 -Q 
10, followed by var2vcf_paired.pl with settings -P 0.9 -m 4.25 -M -f 0.01 keeping variants 
flagged as LikelySomatic or StrongSomatic), using patient-matched blood samples as controls 
and annotated with VEP (same settings as above). Downstream analysis was performed in R. 
Known hotspot mutations in AKT1, APC, AR, ATM, BRAF, CDKN2A, CTNNB1, DICER1, 
DNAJB1, EGFR, ERBB2, FOXA1, GNAQ, HOXB2, HRAS, IDH1, IDH2, KAT8, KDM6A, KRAS, 
LRP1, MAP2K1, MED12, PDGFRA, PIK3CA, PIK3CB, PIK3R1, PPP2R1A, PTEN, RAF1, 
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SMAD4, SPOP, TP53 and XPO1 were not filtered further (≥1% allele frequency). Remaining 
variants were required to be supported by ≥6 reads and ≥2% allele ratio, and to not be observed 
≥2 times in the set of healthy donor cfDNA samples (Supplementary figure 1). Variants without 
any effect on coding sequence were also removed except for purity estimation. Remaining 
variants were reviewed manually and removed if reoccurring in multiple patients at low allele 
ratio without being a known hotspot mutation. Germline DNA processing failed for four patients 
(P-GZA3843, P-D6, P-AZSJ044 P-AZSJ055). Healthy donor cfDNA was used as reference to 
identify point mutations in these patients retaining only high-impact or hotspot mutations. 
Variants were also annotated for evidence of somatic LOH based on the cfDNA copy number 
profiles and their allele ratio of heterozygous SNPs. Sublonal variants were pragmatically 
defined as having an allele frequency < 1/4 of the ctDNA fraction, a similar approach as 
previously applied for ctDNA in colorectal cancer [48].  
  
Normalized coverage (log2-ratio) and segmentation for copy number analysis was produced with 
qDNAseq [49] for low-pass WGS (version: 1.8.0, settings: binSize=15, only using forward reads) 
and with CNVkit [50] for targeted sequence data (version: 0.7.9). The allele ratio of 
heterozygous SNPs was used with the log-ratio and segmentation to verify and curate 
observations. Putative somatic focal amplification was called where the median log-ratio at the 
gene exceeded control regions to the left and right (3-8Mb from gene start or end) by at least 
0.5. Putative somatic focal deletion was similarly called where the log-ratio of both control 
regions exceeded that of the gene by at least 0.3. Amplifications and deletions were curated 
manually and considered real if supported by the SNP allele ratio and if not attributable to poor 
data quality such as low coverage and waviness [51]. Deletions were considered homozygous if 
no large genomic segments (≥5Mb) had a similar or lower median log-ratio, if the SNP allele 
ratio of the segment did not indicate allelic imbalance, and if adjacent segments indicated 
hemizygous deletion or LOH. The sensitivity to detect homozygous deletions and LOH was 
compromised below 0.2 ctDNA fraction but is also affected by sequence coverage and the 
clonality of the individual event. Therefore, only samples with ctDNA fraction ≥ 0.2 were used to 
investigate if one high-impact variant could suffice to infer biallelic inactivation. Somatic 
deletions indicating TMPRSS2-ERG fusion were identified manually from log-ratio and SNP 
allele ratio. Germline copy number deletion was called where segmented log-ratio of the normal 
DNA was below -0.5. 
 
The svcaller algorithm was applied for the identification of structural variants as described 
previously [33]. To reduce the proportion of false positive calls the following filters were 
implemented: 

1) Filter out a read pair if there exists an alternative mapping (of equal mapping quality) that 
is consistent with normal genomic positioning (i.e. pointing towards each other, with an 
insert size < 1000bp). This eliminates a class of visually apparent false positive calls 
caused by mapping issues. 
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2) Reject an event if more than half of the reads have identical start position at either of the 
termini. This excludes a class of visually apparent false-positive events, in particular 
frequent weakly supported translocation calls. 

