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On the Biological Signalling, Information and Estimation
Limits of Birth Processes

Kris V Parag

Abstract—Cellular signalling involves networks of small, interacting
molecular populations and requires precise event timing, despite the pres-
ence of noise. The Poisson channel is an important communication model
for such noisy interactions, providing a fundamental link between timing
precision, information transfer and the rate of signalling. Constraints on
this rate limit the Poisson channel capacity, which in turn bounds the
precision with which molecular networks can solve estimation problems.
We investigate these bounds as a function of signalling rate constraints,
for problems in which information about a target molecular species,
to be estimated, is encoded in the birth rate of a signalling species.
Birth-following is a known heuristic encoder that asserts the maximum
signalling rate until every target birth is recorded, then deactivates. Here
we derive birth-following as a minimum time signalling (bang-bang) code,
and prove that it outperforms these precision bounds for general target
birth rate functions over arbitrary signalling network architectures. The
simplest of these networks commonly models the dynamics of long-lived
proteins. Birth-following is therefore an important reference strategy
when the maximum signalling rate is high and the mean rate is no
smaller than that of the target molecule. Discreteness is important in this
regime. We examine the limit of this regime by removing the maximum
signalling constraint. This leads to a Poisson channel with infinite
capacity, which should allow completely precise timing. However, we find
perfect estimation unrealisable unless the mean condition is maintained.
The relationship between estimation and information is therefore not
as simple or intuitive as in analogous problems on Gaussian channels.
Higher Poisson capacities do not always imply better precision and
realisable performance is more dependent on finding suitable encoders
that capitalise on the information structure of the signalling problem
of interest. There is a need for new information-theoretic metrics that
can better account for both the gap between achievable and theoretical
precision, and the idiosyncrasies of the Poisson channel.

I. INTRODUCTION

Cell biology is characterised by the interactions of networks
of small molecular populations. Small populations are intrinsically
noisy, undergoing fluctuations due to the random timing of birth
(synthesis) and death (turnover) reactions. In cellular signalling or
transduction, such populations may represent genetic copy numbers,
messenger protein counts or hormone levels which interact with one
another by modulating or catalysing their rates of reaction [1].
The signals are the stochastically delayed changes in molecular
population size that result from these modulations. A consequence
of this framework is that intracellular signalling is, fundamentally, a
noisy information theoretic problem [2].

Since biochemical networks appear to attenuate, filter, or effec-
tively utilise this noise to reliably communicate [3], a wealth of
research has focussed on demystifying what constitutes effective
signalling and on what sets the limits of cellular network performance
[4] [5] [6] [7] . These examinations have converged to an
understanding that the information capacity of signalling pathways
may hold the desired answers [2]. As a result, many recent
analyses have attempted to compute these capacities using classical
information theoretic measures such as conditional entropy, mutual
information and signal to noise ratio [8] [9] [10]. These works
are predicated on a ‘black box’ Gaussian channel description of
signalling pathways [5] [6]. While many useful insights have
emerged from this approach, the signalling-information-performance
link remains, largely, a mystery [8].
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One reason for this is that Gaussian channels, while easy to work
with, do not properly describe the discrete information carrying struc-
tures within molecular networks. Under Gaussian communication the
received signal is equivalent to the transmitted message corrupted by
additive white noise [11]. The parameter defining channel capacity
is the signal to noise variance ratio, and the received signal is a
continuous waveform [11]. However, in molecular signalling both
the information and noise manifests in the timing of discrete events
[12]. Noise is also not additive.

A key insight of [13] was the realisation that signalling pathways
are actually Poisson channels [14] that convert an input modulating
rate into an output Poisson process with intensity equal to that
input. Limits on the input rate restrict the Poisson information
capacity and hence control the precision of output event timing. The
Poisson channel therefore connects discrete signalling to information.
Molecular interactions can then be modelled as control or estimation
problems under Poisson communication. Using this formulation [13]
showed how Poisson capacity constraints lead to a bound on the
achievable precision in estimation or control [13], hence revealing a
signalling-information-performance relationship.

While these bounds are a significant advance towards properly
treating timing information, they are not perfect. Provided non-
linear signalling is allowed, a heuristic strategy, known as birth-
following, can outperform the bound by exploiting an inherent
diffusion approximation [15] [16]. This result holds under certain
channel constraints and raises three main questions, which form the
motivation and subject matter of this paper.

First, what are optimal yet biologically implementable ways of
encoding information in the timing of events? While many analyses
are concerned with calculating capacities [8], few studies explore
optimal signalling designs. This is surprising because the capacity of
a channel may not be biologically actionable. Effective performance
in usage depends on how well a chosen encoder matches its channel
[11]. We will derive birth-following as the minimum time encoder,
establishing it as a natural and effective signalling protocol.

This stimulates the second question. How general is the violation
of the bound under birth-following? Mismatches suggests that dis-
creteness is sufficiently dominant for continuity approximations to
break down. The more this phenomena is observed the stronger the
case for using sharp, non-linear, discrete event based codes like birth-
following. We will find that the bound remains violable under both
arbitrary signalling networks and generalised target birth rates.

Third, how do channel constraints influence realisable perfor-
mance? The Poisson capacity and hence timing precision is, under
most constraints, a function of the mean and maximum signalling rate
[17] (see Eq. (2)). Birth-following outperforms the bound when the
maximum rate is high. If we let this maximum become unbounded,
the channel capacity becomes infinite. Perfect estimation should then
be possible, since we can transmit infinite information. However, we
find that this is not the case unless a mean signalling condition is also
satisfied. Hence we uproot the belief that higher capacities necessitate
better performance [8].

We investigate these questions in the context of pure birth process
estimation. Our results therefore apply to stable molecules such as
long-lived proteins [1]. We focus on these systems because (i) they
are the elementary components of more complex networks, (ii) they
are still not completely understood, and most importantly (iii) we are
interested in threshold based signalling protocols [18]. Our simple
birth model corresponds to that used in a recent study of threshold
motifs [12].

