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Abstract

Understanding and uncovering the mechanisms or motifs that molecular networks employ to regulate noise is a
key problem in cell biology. As it is often difficult to obtain direct and detailed insight into these mechanisms, many
studies instead focus on assessing the best precision attainable on the signalling pathways that compose these net-
works. Molecules signal one another over such pathways to solve noise regulating estimation and control problems.
Quantifying the maximum precision of these solutions delimits what is achievable and allows hypotheses about un-
derlying motifs to be tested without requiring detailed biological knowledge. The pathway capacity, which defines the
maximum rate of transmitting information along it, is a widely used proxy for precision. Here it is shown, for estima-
tion problems involving elementary yet biologically relevant birth-process networks, that capacity can be surprisingly
misleading. A time-optimal signalling motif, called birth-following, is derived and proven to better the precision ex-
pected from the capacity, provided the maximum signalling rate constraint is large and the mean one above a certain
threshold. When the maximum constraint is relaxed, perfect estimation is predicted by the capacity. However, the true
achievable precision is found highly variable and sensitive to the mean constraint. Since the same capacity can map to
different combinations of rate constraints, it can only equivocally measure precision. Deciphering the rate constraints
on a signalling pathway may therefore be more important than computing its capacity.

Keywords: Molecular estimation, information theoretic bounds, birth-processes, queueing theory, cellular
signalling, intrinsic noise

1. Introduction

In cell biology small molecular populations signal
one another, by modulating the rates at which they react
(e.g. via catalysis), to solve regulatory estimation and
control problems [1]. These modulations are intrinsi-
cally noisy due to fluctuations arising from the random
timing of birth (synthesis) and death (turnover) reac-
tions [2]. ‘Signals’ here are stochastic changes in pop-
ulation size that encode information about some target
molecule of interest, with population size representing,
for example, gene copy numbers or messenger protein
counts. Intracellular signalling is therefore, fundamen-
tally, a noisy information theoretic problem [3].

Since biochemical networks attenuate, filter, or utilise
this noise to function precisely [4], much research has
focussed on demystifying what constitutes effective sig-
nalling, and on what sets the limits of cellular precision
[5] [6] [7]. ‘Precision’ refers to a mean squared er-
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ror (mse) or distortion that measures how well a regula-
tory network solves relevant estimation or control prob-
lems, despite intrinsic noise. Higher precision implies
smaller mse. Understanding, uncovering and specifying
the limits of achievable precision helps delineate what
cells can and cannot do, better quantifies the impact of
noise, aids the identification of optimal signalling mo-
tifs and greatly constrains the assumptions made when
validating models against experimental data [8] [5].

Consider a signalling molecule tasked with estimat-
ing or controlling some target molecule. A signalling
pathway is then the route of information flow from
the target to signalling species. The pathway capacity,
which defines the maximum rate at which information
can be transmitted along it, is believed to uniquely con-
trol the best achievable precision [7] [6]. Recent anal-
yses have computed these capacities from empirically
derived molecular distributions by modelling the sig-
nalling pathway as a Gaussian channel [9] [10] [11].
This assumes that received signals are continuous wave-
forms corrupted by additive white noise [7] [5]. Chan-
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nel capacity is then determined by a single parameter,
the signal to noise ratio (snr) [12], and has a unique
inverse relationship to the best mse achievable [13].

While this approach simplifies analysis and has
yielded many insights, the link between information and
precision remains unresolved [9]. One reason for this
is that Gaussian channels cannot properly describe dis-
crete information structures [14]. In cellular signalling
both the information and noise manifest in the timing of
discrete events [15]. Noise is also not additive. These
issues were addressed in [1], where the Poisson channel
was proposed as a replacement. Poisson channels con-
vert a continuous time input into a Poisson point process
output with intensity equal to that input [16]. Here the
input is the rate of the signalling reaction, which en-
codes information about the target molecule of interest,
and the output is a discrete signal event stream that em-
beds this information within the timing of its events.

Constraints on this input limit the Poisson channel
capacity, and so imply more realistic lower bounds on
the achievable mse. These bounds, which were de-
rived in [1], preserve the discreteness of the signalling
molecule and significantly advanced the understand-
ing of the information-precision relationship. However,
they are not perfect and are still being investigated [8].
In particular, they approximate fluctuations in the tar-
get molecule population size with a continuous diffu-
sion process. A heuristic, discrete encoding strategy,
known as birth-following, was subsequently found to
achieve smaller mse values than these bounds, provided
the maximum signalling rate is relatively large and non-
linear strategies are allowed [17] [18]. Under these
conditions, target molecule discreteness matters.