3) Filter based on soft-clipped read clustering for duplications or inversions. Exclude the 
event if the event contains scattered soft-clip regions. An event is considered to have 
scattered soft-clip regions if the ratio of grouped soft-clips to the number of groups is <= 
4. Soft-clippings are first assigned to groups by considering the start and end position of 
each soft-clippied read and subsequently to the group with the largest soft-clipping 
count. 

4) Filter out events that have overlapping, shared termini: Retain the single largest event, 
when an overlap occurs. 

To improve performance two initial filters were applied:  
1) Filter out events where all contributing reads have a mapping quality of zero. 
2) Only consider read pairs where both reads map to chromosomes 1-22, X and Y. 

Manual evaluation was performed on each variant candidate. Structural variants of unknown 
significance that occured in multiple germline samples were filtered out. A sample was 
considered to have a significant structural variants in AR if it contained any genomic structural 
rearrangement that: 1) did not affect exons upstream of cryptic exon 4; 2) affected any exon, 
including- and downstream of cryptic exon 4. However, non-functional variation such as tandem 
duplications with the 5’ breakpoint in the ligand binding domain and the 3’ breakpoint 
downstream of AR, were excluded. In addition, structural events removing AR exon 1, known to 
lead to AR45 expression [52], were considered to be significant structural variants. All other 
events in AR were considered structural variants of unknown significance. Subclonal point 
mutations were defined as having an allele frequency < 1/4 of the ctDNA fraction. However, 
comparing the allele frequencies of structural variants (PTEN, TMPRSS2-ERG region, TP53, 
RB1) to commonly mutated genes in mPC (AKT1, APC, ATM, BRAF, BRCA1, BRCA2, CDK12, 
CHEK2, CTNNB1, FOXA1, KRAS, PIK3CA, PTEN, RB1, SPOP, TP53), in samples that 
harbored both, revealed consistently lower structural variant allele frequencies (Supplementary 
figure 2). The ratio between the median structural variant allele frequency and the median 
mutation allele frequency was 0.275. Therefore, a structural variant was considered to be 
subclonal if the allele frequency was < 0.0688 (0.275*0.25) of the ctDNA fraction. After applying 
this threshold for structural variants on all samples, the number of subclonal structural variants 
in ERG, PTEN, TMPRSS2, TP53 and RB1 was not statistically different from mutations 
(Number subclonal and clonal for: structural variants, 24 and 162; mutations, 79 and 387. χ2 
test: p = 0.201). The current version of the svcaller software is available online: 
https://github.com/tomwhi/svcaller.  
 
Tumor burden (ctDNA component in cfDNA) was initially estimated from the median allele 
frequency of somatic point mutations with an allele frequency of at least 5%. However, the 
variant with highest allele frequency was copy-number adjusted and compared to the median 
allele frequency. If discordant (+/- 0.05) the ctDNA fraction was corrected. Where somatic copy 
number alterations suggested a higher tumor burden, it was instead calculated from the 
difference in log-ratio associated with gain or loss of one copy. Only low-fraction structural 
variation was detected in for P-00030277_3042897, P-00041183_3094920, P-
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00043867_3124162 and P-NIKO005_20170077. For these four, the average of the number of 
supporting reads divided by the total read depth at the two breakpoint positions was used as 
ctDNA fraction estimate.  
 
Evaluation of the sensitivity and specificity to detect MSI was performed on an in-house cohort 
of 450 colorectal cancer samples out of which 61 had MSI. Microsatellite instability was 
evaluated by 1) applying the mSINGS [53] algorithm 2) comparing the number of mutations, 
separated into single nucleotide variation and indels. A more stringent threshold was applied 
(≥10 supporting reads) to filter out artefact variants as intronic and synonymous variants were 
included. 3) manual inspection of copy-number alteration patterns, where microsatellite unstable 
tumors have limited copy-number alterations unlike the chromosomal instability phenotype. The 
MSI colorectal tumors, were diluted in silico to determine a purity- and a fraction unstable 
microsatellites cutoff for the mSINGS algorithm. Applied on the whole set, a purity cutoff of 10% 
and and mSINGS 0.1 fraction of unstable microsatellites demonstrated 100% sensitivity and 
99% specificity.  
 