Many biological systems activate or signal when proteins or
messengers accumulate above some threshold (integrate and fire).
Event timing precision in such systems is directly related to how
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this threshold is exceeded [12]. In neuroscience, where this motif
is extensively studied in an information theoretic framework, it was
recently found that a failure to model discreteness and causality in
event timing can lead to deceiving conclusions [19]. This reflects
the particulate information structure in such systems. We attempt to
uncover this embedded structure by designing causal and discrete
encoders (signalling strategies) in regions of parameter space where
continuity approximations are insufficient.

In this paper Methods recaps Poisson channel, distortion bound
and birth-following theory. The time optimality of birth-following
is proven in Section III-A of the Results. Section III-B, and Sec-
tion III-C explore generalisations of birth-following, proving that it
outperforms precision bounds when the maximum rate is high and
mean rate is no smaller than the target rate. Section III-D examines
how death reactions disrupt the problem information structure. When
the maximum signalling rate is unconstrained the Poisson channel has
infinite capacity. Section III-E and Section III-F find that it is still
not always possible to achieve perfect precision under this condition.
Biological and information theoretic implications of the results are
provided in the Discussion.

II. METHODS

A. Information Theoretic Bounds

We define and adapt the information theoretic (distortion) bound
of [13] for fundamental birth process estimation. Let Zba denote
the integer set {a, a + 1, . . . , b − 1, b} with b > a. Our target
or estimated molecule is X1 and the signalling molecule is Xj ,
j ∈ Z+

2 . The respective populations of these species at time t ≥ 0 are
x1(t) and xj(t). We will usually drop the t index for convenience.
Populations fluctuate randomly in time due to birth, xi → xi + 1
(denoted x+i ) or death, xi → xi − 1 (x−i ), reactions. All Xi follow
Markov birth-death processes (i = {1, j}). We want to causally
estimate x1, given the signalling history xjt0 := {xj(s) : 0 ≤ s ≤ t}.
Information about X1 enters Xj via its birth (signalling) rate, f ,
which is also known as the channel encoder, and has full system
knowledge.

xj
f=f(x1

t
0, xj

t
0
)

−−−−−−−−−→ xj + 1 (1)

The channel decoder is some function that results in an estimate
of x1, x̃1 = g

(
xj
t
0 | f

)
. We measure performance with the mean

squared error (mse), J := E
[
(x1 − g)2

]
and define the minimum

mse (mmse) as J∗ = min{g} J . The mmse is achieved by the optimal
decoder x̂1 = g∗ = E

[
x1 | f, xjt0

]
[20]. However, finding g∗ is

often analytically intractable. We therefore aim to find good f and
g pairs (a codec). For convenience we will often drop the explicit
dependence of g or g∗ on f .

The constraints on the encoder f determine the form of the capacity
of the Poisson channel mediating the information flow between X1

and Xj . We constrain f so that E[f ] ≤ 〈f〉 and max(f) ≤ fmax.
This leads to the mean-maximum capacity of Eq. (2) [14].

C = 〈f〉 log
(
〈f〉−1 fmax

)
(2)

We can relax the maximum constraint to the norm condition
E [fp]

1
p ≤ fmax for p ∈ Z∞1 . In these cases the capacity is

Cp = p
p−1

C [17]. We only focus on feedforward information flow
in this work. However, even if causal feedback was included so that
x1 also modulates xj , the capacity remains unchanged [17]. These
points suggest a fundamental link between timing precision (high
fidelity Poisson transmissions) and the mean-maximum properties of
the signalling rate.

A major result of [13], was the realisation that this finite capacity
implies a lower bound, D, on the achievable mmse distortion (an
upper bound on performance). D is derived by approximating the
dynamics of X1 with a suitable diffusion process. If X1 is subject to
the reactions x1

u−→ x1 + 1, x1
k1x1−−−→ x1 − 1 then Eq. (3) gives the

appropriate diffusion equation with w as a standard Wiener process.
The bound then follows from Eq. (4) [13] [15], with J as the mse
under any encoder and k1 〈x1〉 = 〈u〉 due to equilibrium.

dx1 = (u− k1x1) dt+
√

2k1 〈x1〉 dw (3)

D = 〈u〉 (C + k1)−1 ≤ J∗ ≤ J (4)

This bound holds for all non-linear encoders and is actually a
conservative lower limit on the mmse. Tighter bounds do exist under
the constraint of linear encoding, but these are likely invoilable and so
not treated here [13]. In this work we will modify and adapt Eq. (3)
and Eq. (4) to derive performance bounds for various signalling-
estimation problems.

B. Birth-Following Estimation

Birth-following encoding was presented in [15] [16] and shown
to achieve J∗ < D, under certain constraint conditions, for several
estimation problems. Here we condense the main results of those
papers into a theorem for birth processes. Consider the simplest non-
trivial reaction scheme in which there are no deaths, u is a constant,
and x1

u−→ x1 + 1 with j = 2 in equation 1. Then X1 ∼ Po(ut)
(Poisson distribution) while X2 admits a Cox process [21] [22].
This reaction set is an elementary motif for more complex signalling
networks. The diffusion approximation for this birth-process is given
in Eq. (5), by simplifying Eq. (3).

dx1 = u dt+
√
u dw (5)

To solve the estimation problem we need to design f . Piecewise
continuous processes which switch between 0 and fmax achieve Pois-
son channel capacity [23]. The memoryless birth-following encoder
[15], inspired by this, signals the most natural aspect of a birth
process. This encoder uses only the difference in the current values
of the populations so that f = f(x1−x2). Letting e = x1−x2 then

e
u−→ e + 1 and e

f=f(e)−−−−→ e − 1. Birth-following is then defined as
in Eq. (6) with 1(a) = 1 when a is true and 0 otherwise.

f(e) := fmax1 (e > 0) (6)

Under this encoder our estimation problem conforms to an M |M |1
queue with e as the number of customers, and X1 and X2 births
representing arrivals and departures [15] [24]. The M |M |1 forces
〈f〉 = E[u] = u so that the queue utilisation, ρ = u

fmax
= 〈f〉

fmax
< 1.

This equality allows us to simplify the bound of Eq. (4) into Eq. (7).

C = −u log ρ =⇒ D = (−2 log ρ)−1 (7)

We define the performance ratio ψ := J
D

with ψ∗ obtained when J∗

is used. The main theorem follows.

Theorem 1. The birth-following encoder and the memoryless de-
coder x̂1 = x2 + E [e] form an asymptotically optimal codec for
simple birth processes. It achieves ψ∗ < 1 in the small ρ regime due
to the factor −ρ log ρ.