This result raises two questions, which form the moti-
vation and subject matter of this work. First, if no conti-
nuity approximations are made, what is the optimal sig-
nalling encoder that is also biologically feasible? Deriv-
ing such an encoder would (i) reveal the best mechanism
for embedding signal-timing information, which could
be useful for synthetic circuit design [19] and (ii) pro-
vide a test-bed for contextualising actually achievable
precision against the best known bounds from [1]. This
is important as it is not known whether any realisable
encoder can actually attain the precision stipulated by
the capacity of a signalling pathway [12]. If none can,
then existing bounds overestimate how precisely regu-
latory problems can be solved.

This question is investigated in the context of birth-
process estimation, in which both the target and sig-
nalling molecules have no turnover, and the signalling
population size tries to track or monitor that of the
target. This framework models the behaviour of sta-

ble, long-lived molecules such as scaffold or timekeeper
proteins, and has been used in recent studies such as
[15] and [20]. Birth-processes are still not completely
understood and form elementary components of many
complex regulatory networks. Birth-following, which
asserts the maximum signalling rate whenever there are
excess target molecules to estimate, will be found to
emerge as the optimal, minimum time, signalling en-
coder for this entire class of problems.

Second, is capacity always a reliable proxy for preci-
sion? Or do channel constraints more strongly shape op-
timal encoding and realisable precision? Poisson chan-
nel capacity is a function of both the mean and maxi-
mum signalling rate constraints, denoted 〈 f 〉 and fmax
[21] (see Eq. (2)). The practical influence of these con-
straints has been understudied [22], and is not as intu-
itive as the Gaussian snr [23]. Over a wide range of es-
timation problems, it will be shown that birth-following
can consistently achieve a mse smaller than the bounds
of [1], which supposedly underestimate the minimum
achievable mse. This greatly generalises the results in
[18] and holds when fmax/〈 f 〉 � 1 and 〈 f 〉 ≥ u with u as
the birth rate of the target species of interest.

Under these conditions the capacity of the Poisson
channel and the speed of signalling are sufficiently large
that fast jumps in the target cannot be approximated
with continuous functions. If fmax is increased further
an unlimited Poisson channel capacity can be attained.
In this information rich setting perfect precision would
be expected. However, it will be proven that unless
〈 f 〉 ≥ u is guaranteed, it is impossible, even with op-
timal encoders, to obtain perfect precision. This inter-
esting observation holds even when the target is made a
diffusion process so that no approximations exist.

Consequently, it is the Poisson channel constraints
and not its capacity that sets the limits of precision. In
fact a given Poisson capacity can map to many combi-
nations of mean and maximum signalling constraints,
leading to equivocal notions of achievable precision.
This is in contrast to the bijective relationships be-
tween mse, snr and capacity on Gaussian channels [13].
Higher capacities therefore do not necessitate better per-
formance and the relationship between information and
precision, when discreteness matters, is not simple, even
for the simplest regulatory network.

2. Methods

2.1. Estimation Problem Framework
The molecular estimation problem is defined here,

and its links to signalling and information are estab-
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lished. Let Zb
a denote the integer set {a, a + 1, . . . , b −

1, b} with b > a. The target or estimated molecule is X1
and has integer population size at time t ≥ 0 of x1(t). For
convenience, the t index will usually be dropped. The
causal size history of x1 over 0 ≤ s ≤ t is x1

t
0. The sig-

nalling molecule is X j, j ∈ Z∞2 , with size x j(t) and his-
tory x j

t
0. Often j = 2, with j > 2 only used when com-

plex signalling networks are considered. X1, however,
always represents the target species. Populations fluctu-
ate randomly in time due to Markov birth, xi → xi + 1
(denoted x+

i ) or death, xi → xi − 1 (x−i ), reactions. It is
assumed that X1 cannot be directly observed, and infor-
mation about it is only available through X j, which has
a birth or signalling rate, f that has full knowledge of
x1

t
0 and x j

t
0 (see Eq. (1) below). Causally estimating x1

given the observable signalling history x j
t
0 is the main

mathematical problem of interest in this work.

x j
f = f (x1

t
0, x j

t
0)

−−−−−−−−−−→ x j + 1 (1)

As observed in [1], Eq. (1) also describes a Poisson
channel that converts a non-negative input, f , into a sig-
nal output, x j [16]. Here x j is a Poisson process, and f
can be thought of as the channel encoder responsible for
converting x1 into a form suitable for communication.
On this channel information about x1 is embedded in
the timing of x j birth events, implying a natural link be-
tween timing accuracy and the mutual information, de-
noted I(x1

t
0, x j

t
0). The capacity, C := sup 1/t I(x1

t
0, x j

t
0),

delimits the maximum rate at which information can be
transmitted across this channel [1]. Higher capacities al-
low for more accurate event timing, and the supremum
here is taken over all possible x1

t
0 distributions.