Mosaic copy number alterations in blood DNA (smaller effect than consistent with ±1 copy per 
cell) were considered indications of clonal hematopoiesis. Additional small variants indicating 
clonal hematopoiesis were identified with VarDict, using patient blood samples with a merged 
file of all healthy donor blood samples as a control, and annotated with VEP. They were 
validated in matched cfDNA with VarDict (patient cfDNA with unmatched healthy donor as 
control). Known hotspot mutations were not filtered further. Other variants supported by ≥6 
reads and an allele ratio of 2-25%, with effect on coding sequence, without indication of being 
SNPs or mapping errors (manual curation) were considered indicative of clonal hematopoiesis. 
 
Results 
 
Liquid biopsy profiling of metastatic prostate cancer. Comprehensive cell-free DNA 
(cfDNA) profiling was performed on 217 mPC patients (Table 1). Single nucleotide variants, 
copy-number alterations (CNAs) and genomic structural rearrangements were interrogated 
using a combination of in-solution hybridization capture-based and low-pass whole genome 
sequencing. An evolution of capture designs was applied as the project progressed, from a pan-
cancer to a prostate-specific approach to cost-efficiently maximize the information content 
(Supplementary table 1). The comprehensive designs were aimed at progression samples with 
high tumor burden whereas the smaller designs were tailored for cost-efficient deep 
sequencing. However, to increase the sensitivity to detect e.g. intronic structural variation in AR, 
the majority of samples were processed with both a comprehensive- and a smaller design 
(Supplementary table 2). The data was subsequently merged before variant calling. The 
average coverage, taking merging into account, was 814x (interquartile range: 251 - 965) for 
cfDNA, and 445x (interquartile range: 371 - 533) for germline DNA. Data from all samples is 
presented here, where the number of relevant samples is described for each section. In total 
364 plasma samples from 217 mPC patients were profiled. Circulating tumor cell (CTC) 
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enumeration using the CellSearch platform was performed from synchronous blood draws on 
340 of the 364 plasma samples.  
 

 
Table 1 
Clinical characteristics describing the study participants. 
 

n %
Patients 211* 100%

Age	at	first	sampling	yr,	mean	±	SD 73.0	±	8.91

Tumor	stage	at	diagnosis
T1/2 44 20,9%
T3/4 50 23,7%
M1 74 35,1%
node-positive 15 7,1%
Not	specified 28 13,3%

Gleason	score	at	diagnosis
≤	7 72 34,1%
8	-	10	 108 51,2%
Not	specified 31 14,7%

Primary	treatment
ADT	(±	RT/CT) 125 59,2%
Radical	Px	(±	RT) 61 28,9%
Radical	Px	+	ADT 7 3,3%
Other 18 8,5%

Metastatic	burden	at	first	sampling
LN	only 31 14,7%
Bone	only 73 34,6%
Bone	and	LN 61 28,9%
Visceral	and	bone	and/or	LN 34 16,1%
Not	specified	 12 5,7%

Stage	at	first	sampling	(all	patients,	n	=	217)
mHNPC 23 10,6%
mHSPC1 6 2,8%
mCRPC 188 86,6%

*	Six	individuals	declined	access	to	medical	records
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Circulating tumor DNA fraction correlation to line of therapy. Circulating tumor DNA was 
detected in the majority of baseline samples (85.9%). However, the fraction of ctDNA in the 
cfDNA determines the sensitivity to detect somatic variation. We therefore investigated if tumor 
burden correlated to blood draw timing and line of therapy (Figure 1, Supplementary table 3). 
The ctDNA fractions were significantly lower, comparing baseline and follow-up samples for 
mHNPC and first line mCRPC. The differences were not statistically significant at later lines of 
therapy. The CTC counts were correlated to the ctDNA fraction estimate (rho = 0.7, p < 0.0001) 
(Supplementary figure 3), and mimicked the ctDNA pattern in relation line of therapy (Figure 1). 
In addition, comparing baseline ctDNA fractions at different lines of therapy, a significant 
increase was only present between first to second line mCRPC and third to fourth line mCRPC 
(Supplementary figure 4).  
 