We will outline some central elements of the proofs given
in [15] [16]. The optimal causal decoder for this prob-
lem is g∗ = E

[
x1 |x2t0

]
and it achieves the mmse, J∗ =

E
[
(x1 − g∗)2

]
. [20]. Expanding and substituting for e we get J∗ =

E
[(
e− E

[
e |x2t0

])2]. By Burke’s theorem [25] E
[
e |x2t0

]
= E[e].
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Using the fact that P(e = k) = (1 − ρ)ρk, k ∈ Z+
0 [24], we get

Eq. (8).

J∗ = var(e) = ρ(1− ρ)−2 (8)

The by-product of these computations is that the optimal decoder
is g∗ = x2 + E[e] = x̂1. The proof that birth-following is an
asymptotically optimal encoding is from [16] and shows that as
ρ → 0, J∗ converges to the true distortion measure of the Poisson
channel [26].

Combining Eq. (7) and Eq. (8) gives Eq. (9). The limρ→0 ψ = 0
because limρ→0−ρ log ρ = 0. There exists a ρ = a such that ψ∗ <
1. We can show that ∂ψ

∂(−ρ) < 0, for all ρ ≤ a, so that ψ∗ < 1 over
this regime.

ψ∗ =
2

(1− ρ)2

[
ρ log

1

ρ

]
(9)

Numerically we find a ≈ 0.199. Interestingly both D and J∗ become
unbounded as ρ → 1, suggesting a limited channel stability. This
completes the outline for the main theorem. This line of reasoning
will feature in many of the estimation problems solved in this text.
We will find that −ρ log ρ is the key term that allows birth-following
to quite generally outperform the bound.

III. RESULTS

A. Minimum Time Encoding

In [16] birth-following is was proven as an asymptotically optimal
Poisson channel encoder. As ρ → 0 there is no better way of
embedding information about x1 in x2. While this suggests that
birth-following could be an important signalling scheme, it does not
elucidate how it links to the timing problems likely to be faced by
biological systems [12]. Here, by examining a class of stochastic
optimal control problems, we establish how and why birth-following
is a meaningful encoding paradigm, even outside the low ρ region.

We start with some encoder, f = f(x1
t
0, x2

t
0), that has full

knowledge of the history of both target and signalling molecules.
Let f be constrained so that fmin ≤ f ≤ fmax with E[f ] = 〈f〉.
We make the biologically reasonable assumption that f can only
change at event times of x1 or x2. This makes sense as (i) inter-
event decisions would necessitate knowledge of a deterministic clock
and (ii) as stated in [27], even with full knowledge we cannot
predict exactly when the next jump in either process will occur. This
assumption, together with the Markov nature of x1 and x2 converts
our design problem to a continuous time Markov decision process
[28].

This allows us to work in e = x1 − x2. Our decision problem is
to define f(e). Since we cannot predict event times (i) e ∈ Z∞0
and (ii) there is no point in acting when e = 0 so f(0) = 0
and fmin = 0. This means e follows a birth-death process. Markov
decision processes admit an estimation-control duality [29]. We can
therefore think of our estimation problem as the control of the random
walk of e along its states. Our design goal is to force e to 0 as quickly
as possible. This is a minimum time problem that is equivalent to
controlling the service rate of a queue to minimise congestion [27]
[28]. We assume that the service rate is chosen from a discrete set
that comprises [0, fmax], without loss of generality.

The control law or decision policy f is therefore a mapping from
the queue length to the discretised service rate. Framing our encoder
design problem in this way allows us to capitalise on the body of
stochastic optimal control and queueing theory. We adapt and scale

results from [27], which establishes that there exists an optimal
policy, f that solves Eq. (10) for 0 ≤ t ≤ T .

f∗t = arg inf E{f}
[∫ T

0

φ(t, ft, et−) dt+ Φ (eT−)

]
(10)

Here t− means infinitesimally before time t, φ is a cost on the queue
length and Φ is a terminal cost. We use the t subscript to make time
dependence explicit. It is known that if φ = af+e, so that it linearly
depends on the queue length and the service rate, and Φ = 0, then
the bang-bang controller of Eq. (11) results [27].

f∗t = fmax1(et− > 0), for t ∈ [0, T − a] (11)

In our estimation problem, a is vanishingly small (we have no service
rate costs) and the mse is a non-decreasing function of e so that
minimising a linear cost means we achieve the mmse for a fixed T .
As a result Eq. (11) implies birth-following.

We can also consider an average, generalised cost function so that
f∗ minimises limT→∞

1
T
E
∫ T
0
φ(et)+r(f(et)) dt with φ as a queue

cost and r a service rate charge. As long as φ(e) is non-decreasing
and convex in e with φ(0) = 0 and

∑∞
i=0 φ(i)ρi < ∞ then the

optimal choice of f increases with queue size. This result from [30]
and [28] is called a monotone optimal policy. Our mse problem
satisfies φ and we have r = 0. The lack of service cost means we
can simply choose fmax when e = 1. Monotone optimality requires
that fmax also be chosen for e > 1. Combining these leads to birth-
following once more as the optimal policy. We know from M |M |1
theory that this policy also satisfies our mean constraint. Note that
none of these results depend on ρ other than requiring a stable queue.

Interestingly, this monotone optimal argument also holds for com-
plex networks of queues [31]. Here if we again apply the zero service
rate cost and notate the total queue length cost φ =

∑
j φj where

φj is the length in the j th queue then we can argue that a network
involving birth-following encoders (bang-bang controllers) is optimal
[32]. Since this network will consist of purely M |M |1 queues then
it is a Jackson network [24]. In Jackson networks queues can be
treated independently and in isolation. This observation, together with
the fact that optimal results for Jackson networks also tend to hold
for more arbitrary distributions [33], motivates the investigations of
Section III-B and Section III-C.