The channel decoder, g, is some function that recon-
structs x1 from the channel output (observed x2 event
stream). It generates the estimate x̃1 = g(x j

t
0 | f ). Esti-

mate precision is measured using the mean squared er-
ror (mse) distortion, J := E[(x1 − g)2], with the mini-
mum mse (mmse) as J∗. The mmse is achieved by the
optimal decoder x̂1 = g∗ = E[x1 | f , x j

t
0] [24]. How-

ever, g∗ is often analytically intractable. As a result,
the x1 estimation problem is considered solved when a
good f and g pair, which leads to a small J, is found.
Such a pair is called a codec. The explicit dependence
of g on f will usually be dropped for simplicity. Fig. 1
summarises the causal x1 estimation problem.

2.2. Capacity Based Precision Bounds

The capacity of the channel in Fig. 1 is determined
by the signalling constraints placed on f . It is common
for mean E

[
f
]
≤ 〈 f 〉 and maximum max( f ) ≤ fmax

Poisson channel, C
f(x1

t
0, x2

t
0)

Input

x2(t)

Signal

x1(t)

Message

x̃1(t) = g(x2
t
0 | f)

Estimate

Encoding Decoding

Distortion, J

Figure 1: Capacity-distortion schematic. An estimation problem in-
volving two molecular species is specified. The target population,
x1(t), is encoded (with feedback) using f (x1

t
0, x2

t
0) and then sent

across a Poisson channel with finite capacity, C. This resulting output
signal x2(t) is then decoded with g(x2

t
0 | f ) to obtain an estimate x̃1(t).

The mean squared error distortion between the original message and
the decoded reconstruction is J. Higher C should imply smaller J.

constraints to be considered, leading to Eq. (2) [16].

C = 〈 f 〉 log
(
〈 f 〉−1 fmax

)
(2)

Eq. (2) quantifies the link between signalling (which
controls x j event timing) and information. The mean-
maximum properties of the encoder appear fundamen-
tal since Eq. (2) holds when the system is generalised
so that x j also modulates x1 births, and is only scaled
by p/p−1 [21] when the maximum constraint is relaxed
to the norm condition E

[
f p] 1

p ≤ fmax for p ∈ Z∞1 .
These constraints represent biological limitations for
signalling on a pathway, and are usually preset. The sen-
sitivity of precision to both the constraints and the ca-
pacity forms the main line of investigation in this work.

A major result of [1], was the realisation that this fi-
nite signalling-capacity relationship implies a limit on
how small J∗ can be made. This limit is known as the
distortion or capacity bound, D, and satisfies J∗ ≥ D.
Here D is the mse that defines how precisely X1 could
be estimated if it obeyed a diffusion process with equiv-
alent mean (since X1 is actually Poisson this is known as
a diffusion approximation). The relationship between J∗

and D follows from a mutual information (data process-
ing) inequality [12]. Further details of this derivation
can be found in the supplement of [1].

If X1 reacts as x1
u
−→ x1+1, x1

k1 x1
−−−→ x1−1 then Eq. (3),

with u and k1 as rate constants and w a standard Wiener
process, is the appropriate diffusion approximation.

dx1 = (u − k1x1) dt +
√

2k1 〈x1〉 dw (3)

The relevant distortion bound follows from [1] with
its dependence on C deduced using the information-
distortion properties of the diffusion process, under a
constraint that x2 can only depend causally on x1. This
yields Eq. (4) with J as the mse for any arbitrary en-
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coder and k1 〈x1〉 = 〈u〉 due to equilibrium.

D = 〈u〉 (C + k1)−1 ≤ J∗ ≤ J (4)

Eq. (4) holds for all non-linear encoders and is a known
conservative lower limit on the mmse. Tighter expres-
sions do exist but are only valid for linear encoders, and
so not pertinent here [1]. The inverse dependence be-
tween D and C is analogous to the well known Gaussian
channel capacity-distortion relationship [13].