 
Figure 1 - Tumor burden at different lines of therapy. A) Violin plot of the circulating tumor 
DNA fraction partitioned according to line of therapy. Black horizontal lines within the violin plots 
denotes the median circulating tumor DNA fraction. Blue points represent the circulating tumor 
DNA fraction in individual blood samples. A one-sided Wilcoxon rank sum test was applied to 
investigate if the baseline samples had higher tumor burden than the follow-up samples. Y-axis: 
Circulating tumor DNA fraction. X-axis: Line of therapy. B) as A) but for circulating tumor cell 
counts per 7.5 ml of blood. Y-axis: log10 transformed circulating tumor cell counts. 
Abbreviations: mHNPC[number], metastatic hormone naive prostate cancer and line of therapy; 
mHSPC[number], metastatic hormone sensitive prostate cancer and line of therapy; 
mCRPC[number], metastatic castrate resistant prostate cancer and line of therapy; _B, 
baseline; _F, follow-up; Nbr, number of samples profiled in each category.  
 
Detection of microsatellite instability from cell-free DNA. Microsatellites were targeted and 
sequenced to enable MSI-phenotype detection directly from cfDNA (Supplementary table 1). 
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Using an in-house cohort of colorectal samples (Supplementary figure 5), in-silico dilution with 
germline DNA demonstrated 100% sensitivity and 99% specificity to detect MSI at 10% tumor 
purity with the mSINGS algorithm [53]. Applying mSINGS on ≥10% ctDNA fraction samples 
identified four cases with MSI out of 105 investigated (Figure 2). The proportion of MSI-positive 
cases detected from ctDNA is concordant with a previous study, performing whole-exome 
sequencing on metastatic tissue (Fisher's exact test: p = 0.721) [7].  
 

 
Figure 2 - Detection of microsatellite instability from cell-free DNA. Microsatellite unstable 
tumors were identified by plotting the number of mutations (y-axis, including intronic and 
synonymous variants) versus the fraction of unstable microsatellite loci (x-axis). Indels and 
single nucleotide variants are kept separate for each sample, colored according to the right 
legend. Note, although individual P−KLIN014, sample 20170058 demonstrated >0.1 fraction 
unstable microsatellite loci, it was classified as microsatellite stable. The sample had high 
circulating tumor DNA fraction (0.8), lacked increase in mutational burden and displayed 
massive copy-number alterations, indicative of a chromosomal instability phenotype. 
 
Intronic sequencing of key tumor suppressors and biallelic inactivation. Prostate cancer is 
mainly driven by CNAs, commonly generated through chained structural rearrangements. 
Chained events cause the majority of TMPRSS2-ERG gene fusions [54], also observed in our 
data (Figure 3, Supplementary figure 6). To investigate the impact of structural rearrangements 
capture probes were designed towards the non-repetitive intronic and exonic regions of PTEN, 
RB1 and TP53 in the prostate specific comprehensive design (CP design, Supplementary table 
1 and 4, Supplementary figure 7). Structural rearrangements, mutations and copy-number 
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alterations were investigated in 165 cfDNA samples from 135 study participants profiled with the 
CP design that passed the internal quality control for structural variant calling (Methods). 
Seventy-one samples (71/165, 43.0%) from 59 men (59/135, 43.7%) had a ctDNA fraction ≥0.2, 
where all classes of somatic variation were detectable. Biallelic inactivation, through clonal high-
impact variation, occurred in 47.5% (28/59), 20.3% (12/59) and 44.1% (26/59) of patients in 
PTEN, RB1 and TP53, respectively. After excluding the MSI samples (carrying high-impact 
passenger mutations in multiple genes), all samples with a clonal high-impact variant also 
harbored a second event with only one exception: two samples were profiled for patient P-
00030277 and both revealed a 392 kb deletion encompassing exon 9-10 of TP53 without any 
observable second hit.  
 