Thus, birth-following is an optimal bang-bang rate controller. There
is a known correspondence between minimum time problems and
bang-bang solutions. In [34] the problem of optimally controlling
the rate of a point process to maximise the probability of obtaining
N events in time T is studied. Using the cost function of Eq. (10),
[34] finds that the minimum time solution is in fact bang-bang over
[0, fmax]. When we adapt this result we find that birth-following is
the minimum time encoder. Eq. (6) is therefore the quickest way
of getting x2 to achieve some x1 threshold, at any ratio of u to
fmax. As a result, birth-following could be an important feedforward
modulation scheme for achieving fast and precise event timing in
cellular transduction, especially when signals depend on thresholds
[12].

B. General Birth-Following

We show that the birth-following solution of theorem 1 is not just
a special result for constant rate birth processes. Two generalisations
are developed here. First we let the birth rate of X1 be an arbitrary
time varying function, λ(t), constrained so that u

ε
≤ λ ≤ u, with

ε > 1. X1 follows an inhomogeneous Poisson process with bounded
rate. We let ρ = u

fmax
and fix a Poisson channel with constraints as

〈f〉 ≤ u and max f ≤ fmax.
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Let Y0 be a hypothetical species with constant birth rate u and
population y0. Then x1 is a Bernoulli thinning of y0 by independently
accepting each Y0 event as a new customer in the X1 − X2 queue
with probability λ(t)

u
[35]. This means that the true e ≤ e0 where

e0 = x1 − y0, and so J∗ ≤ J∗0 = var(e0) = ρ (1− ρ)−2 (see
theorem 1). J∗ is the unknown mmse for the X1 −X2 queue.

We also define a homogeneous Poisson process, Y1, with rate u
ε

.
Its diffusion approximation is simply a scaled version of Eq. (5). The
resulting bound, D1 = (−2ε log ρ)−1. If the unknown bound for X1

is D then D ≥ D1. This follows as X1 has both a larger mean and
variance, and so would be more difficult to estimate on the same fixed
capacity channel. These bound relations also tie into data processing
inequalities for thinned Poisson processes [36].

The performance ratio for the X1 − X2 system is ψ∗ = J∗

D
≤

J0
D1

= 2ε
(1−ρ)2

[
ρ log 1

ρ

]
. The −ρ log ρ factor means that ψ∗ < 1

exists and so birth-following outperforms the bound under finite,
arbitrary, time-varying birth rates. We can also obtain these results
by taking piecewise constant approximations of λ(t) and applying
previous M |M |1 arguments.

In our second generalisation we allow X1 to have some generalised
birth distribution, with mean rate u. Births must still be independent
and identically distributed but we no longer have the Poisson process
restriction that forces a mean to variance ratio of 1. Applying birth-
following leads to e = x1−x2 representing the number of customers
in a G|M |1 queue. The G|M |1 mmse is unknown so we use the
mse, J = E

[
e2
]

=
∑∞
k=0 k

2P(e = k). It is known that P(e =
k) = ρ(1 − σ)σk−1 [24], with 0 ≤ σ < 1 derived from the chosen
generalised arrival distribution. This gives J = ρ(1 + σ)(1− σ)−2.
At σ = ρ we recover the M |M |1.

The channel constraints are unchanged so D is from Eq. (7).
The gives ψ = J

D
≥ ψ∗ as shown in Eq. (12). Enumerating

over σ characterises the birth-following performance of all possible
generalised distributions.

ψ =
2(1 + σ)

(1− σ)2

[
ρ log

1

ρ

]
(12)

The −ρ log ρ factor appears and so ψ∗ < 1 is achievable in some
region of low ρ (theorem 1). This results as every possible arrival
distribution has σ < 1. Birth-following is therefore a fundamental
encoder for many different birth processes. This even includes the
deterministic birth process in which x1 increments every 1

u
time units.

In this case we get a D|M |1 queue [24].

C. Arbitrary Signalling Networks

Having established birth-following as a high performing encoder
under arbitrary X1 synthesis rates, we now generalise the molecular
network that is estimating x1. This allows us to model complex
signalling pathways. Information about X1 is transferred across some
molecular cascade involving n− 1 hidden species, [X2, . . . , Xn] in
some configuration. We only observe the final output of the network,
xn+1 which is the population of our signalling species Xn+1.

Each Xj for j ∈ Zn+1
2 observes its input using birth-following. An

M |M |1 queueing network results. We allow each encoder to have
its own constraints so that each queue has a different utilisation. We
only consider feedforward networks so that the signalling architecture
is composed of splits and joins. The feedforward assumption is not
uncommon for intracellular signalling analyses [12]. Burke’s theorem
states that the output process of any M |M |1 queue is Poisson with
rate equal to its input process [25]. This implies that xn+1 must
have rate u, by the principle of local balance [37].

A network involving four intermediate species is given in Fig. 1 to
illustrate the types of signalling architectures possible. This network

e1

e2

e3 e4

e5
x1 x6

(1− p)x2

px2 px4 px5

(1− p)x3

Fig. 1: Example signalling network. Information about the target
population, x1, is indirectly transferred to the observed population
x6 by four intermediates. The network splits x2 (p-thinning) and
then joins the branches as an input to the final queue (superposition).
Birth-following is applied throughout so each queue is M |M |1.

has five queues with a mix of parallel and serial connections. The
j th queue has length ej and utilisation ρj < 1. The splitting process
on the output of the e1 queue is a random Poisson thinning with
probability p. The joining process that serves as the input to the e5
queue is a Poisson superposition [24]. All molecules conform to
homogeneous Poisson descriptions by Burke’s theorem [25].

We first derive an appropriate information theoretic bound for an
arbitrary network. We can think of our network as a set of effectively
serial links with rate u. For example, Fig. 1 features three: e1, e5 and
an effective link containing the parallel queues. We will always have
at least one truly serial queue due to the xn+1 species. While the
capacity, Cn, of an arbitrary cascade with n queues is unknown for
n > 1 [38], it is no greater than the that of its most restrictive
single, serial Poisson channel [39]. Without loss of generality we
assume that the queue with output xn+1 has the largest utilisation of
the network, ρ. This implies that Cn < C1 = −u log ρ, so Dn >
D1 = (−2 log ρ)−1 (see Eq. (7)).

The j th queue has stationary distribution P(ej = kj) = (1 −
ρj)ρ

kj
j , kj ∈ Z∞0 . We are interested in an effective error between

the target and observed species, e = x1 − xn+1. Solving across
the network we find that in general e =

∑n
j=1 ej . By Jackson’s

theorem [24] the ej are mutually independent and can be treated
in isolation so P(e1 = k1, . . . , en = kn) =

∏n
j=1 P(ej =

kj). The optimal network decoder is g∗ = E
[
x1 |xn+1

t
0

]
[21].