In this work Eq. (3) and Eq. (4) will be modi-
fied and adapted to derive capacity bounds for various
signalling-estimation problems. These D functions will
then be compared to the achievable J or J∗ for each
problem. As in [18] the performance ratio ψ := J/D

(or ψ∗ ≤ ψ when J∗ is available) will be used to mea-
sure the goodness of a codec. If ψ is close to 1 then the
codec attaining J is seen as good since it is close to the
supposed best achievable distortion. Critically, if ψ∗ < 1
then J∗ < D, which violates the expected relationship.
In such cases the capacity actually underestimates the
attainable precision on a signalling pathway.

2.3. Birth-Following Estimation

Birth-following was introduced in [17] and [18] as
a heuristic solution to some of the estimation problems
of Section 2.1. The main results from those papers are
condensed and extended here, into a key theorem. Con-
sider the simplest non-trivial reaction scheme involving
two species, X1 and X2, no deaths and x1

u
−→ x1 + 1 with

u as a constant. Then x1 ∼ Po(u) (Poisson distribution
with mean

∫ t
0 u ds). The X2 signalling reaction is Eq. (1)

so x2 ∼ Po( f ) [25]. This reaction set is an elementary
motif for more complex signalling networks. The diffu-
sion approximation for x1 is given in Eq. (5).

dx1 = u dt +
√

u dw (5)

To solve the x1 estimation problem f must be de-
signed, within its mean-maximum constraints. Piece-
wise continuous processes, which switch between 0 and
fmax achieve Poisson channel capacity [26]. The mem-
oryless birth-following encoder [17], inspired by this,
signals the most natural aspect of a birth-process. This
encoder only uses the current population size difference

e = x1−x2, so that f = f (e), e
u
−→ e+1 and e

f = f (e)
−−−−−→ e−1.

Birth-following is then defined as in Eq. (6) and eventu-
ally signals every x+

1 with an x+
2 , as shown in Fig. 2.

f (e) =

 fmax, if e > 0.
0, otherwise.

(6)

Figure 2: Birth-following encoding. The target molecule, X1 has
synthesis rate, u (both dashed). The signalling molecule, X2, encodes
information (about X1) via its synthesis rate, f (e) with e = x1 − x2
(both solid). The top panel shows molecular counts and the bottom
one illustrates synthesis rates. Birth-following sets f (e) to fmax > u
whenever there are remaining X1 molecules to signal (i.e. e > 0), else
f = 0. As ρ = u/fmax decreases the gaps between x1 and x2 shrink.

An M|M|1 queue (the ‘M’ stands for Markov, ‘1’ in-
dicates a single server) is a process in which customers
randomly arrive with some Poisson rate u and are then
served with Poisson rate fmax [27]. The ability of this
queue to efficiently serve customers is described by its
utilisation, ρ = u/fmax < 1. If e is interpreted as a number
of queueing customers, then reactions x+

1 and x+
2 respec-

tively represent arriving and departing customers. Using
this analogy, birth-following encoding exactly describes
an M|M|1 queue with u = 〈 f 〉. This allows the simplifi-
cation of Eq. (4) into Eq. (7) below [17].

C = −u log ρ =⇒ D =
(
−2 log ρ

)−1 (7)

The main theorem can now be stated, in terms of achiev-
able performance, relative to the bound in Eq. (7).

Theorem 1. The birth-following encoder (Eq. (6)) and
the memoryless decoder x̂1 = x2 +E [e] form an asymp-
totically optimal codec for simple birth-processes, and
achieve a relative performance ratio ψ∗ < 1 when the
utilisation ρ is small, due to a factor −ρ log ρ.

Theorem 1 is proven using central results from [17]
and [18]. The optimal decoder and its mmse are g∗ =

E[x1 | x2
t
0] and J∗ = E[(x1 − g∗)2] [24]. Expanding this

and substituting for e gives J∗ = E
[
(e − E[e | x2

t
0])2

]
. A

corollary of Burke’s theorem [28] states that the number
of customers in any M|M|n queue (‘n’ is the number
of servers and n = 1 here) is independent of its past
departures [28]. This implies that E[e | x2

t
0] = E[e].
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Consequently, the optimal causal decoder is g∗ = x2 +

E[e] = x̂1, and the first equality of Eq. (8) results.