 
Figure 3 - Exonic and intronic profiling of circulating tumor DNA. The non-repetitive 
sequence was captured for the entire gene body of TP53, PTEN and RB1. The samples with 
TMPRSS2-ERG gene fusions or structural rearrangements in TMPRSS2 or ERG separately are 
also shown here. The upper panel displays the circulating tumor DNA fraction. The dashed lines 
at 0.02, 0.10 and 0.20 denotes the cutoff to detect point mutations, loss of heterozygosity and 
homozygous deletions, respectively. Bottom panel, heatmap of the mutational landscape 
detected from circulating tumor DNA profiling. Type of alteration is coded according to the 
bottom legend. For visualization purposes, maximally two mutations or structural variants are 
displayed per patient. Triangles and boxes represents single nucleotide variants and indels. 
Subclonal mutations are defined as having an allele frequency < 1/4 of the ctDNA fraction. The 
same definition was applied to structural variants after median allele allele frequency adjustment 
versus the mutations (Methods). Synonymous point mutations are not displayed here. Variants 
of unknown significance are non-synonymous single nucleotide variants outside hotspots, not 
annotated as pathogenic from variant databases. Structural variants of unknown significance 
are e.g. confined to a single intron, without affecting neighbouring exons. X-axis: Cell-free DNA 
samples sorted according to the circulating tumor DNA fraction. Patients with multiple samples 
are colored in blue. *samples with microsatellite instability. Samples described in the main text 
are connected with lines. 
 
Clonal dynamics during treatment. Subclonal high-impact variation was detected in multiple 
patients. Both samples of P-GZA006 revealed subclonal TP53 mutation accompanied by 
subclonal deletion. Before start of abiraterone therapy, sample 20160759 of patient P-GZA4777 
carried two subclonal TP53 mutations (hotspot and frameshift), a subclonal translocation in 
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PTEN and a weak AR amplification (Supplementary figure 8A). At progression (sample 
20160890), the hotspot TP53 variant, PTEN translocation and the AR amplification were 
undetectable. However, the TP53 frameshift increased in allele fraction and a new structural 
deletion in TP53 was found, in line with TP53 loss being associated with rapid progression [55]. 
P-KLIN003 also experienced change in clonal composition during abiraterone therapy 
(Supplementary figure 8B). At baseline, two TP53 mutations were detected. After therapy, the 
two displayed different behaviour, decreasing and increasing in allele fraction. The progressing 
clone also presented with TP53 loss of heterozygosity (LOH) and multiple structural variants in 
AR. Patient P−00039325 had high ctDNA fraction despite being on androgen deprivation 
therapy for three weeks. Following docetaxel treatment, P−00039325 progressed after 215 days 
with a translocation in BRCA2 and concomitant LOH (Supplementary figure 8C). In addition, an 
AR amplification and intra-AR structural variation were detected.  
 
Continuous evolution of somatic variation in the androgen receptor. Comprehensive 
profiling of AR, including intronic sequencing, was performed in 275 mCRPC plasma samples 
from 177 individuals (Figure 4A). In total 45.8% (126/275) of the samples and 50.3% (89/177) of 
the patients harbored one or more variant in AR (high-impact mutation, structural variant or 
amplification) in at least one cfDNA sample (Supplementary table 4). Intra-AR structural 
variation was closely correlated to amplification and only 3/51 patients (P-GZA4045, P-
GZA4120, P-U001) carried intra-AR structural variation without an accompanying amplification. 
Structural variation was detected in another three patient samples without amplification (P-
AZSJ022, P-KLIN002, P-UZA002), but weak amplifications were found in other samples from 
the same individuals, taken at other occasions. The fraction of patients with structural variation 
in AR correlated to line of therapy, ranging from 15.4% during first line mCRPC therapy to 
45.2% in fourth line. Overall, the percentage of individuals with any alteration in AR increased 
from 37.4% in first line to 76.9 % in fourth line, indicating a continuous evolution of AR during 
the course of the disease (Figure 4B).  
 