Let the mmse be J∗n = E
[
(x1 − g∗)2

]
. We can expand this

to: E
[(∑n

j=1 ej − E
[∑n

j=1 ej |xn+1
t
0

])2]
. Using a corollary of

Burke’s theorem which states that as ej is independent of future
arrivals in reversed time, it is also independent of past departures in
normal time [25], we get that E

[∑n
j=1 ej |xn+1

t
0

]
= E

[∑n
j=1 ej

]
.

This gives J∗n = var
(∑n

j=1 ej
)

=
∑n
j=1 ρj (1− ρj)−2 <

nρ (1− ρ)−2. This leads to the ψ∗n inequality of Eq. (13).

ψ∗n <
J∗n
D1

<
2n

(1− ρ)2

[
ρ log

1

ρ

]
(13)

Intriguingly, we have recovered a performance ratio that is bounded
by a theorem 1 type expression. Hence for any sized network
the information theoretic bound will be violated by birth-following
codecs at low maximum utilisation ρ. The optimal decoder is g∗ =

xn+1+E
[∑n

j=1 ej
]
. This supports the assertion, from Section III-A,

that birth-following is a meaningful minimum time encoder across
signalling networks.

D. Death Reaction Networks

The pure birth processes we have so far investigated are good
models for the accumulation of stable molecules. We now use a
standard protein production-degradation model [1], x1

u−→ x1 +
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1, x1
µx1−−→ x1 − 1, to examine how deaths alter the information

structure and hence the form of optimal encoders. The chemical
master equation of this model suggests that x1 can be thought of
as the number of customers in an M |M |∞ queue with utilisation
ρ∞ = u

µ
= E[x1] [24]. We want to estimate x1 using only our

signalling molecules.
We use x+1 and x−1 to indicate target births and deaths and construct

the generalised queueing network of Fig. 2. We initially examine
the subset of this network in which only x2 is used. The e2 queue
from Fig. 2 is removed and the e1 output is replaced with the x+2
to x−2 queue on the right of the main diagram. The x−2 reaction is
x2

µx2−−→ x2− 1. We use the same rate constant µ because it leads to
unbiased estimation.

x1

e1

e2

x+
1

x2

x−
1

x3

x2

x+
2

x−
2

x3

x−
3

x+
3

Fig. 2: Birth-death following network. Signalling molecules x2
and x3 observe the target population births, x+1 , and deaths, x−1 ,
respectively. The x1 queue is M |M |∞ with number of customers
equal to the target population size. The e1 and e2 queues are M |M |1
by birth-following. If only x2 is used then a linear death reaction is
added with rate constant µ, resulting in an M |M |∞ queue between
x+2 and x−2 , with x+2 as the output of the e1 queue. The e2 queue is
then removed. An analogous change occurs if only x3 is used with
the e1 queue removed. The x2 and x3 queues in these cases are
shown (disconnected) right.

The signalling molecule death reaction does not alter the bound
[40], so that it follows from Eq. (4). Using our queue relations this

gives D =
(

log 1
ρ1

+ 1
ρ∞

)−1

with ρ1 = u
fmax

as the utilisation of

the e1 = x+1 − x
+
2 queue. We do not know the optimum estimator

for this problem so instead we define a decoder g = x̃1 = x2 +
E [x1 − x2] = x2. This leads to a mse of J = var(e) with e =
x1 − x2.

To solve for J we must account for the synchronisation between
the queue inputs x+1 and x+2 . If the M |M |1 connecting them has
low ρ1 then the correlation coefficient, ω will be high and vice versa
with ω | ρ1=1 = 0. Further, ω may also depend on ρ∞. Expanding
the mse and noting that var(x1) = var(x2) = ρ∞ gives J = 2(1 −
ω)var(x1) = 2(1 − ω)ρ∞. Combining with D we obtain Eq. (14).
Simulations suggest that max(ω) ≤ 0.5, which makes sense since
the correlation cannot be more than that for a synchronised Flatto-
Hahn-Wright queue, which also has ω ≤ 0.5 [41] [42]. Using this
limit and minimising across ρ1 gives the inequality in Eq. (14).

ψ = 2(1− ω) (1− ρ∞ log ρ1) ≥ 1 (14)

While we cannot prove that ψ∗ ≥ 1, Eq. (14) insinuates that we
have lost the −ρ1 log ρ1 structure, and suggests new codes may be
needed. If we instead only encode the deaths of x1 via x3 so that
the e1 queue is removed and the output of the e2 queue goes to the
x3 M |M |∞ (right of Fig. 2) then we destroy all correlation. This
leads to ψ = 2 (1− ρ∞ log ρ1) ≥ 2. This scheme, which leads to
a Jackson network [24], can be thought of as death-following. The
network results of Section III-C do not hold here due to the M |M |∞
queues.

The above schemes used one encoder and were single channel
problems. We now consider the complete network of Fig. 2 which
uses two channels by employing birth-following between x+1 and x2
and death-following between x−1 and x3. In this case x2 and x3 are
now pure birth processes. We place the same channel constraints and
note that by Burke’s theorem on the x1 M |M |∞, the input process
to both the e1 and e2 M |M |1 queues has rate u. Hence both have
utilisation ρ = u

fmax
. We will call this scheme birth-death following.

As it uses two parallel channels the Poisson capacity doubles

[13] [16] leading to D =
(

2 log 1
ρ

+ 1
ρ∞

)−1

. Let Ft = [x2
t
0,

x3
t
0] represent all the observable information. The optimal decoder

is then g∗ = x̂1 = E [x1 | Ft] [20]. No extra information about
one M |M |1 queue, given its output, is obtained by observing the
output of the other M |M |1 so E [ei | Ft] = E

[
ei |x2t0

]
= E [ei]

for i ∈ Z2
1. The last equality follows from theorem 1. The mmse

is J∗ = E
[
(x1 − E [x1 | Ft])2

]
. If e = x1 − x̂1 then J∗ =

E
[
(e− (E [e1 | Ft]− E [e2 | Ft]))2

]
. Using previous equalities and

the fact that E [e1] = E [e2] (identical utilisations) gives Eq. (15), with
the optimal decoder as the simple population difference g∗ = x2−x3.