 
Figure 4 - Androgen receptor alterations. A) The upper panel displays the circulating tumor 
DNA fraction. The dashed lines at 0.02, 0.10 and 0.20 denotes the cutoff to detect point 
mutations, loss of heterozygosity and homozygous deletions, respectively. Bottom panel, 
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heatmap of the mutational landscape detected in the androgen receptor from circulating tumor 
DNA profiling. Type of alteration is coded according to the bottom legend. For visualization 
purposes, only samples with an alteration are shown here. Maximally two mutations or structural 
variants are displayed per sample. X-axis: Cell-free DNA samples sorted according to the 
number of alterations detected. Patients with multiple samples are colored in blue. *samples 
with microsatellite instability. B) The fraction of patients with alterations in the androgen receptor 
is categorized by type of alteration and line of therapy. Only high-impact mutations, e.g. hotspot 
mutations are accounted for here. Intra-AR structural variation is colored according to the 
legend in A) The rightmost bar plot represents the fraction of patients with alteration in the 
androgen receptor taking any type of variation into account. Abbreviations: mCRPC[number], 
metastatic castrate resistant prostate cancer an line of therapy; _B, baseline; Nbr, number of 
samples profiled.  
 
Alterations in DNA repair deficiency genes. Genes associated with DNA-repair deficiency 
and commonly mutated in prostate cancer were targeted for mutations and deletions 
(Supplementary table 1). Accompanying sequencing of germline DNA revealed high-impact 
variants in 8.92% (ATM, BRCA1, BRCA2 and CHEK2), similar to recent reports [56–58]. 
However, only 2/213 (excluding four germline DNA samples that failed processing) carried 
pathogenic BRCA2 mutations, significantly less than Pritchard et al [57] and Mandleker et al [58] 
(Fisher's exact test: p = 0.00328, p = 0.000735, respectively). Both reported multiple 
occurrences of Ashkenazi Jewish founder mutations such as the BRCA2 p.Ser1982Argfs*22, 
not observed in this report, suggesting a difference in the underlying population demographics 
(Supplementary table 5). Excluding MSI positive cases and focusing on somatic clonal high 
impact variants, homozygous deletions or germline variants in DNA-repair genes, 18 (8.29%) 
individuals had biallelic inactivation whereas 39 (18.0%) had one detectable alteration (Figure 5, 
Supplementary table 4). Note, however that the intronic regions were not targeted in the current 
version of these capture designs rendering structural variation undetectable, except close to 
exons or baits designed for CNA purposes.  
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Figure 5 - Alterations in genes associated with DNA repair deficiency. The upper panel 
displays the circulating tumor DNA fraction. The dashed lines at 0.02, 0.10 and 0.20 denotes the 
cutoff to detect point mutations, loss of heterozygosity and homozygous deletions, respectively. 
Bottom panel, heatmap of the mutational landscape detected from circulating tumor DNA 
profiling. Type of alteration is coded according to the bottom legend. For visualization purposes, 
maximally two mutations or structural variants are displayed per patient. Triangles and boxes 
represents single nucleotide variants and indels. Subclonal mutations are defined as having an 
allele frequency < 1/4 of the ctDNA fraction. The same definition was applied to structural 
variants after median allele allele frequency adjustment versus the mutations (Methods). The 
BRCA2 structural variant of patient P−00039325, sample 3167424 was classified as borderline 
subclonal although relevant in the progressing clone after chemohormonal treatment 
(Supplementary figure 6C). Synonymous point mutations are not displayed here. Variants of 
unknown significance are non-synonymous single nucleotide variants outside hotspots, not 
annotated as pathogenic from variant databases. Structural variants of unknown significance 
are e.g. confined to a single intron, without affecting neighbouring exons. X-axis: Cell-free DNA 
samples sorted according to the number of alterations detected in each gene in alphabetical 
order. Patients with multiple samples are colored in blue. * samples with microsatellite 
instability.  
 
Clonal hematopoiesis causes false positive findings. Aberrant blood cell populations [37–
40] have the potential to confound ctDNA mutational profiles when performed without matched 
blood DNA as a control. To assess the potential impact and prevalence of genetically aberrant 
blood cell expansions in our cohort, we investigated copy number and mutational data for 
indications of aberrations present in both cfDNA and WBC DNA. We observed, in separate 
patients, four cases of large arm-level copy number alteration (chr 11,13 and 20) in white blood 
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cells with coverage ratio and SNP allele ratio suggesting a cellularity between 40-65%, and a 
focal CCND1 amplification with coverage ratio 1.57, similarly detected in the cfDNA. Putative 
somatic point mutations were interrogated in white blood cell DNA using pooled healthy donor 
DNA as control and excluding variants exceeding 25% allele ratio, outside hotspots, as likely 
germline. Thirty seven protein altering variants were observed in another 29 patients and could 
be validated in patient-matched cfDNA, including hotspot mutations in AKT1, BRAF, CTNNB1, 
DNMT3A, NRAS, SF3B1 and TP53 (Figure 6). In summary, 40 false positive variants in 31 
patients (14.6%) would have been included in ctDNA mutational profiles if matched white blood 
cells had not also been sequenced.  
 

 
Figure 6 - Clonal hematopoiesis. Somatic point mutations detected in germline DNA extracted 
from white blood cells and validated in cell-free DNA. For each point mutation, the amino acid 
position and total number of amino acids are given. Patients with multiple mutations are labeled 
with patient ID. X-axis; Variant allele frequency. Y-axis; individual point mutations sorted 
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according to allele frequency in white blood cells and individual. The inset legend explains the 
type and the source of each variant. 
 
Discussion 
 
Genomics-guided therapy selection is arguably the most promising avenue to remedy trial-and-
error treatment decisions and the accelerating costs of drugs [21]. However, the utility of tumor 
profiling is currently limited in mPC due to the lack of validated predictive biomarkers. Liquid 
biopsies have the potential to act as a tissue substitute and cost-efficiently accelerate trials 
designed to identify predictive biomarkers. Therefore, we set out to comprehensively profile 
cfDNA samples in mPC, encompassing mHNPC to mCRPC, to gain knowledge relevant for 
applying ctDNA in a clinical trial context. Our key findings are: 1) ctDNA fractions increased 
gradually from first- to fourth line of therapy. Baseline samples had higher ctDNA fraction 
compared to follow-up samples, but the difference became non-significant after the second line 
of mCRPC therapy; 2) biallelic inactivation of key tumor suppressors always occurred in high 
tumor burden samples, with only one exception, providing a rationale for low ctDNA fraction 
samples with poor sensitivity to detect the second hit; 3) clonal high-impact structural variation is 
twice as common as point mutations, which challenges the traditional focus on coding regions; 
4) the three potentially predictive biomarkers in mPC, microsatellite instability, mutations in 
genes associated with DNA-repair deficiency and AR aberrations were detected at expected 
rates; 5) clonal hematopoiesis occurs frequently, demanding synchronous WBC profiling to 
avoid false positive genotyping.  
 
Due to the genomic diversity of metastatic cancer, resistance will always arise to single agent 
therapies where the duration of response is correlated to the number of cancer cells in a patient 
[59]. Towards end stage disease, progression will occur more rapidly, regardless of therapy, 
with the exception of extreme responders to immunomodulators [14]. Molecular biomarker-
driven clinical trials are commonly targeting patients where no approved treatment options 
remain, although primary outcomes may be hard to achieve if disease burden is too high [60]. 
Paradoxically, we find that liquid biopsies carry more information towards end stage disease, 
and are currently of limited value in a significant fraction of patients starting first- and second 
line mCRPC therapy due to low tumor burden (Figure 1). A potential solution may be a 
complementary approach using CTCs to gain insight into ploidy and CNA and ctDNA for 
mutations and structural rearrangements. However, there are some limitations: we show that 
CTC counts correlate with ctDNA fraction (Supplementary figure 1), and patients with low ctDNA 
fraction starting first- and second line mCRPC therapy, with few exceptions, have low CTC 
counts (Supplementary figure 9); previous work demonstrate poor success rate (~10 %) in 
obtaining high-quality CTC sequencing data from isolated cells [61,62] necessitating multiple 10 
ml blood tubes for CTC analysis in first- and second line patients. However, recent 
improvements in harvesting metastatic tissue [29] may provide a fall-back if ctDNA profiling fail 
to identify any relevant biomarkers. As the success-rate of harvesting high-quality metastatic 
tissue is also correlated to tumor burden [26,27], prospective validation is needed to establish 
the most feasible approach.  
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/319855doi: bioRxiv preprint 