J∗ = E
[
e2
]

= E
[
(x1 − (x2 − x3))2

]
(15)

We can further expand J∗ in terms of the queue variables by
using e1 − e2 = x1 − (x2 − x3). We obtain 2(1 − ω)var(e1) =
2(1− ω)ρ(1− ρ)−2 with ω = corr (e1, e2) and var(e1) = var(e2).
The correlation again derives from the partial synchronisation of the
M |M |1 inputs. This leads to a Flatto-Hahn-Wright description [41].
The performance ratio can now be written as Eq. (16).

ψ∗ =
2(1− ω)

(1− ρ)2

[
2ρ log

1

ρ
+

ρ

ρ∞

]
(16)

As synchrony is never perfect then 0 ≤ ω < 1. Further,
ρ∞ = E[x1] > 0. For small ρ, 2ρ log 1

ρ
� ρ

ρ∞
and ψ∗ ≈

4(1−ω)
(1−ρ)2

[
ρ log 1

ρ

]
≤ 4

(1−ρ)2

[
ρ log 1

ρ

]
. This generalises the single

channel result from theorem 1 and means that birth-death following
outperforms the bound.

Comparing our expressions to Eq. (9) we see that birth-death
following is analogous to birth-following for a pure birth process.
However, the efficiency of the former is reduced due to the death
noise, which increases ψ∗. We define efficiency as η =

ψ∗b
ψ∗
bd

with
b and d indicating births and deaths. Then η = 1

2
(1 − ω)−1 ≥ 1

2
.

Hence we lose up to 50% of the birth-following performance due to
deaths. We cannot get η > 1 because the Flatto-Hahn-Wright queue
condition forces ω ≤ 0.5 [42].

Deaths therefore change the information structure of the signalling
problem, underscoring the importance of matching the encoder with
its channel architecture. In the single channel case birth-following is
likely not able to capitalise on the event structure, motivating a need
for other coding paradigms [15]. In the two channel case, birth-death
following works but at a cost in efficiency.

E. Poisson Sampling at Infinite Capacity

In Section III-B and Section III-C we showed that birth-following
quite generally outperforms the bound in a region of small ρ. This
corresponds to when the maximum rate of signalling fmax is large.
However, birth-following, via its M |M |1 description also constrained
〈f〉 = u. We now examine what happens when we let fmax →∞, so
that we are in the region where D is usually bettered, but allow 〈f〉 6=
u. Biologically this models rapid response molecular signalling.

In the limit of these conditions C →∞ and D → 0 so that x1 =
x2 = x. We will use xt as short for x(t). Our estimation problem
reduces to one of sampling a Poisson population under the mean rate
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constraint 〈f〉 = u
b

. We let x0 = 0 without loss of generality and
define τ as the time to the next sample. Our problem is then to design
an optimal sampler or stopping strategy, f , that minimises mse while
satisfying E[τ ] = 〈f〉−1 = b

u
.

The sampling time, τ <∞, is a stopping time with respect to xτ0 .
The compensated Poisson process Mt = xt−ut is a martingale and
therefore obeys the optional stopping theorem [43]. This imposes
the condition that all valid sampling schemes must satisfy E [Mτ ] =
E [M0] = E [xτ − uτ ] = 0, so that E [xτ ] = b. The last relation
comes from our sampling constraint and means that only f functions
that sample on average every b births of x1 can be valid. Moreover,
M2
t − ut is also a martingale so reapplying the optional sampling

theorem gives E
[
M2
τ

]
= b. Since E [Mτ ] = 0, then by expanding

Mτ we can derive Eq. (17), which is a conservation law. It fixes a
linear trade between the variance of our sampling times and sampled
population sizes.

b = var(xτ ) + u2 var(τ) (17)

Our performance index is the mse of reconstruction given by
J = Eτ

[
E
[
(xτ − g)2

]]
, with g as some decoding function. We

use the τ subscript on the first expectation to emphasise that we
are now averaging across stopped trajectories. This is an ensemble
equivalent to the mse expressions used in prior sections. The optimal
decoder is x̂ = g∗ = E [x | Fτ ] with Fτ = [x0, f ] as the total causal
information available, due to the Markov nature of x1 [20]. The
mmse, J∗, results when g = g∗.

All valid sampling schemes satisfy Eq. (17). Before examining
birth-following, we will look at deterministic stopping protocols for
comparison. The most common of these takes a sample at a fixed,
constant τ . This is also known as periodic sampling [44]. Let the
encoder in this case be fd with subscript d indicating deterministic.
As fd has no information about x then Fτ = x0 and g∗ = E[x] = ut.
This give J∗d = 1

τ

∫ τ
0

var(xt) dt = b
2

. In this case b = uτ and
var(τ) = 0. By Eq. (17) this means var(xτ ) = b. This scheme is on
the extreme of maximising the sampled population variance.

Consider a protocol in which we take a sample every b events .
We call this b-following. 1 Interestingly, this scheme is on the other
extreme of Eq. (17) as it forces var(xτ ) = 0 so that var(τ) = b

u2 ,
is maximised. This means that b-following is an adaptive or event
triggered sampler [44]. Adaptive samplers are known to improve
upon time triggered schemes, such as the periodic one, by exploiting
the information structure of the process to be sampled [45]. At b = 1
we recover birth-following as a maximally adaptive sampler.

We calculate the optimal decoder for b-following at t < τ

as g∗ = E
[
xt |xt0 ≤ b− 1

]
=
(∑b−1

i=0 ipi
)(∑b−1

i=0 pi
)−1

with

P(xt = i) = pi = (ut)ie−ut

i!
. We solve to get x̂t =

ut
(∑b

i=1
(ut)i

i!

)(∑b−1
i=0

(ut)i

i!

)−1

, which is a renormalised upper
truncated Poisson function. We find that x̂t | b=1 = 0 ≤ x̂t ≤
ut = x̂t | b→∞. Interestingly, these limits recommend a transition in
decoding from a zero order hold at b = 1 to a linear, uninformative
function that matches the periodic sampler decoder as b→∞. This
exemplifies how signalling rate constraints can alter the embedded
information structures in discrete problems.