https://doi.org/10.1101/319855
http://creativecommons.org/licenses/by-nc-nd/4.0/


The inherent challenges to complement ctDNA profiling inspired us to investigate the necessity 
of a second hit to infer tumor suppressor deficiency. By deep sequencing of all non-repetitive 
intronic and exonic regions in TP53, PTEN and RB1 in high ctDNA fraction samples, we 
investigated if the detection of one clonal high-impact variant is adequate to infer biallelic 
inactivation. Out of 71 samples in 59 men with ≥0.2 ctDNA fraction, 47.5%, 20.3% and 44.1% 
harbored biallelic inactivation of PTEN, RB1 and TP53, respectively (Figure 3). Only one patient 
carried a clonal high impact variant, a deletion in TP53, without a detectable event on the other 
allele. These data are encouraging as a large fraction of TP53 was not possible to sequence 
due to repetitive DNA (Supplementary figure 7). The observation is consistent with exome 
sequencing of 150 mCRPC tissues which revealed that biallelic inactivation always occured if 
one high-impact event was observed in a key tumor suppressor such as PTEN or RB1 [7]. 
Interestingly, residual break-points remained in 5/17 samples with a homozygous deletion in 
PTEN, which is detectable, even when tumor burden is low.  
 
Two commercial alternatives for ctDNA-based profiling were recently compared with surprisingly 
low concordance [63]. The lack of accompanying white blood cell germline profiling makes it 
hard to separate germline variation from somatic [64] and impossible to distinguish clonal 
hematopoiesis [37–40] from ctDNA. In our study, 14.6% of patients harbored clonal expansions 
in the WBC compartment. However, the majority of men with mCRPC probably suffer from 
clonal hematopoiesis as the targeted sequencing applied here only covered 60 out of 327 driver 
mutations associated with clonal expansions in the blood [38]. Taken together with our findings, 
we strongly discourage the use of commercial assays that only analyse cfDNA from plasma.  
 
We demonstrate that ctDNA can be applied to comprehensively profile AR and identify 
alterations in genes associated with DNA repair deficiency. Although these two biomarkers are 
considered promising for clinical decision making, recent data question the association between 
DNA-repair germline variants and response to PARP inhibitors [65] and the independent 
association between AR amplifications and response to abiraterone and enzalutamide treatment 
in mCRPC [55]. In the light of the controversy over AR-V7 [24], the only possible conclusion is 
the urgent need for efficient biomarker-driven clinical trials to identify in detail which patients 
may benefit from each therapy option.  
 
We present two major novel findings: firstly, we show that the MSI phenotype may be detected 
directly from cell-free DNA. We believe that this novel findings will be impactful for the prostate 
cancer community in the light of the recent approval of pembrolizumab for MSI-positive solid 
tumors [11]. Secondly, we demonstrate that high-impact structural variation is approximately 
twice as common as high-impact point mutations in PTEN and RB1, which questions which 
challenges the traditional focus on coding regions in the context of clinical trials and clinical 
decision making.  
 
Conclusions 
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This study strengthen the accumulating evidence that ctDNA profiling mirrors the somatic 
alteration landscape from metastatic tissue by demonstrating, for the first time, that the MSI 
phenotype may be detected directly from cell-free DNA. However, to enable acceleration of 
clinical trials through ctDNA analysis, intronic sequencing of tumor suppressors in combination 
with synchronous profiling of white blood cells must be applied to prevent inaccurate somatic 
alteration assignment, which in turn, may reduce the power to identify predictive biomarkers.  
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