If ti = inf{t : xt ≥ i} so that tb = τ and t0 = 0 then ti ∼
Erlang(i, u) with density function Pti(t; i, u) = uiti−1e−ut

(i−1)!
. We can

partition the mmse calculation over ti so that J∗b = u
b
E{ti}[Ω] with

1Technically we must define our sampling times in b-following as τ =
min{tb, T} where T is some large but bounded time and tb is the first time
when b events have elapsed. Almost surely boundedness is a requirement of
the optional sampling theorem. This does not affect our results so we will not
refer to this point in the main text [43].

expectations taken over Pti(t; i, u) and Ω =
∫ tb
0

(b− 1− x̂t)2 dt+∑b−1
i=1

(
ti − 2

∫ ti
0

(i− x̂t) dt
)

. These expressions yield J∗b≤1 = 0.
We achieve D = 0 at all b ≤ 1 by simply applying birth-following.

Our interest is in what is achievable at b ∈ Z∞2 , at which
the mean encoding rate is smaller than u. For the b = 2

case, x̂t = ut(1 + ut)−1 and Ω =
∫ t1
0

(
−ut
1+ut

)2
dt +∫ t2

t1

(
1

1+ut

)2
dt = 1

u

(
1 + ut1 − 1

1+ut2
− 2 log(1 + ut1)

)
. Using

E1(y) :=
∫∞
y
t−1e−tdt gives J∗2 = 1

2
(1− eE1(1)) ≈ 0.2018. As

J∗b increases with b, adaptive samplers at b > 1 cannot obtain perfect
precision, even with infinite capacity. We can use Eq. (8) and Eq. (7)
to find that birth-following attains the same mmse as the infinite
capacity b = 2 case using a channel with C ≈ 0.4616 nats. Higher
capacities do not guarantee improved precision.

F. Removing the Diffusion Approximation

As we have shown, the information theoretic bound, D, does not
completely describe the realisable performance limits in biological
estimation. This has been largely attributed to the dependence of D
on a diffusion approximation of the target molecule [15]. We now
examine what happens when this approximation becomes exact, under
infinite fmax and hence capacity as in Section III-E. Our estimation
problem becomes one of sampling and reconstruction. Let xt be a
Brownian motion with drift that represents our target population at
time t, with x0 = 0, so that dxt = u dt +

√
u dw (Eq. (5)) holds.

We investigate the design of sampling protocols for xt under these
conditions, at which D = u

2C
→ 0 [13].

We will focus on optimal reconstruction of xt as a function of
the mean encoding constraint 〈f〉 = u

b
= E[τ ]−1, with τ as the

sample time. Using the Markov and ergodic nature of xt, we can
write the usual integral of mmse instead as the ensemble average:
J∗ = u

b
Eτ
[∫ τ

0
var (xt | Ft) dt

]
[46] [47]. Here Ft represents all

the causally observable information about xt.
We investigate how the mmse changes with our channel and hence

sampling constraints. We first examine periodic sampling, which
is the deterministic limit of Eq. (17), at which τ is constant so
that var(τ) = 0. Since the encoder is independent of the process
in this case then var (xt | Ft) = var(xt) = ut. This leads to
J∗d = u2

2b

(
var(τ) + b2

u2

)
= b

2
. Subscript d indicates deterministic.

This result matches that of Section III-E.
Adaptive or event based sampling improves performance by using

process information. However, the definition of what constitutes an
event is not as clear as when xt followed a birth-process. It is known
that the sampling problem with drift is no different that the one
without it [45]. We therefore work with the associated, xt process,
yt which conforms to dyt = dw. We set u = 1 here without loss of
generality as we can always rescale time t to t

u
to recover the

√
u

standard deviation. None of these changes affect the D = 0 bound
and they allow us to directly use the optimal sampling results from
[46] and [44]. These suggest that a sampler which records an event
every time yt crosses a symmetrical threshold at ±r is mmse optimal.
The first exit time of yt, τ1, satisfies E[τ1] = r2 [43]. This implies
that r =

√
b.

The mmse is given in Eq. (18) and comes from a limit of an
expression derived in [46] using optimal stopping theory. We rescale
time to get the mmse for xt, with our sample time τ = τ1

u
, as

Eτ
[∫ τ

0
u b

6
ds
]
Eτ [τ ]−1 = b

6
. Eq. (18) is hence the mmse for xt as

well.

J∗b = lim
l→0

∫ r
0
e−lz

2 ∫ z
0
y2ely

2

dy dz∫ r
0
e−lz2

∫ z
0
ely2 dy dz

=
b

6
(18)
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At finite 〈f〉, which implies b > 0, we cannot realise perfect
timing precision. A non-zero mmse suggests an effectively limited
information capacity and emphasises the point that channel capacity
can be misleading. While the optimal Brownian threshold sampler
is not an analogue of birth-following, it is similar to a toggle based
encoder developed in [15] which outperforms the bound for birth-
death processes like those of Section III-D. This highlights the need to
match encoders to the informative structures of biological problems.
In this case hard thresholds embed process information.

IV. DISCUSSION

The information-timing-performance link is not well understood
for discrete, causal, event based biological mechanisms such as
intracellular signalling [13] [19]. Most studies attempting to clarify
this link have characterised signalling pathways under the assumption
that maximising information implies improved performance, and so
have focussed on calculating channel capacities [5] [6] [48]. Little
work has been done on examining what coding schemes actually
set the achievable performance on a pathway or on how these
codes compare to theoretical bounds based on the channel capacity.
We fill this niche by taking an in depth look at elementary yet
biologically relevant birth process estimation problems with Poisson
communication.

Birth processes are not only more amenable to stochastic theory
but are also relevant models of protein synthesis, and important
components of larger molecular networks [1]. The most basic process
that we study, in which a target molecule is produced at a constant
rate, is actually a current optimal model for the expression and
accumulation of stable proteins such as holin in bacteria [12]. Our
more complex birth networks may apply to models of transcription
in which rates vary arbitrarily with protein count or to gene promoter
autoregulation problems involving intermediate molecules [12].

We work with Poisson channels because they properly describe
the discrete structure of information in signalling pathways [13]
[19]. Most research into intracellular transduction hinges on Gaussian
channel descriptions, which assume continuity. The choice of channel
defines the types of optimal coding schemes applicable [49]. For
example, normally distributed inputs maximise Gaussian channel
performance [11], while random telegraph models achieve capacity
on Poisson channels [23]. Moreover, even the parametrisation of
codes changes from signal to noise ratio to maximum-mean signal
rates [50]. This hints at how important it is to get the encoder-channel
relationship right.

It is within this context that, by converting our causal encoding
problem to an optimal control problem, we derived birth-following
as a minimum time bang-bang encoder. We now have a firm the-
oretical basis for why this scheme, previously known only as an
asymptotically optimal heuristic [16], is important. Minimum time
encoders are likely crucial in achieving event precision, since they
achieve a desired signalling threshold at the fastest rate possible.
Birth-following is also biologically significant since many proteins
behave like molecular switches or relays, activating on an event,
completing a signalling objective and then deactiving [51]. Both the
on and off switching are integral to performance, especially when
multiple signals must be made [51]. Birth-following has the fastest
switching dynamics achievable under a birth-process description.

We used birth-following to examine mismatches between realisable
optimal estimators and slack information theoretic bounds that delimit
non-linear coding precision [13]. Mismatches indicate that continuity
approximations are insufficient and emphasise the signalling rate
regions in which the discreteness of information dominates. We found
that if the maximum signalling rate was high enough, birth-following

would violate the bound under generalised target synthesis rates and
arbitrary signalling network architectures.

The factor −ρ log ρ was found to be crucial to achieving these
mismatches. Closer examination reveals an interesting information
theoretic link. The stationary e distribution of the M |M |1 is ge-
ometric with P(e = k) describing the probability of k failures
under failure parameter ρ [24]. The entropy of this distribution is
H(ρ) = 1

1−ρ (−ρ log ρ− (1− ρ) log(1− ρ)). Using a known bound
on the binary entropy function [11] and looking at the low ρ � 1
regime we get Eq. (19). This tells us that estimation precision relative
to the bound decays with the square root of ρ. Note that ρ is also
the mean queue length, which can be thought of as the average
signalling threshold [12]. This relation therefore connects queueing,
information and signalling.

H(ρ) | ρ�1 ≈ −ρ log ρ ≤
√

2ρ (19)

Additionally, by applying birth-following we shift our estimation
problem into a scheme that depends on a single, dimensionless
quantity, ρ. This makes our results scalable to any biological settings
satisfying this ratio.

We also examined death reactions to gauge how encoding changes
with the additional noise of molecular degradation. We found that
previous performance indices could only be reproduced if an addi-
tional signalling channel that followed target molecule deaths was
introduced. Single channel estimation may therefore require different
codes, such as the toggle based one used in [15] for a related control
problem. Further, even with the two channel description, recoverable
performance suffered up to a halving in efficiency. This correlates
well with the observation that deaths often contribute half of the total
molecular noise [52], and may suggest that we are approaching the
effective noise limits in molecular networks with these approaches.

In all these problems discreteness appeared to dominate when the
maximum signalling rate and hence Poisson capacity was high. We
let this rate become unbounded to analyse what is achievable when
we can transmit infinite information. Under these conditions our
estimation problem becomes one of sampling and birth-following
reduces to a natural adaptive sampling protocol [44]. We showed
that birth-following, in contrast to deterministic periodic sampling,
is maximally event triggered and offers sharp molecular coupling.
However, it is still unable to achieve perfect timing unless the mean
signalling rate is at least as fast as the synthesis rate of the target
molecule.

Mismatches with the bound were based on its diffusion description
of the target molecule. To cement our conclusions we investigated this
sampling problem with an actual diffusion serving as the target. Even
in this case a known optimal threshold scheme [45] was unable to
get close to the bound (which is 0 here) unless the mean rate also
becomes infinite. The consequence of all these sampling results is that
the usual assumption, that higher capacity implies better performance
[8], must be discarded. It is important to consider the performance
that codes can actually achieve. The difference between knowing the
capacity and having an implementable code that can realise it is a
well known problem in information theory [11].

By concentrating on amenable yet still biologically interesting
birth process problems, we have attempted to uncover properties of
the information-signalling-performance link for intracellular models
involving small molecular populations. We find that when signalling
is fast and discreteness prominent, current capacity based bounds
do not present the full story on achievable performance. Moreover,
realistic performance depends on matching encoders to channels,
which unfortunately recommends specialised approaches for different
signalling models. For example, birth-following, which encodes the
most salient aspect of birth processes and applies to problems
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involving molecular switches or timekeeper proteins [12], is unlikely
to be optimal when molecular turnover is quick. This encapsulates
the idea that noise management motifs are shaped by informational
structure [3].

In spite of this our results offer some general insight. Our solutions
are based on conditional expectations which minimise the mse. The
mse was used because it directly related to known bounds. However,
conditional expectations also minimise any Bregman loss function
[53] (a broad class that includes Kullback-Liebler divergence) thus
making our codes widely applicable. More mechanistically, our work
synergises queueing, information, optimal control and stochastic
estimation theory, each of which may serve as a point of departure for
more searching mathematical analyses. In particular, [54] developed
a timing channel which is a queueing equivalent to the Poisson
one [38]. This channel more directly emphasises the importance of
timing and may present an interesting direction for future research.
Biologically, our results also apply to any system characterised
by birth processes or requiring single event precision. Approaches
developed here may be useful for defining the observational limits of
fluorescent proteins, [55] , the physical limits of chemotaxis [56]
or even the coding schemes in sensory transduction [19].

Thus the limits imposed by molecular fluctuations and Poisson
capacities remain undefined, and misleading, for generalised and
sharp non-linear signalling, where discreteness and causality matter.
As noted in [10], there is still a need for more inclusive and
operational definitions of ‘information’ and ‘uncertainty’. Our work
aligns with this drive, suggesting that better metrics may be required
for describing the gap between the theoretically possible performance
expected from Shannon’s channel coding theorem [11] and the effec-
tively achievable precision from implementable codes. One Bregman
metric, known as the Poisson loss function [57], is the most natural
measure of Poisson channel precision and has the cleanest link to
causal estimation and control performance [58]. We recommend this
as a possible point for upcoming studies.
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