J∗ = var(e) = ρ(1 − ρ)−2 (8)

The second equality emerges by taking moments from
the distribution of customers in an M|M|1 queue, which
is P(e = k) = (1 − ρ) ρk, k ∈ Z+

0 [27].
The distortion rate function, d, of a channel defines

the minimum distortion achievable when transmitting
information at a given rate [12]. It measures the op-
timal error properties of that channel. In [18] it was
shown that for a Poisson channel, the optimal distor-
tion at small ρ is d ≈ ρ. From Eq. (8) it is clear
that limρ→0 J∗ = d. This asymptotic equality defines
the asymptotic optimality of birth-following, and means
that, at the limit, it is as good as the best codec possible.

The relative performance of birth-following is evalu-
ated by finding ψ∗ = J∗/D. A ψ∗ < 1 means that a better
precision than the distortion bound has been achieved.
Combining Eq. (7) and Eq. (8) gives Eq. (9).

ψ∗ =
2

(1 − ρ)2

[
ρ log

1
ρ

]
(9)

Observe that limρ→0 ψ
∗ = 0 because limρ→0 −ρ log ρ =

0. Thus, there exists a ρ = a such that ψ∗ < 1. It can
be shown that ∂ψ

∂(−ρ) < 0, for all ρ ≤ a ≈ 0.199, so that
ψ∗ < 1 over this entire parameter regime. This contra-
dicts the expected relation between J∗ and D from Sec-
tion 2.2, and was attributed to the diffusion approxima-
tion inherent in deriving D [17]. The sharp discreteness
of birth-following allows it to operate beyond the limits
of this approximation. This completes the proof of The-
orem 1. This line of reasoning will underpin many of
the estimation problems solved in this text.

Birth-following will be shown to quite generally out-
perform the bound because of the term −ρ log ρ. This
term reveals an interesting connection between infor-
mation and relative precision that validates ψ∗ as a key
metric. The queue distribution P(e = k) has entropy
H(ρ) = 1/1−ρ

(
−ρ log ρ − (1 − ρ) log(1 − ρ)

)
[12], which

describes the most information that could be learnt from
e. In the low ρ � 1 regime H(ρ) ≈ −ρ log ρ and
E[e] ≈ ρ. Combining these with a known inequality
on −ρ log ρ from [12] yields Eq. (10).

ψ∗ ∝ H(ρ) | ρ�1 ≤
√

2E[e] (10)

Eq. (10) states that relative precision is proportional to
the maximum information in the queue and scales with
the square root of the mean queue length, which can be
thought of as a mean signalling threshold. Eq. (10) con-
nects queueing, information and signalling. Note that

all the expressions here depend on a single, dimension-
less ratio, ρ = u/fmax. All results are therefore scalable to
any biological settings satisfying this ratio.

3. Results

3.1. Minimum Time Encoding
Birth-following is a heuristic encoder that was shown

to be asymptotically optimal in [18] i.e. as ρ = u/fmax →

0 there is no better way of embedding information about
x1 in x2. This result, however, provides no assessment
of its biological importance, or if it this encoder is use-
ful away from this theoretical limit. Here, by examining
a class of stochastic control problems, birth-following
is proven to be the fastest (minimum-time) strategy for
signalling on a threshold, even outside the low ρ re-
gion. This establishes birth-following as a meaningful
encoding paradigm, links it to biologically sensible tim-
ing problems [15] and motivates subsequent use of this
strategy to assess the limits of pathway precision.

Consider the space of encoders, f = f (x1
t
0, x2

t
0), with

full knowledge of the history of the target and signalling
molecules. Assume that f only changes at molecular
event times, and is constrained to fmin ≤ f ≤ fmax
with E[ f ] = 〈 f 〉. This makes biological sense as inter-
event decisions would require knowledge of an external
clock and the next event time cannot be predicted ex-
actly [29]. This assumption and the Markov nature of
x1 and x2 transforms the search for an optimal f into a
Markov policy design problem, over e = x1 − x2 [30].

As event times are unpredictable e ∈ Z∞0 and f (0) =

0 = fmin (there is no point acting when e = 0). Design-
ing f (e) is equivalent to controlling the random walk
of e along its states, with the aim of forcing e to 0
as quickly as possible. This is a minimum time prob-
lem that is analogous to controlling the service rate of a
queue to minimise congestion [29] [30]. All possible
service rates are discretised within [0, fmax]. The con-
trol law or policy f is a mapping from the queue length
to these service rates. Optimal control theory can be
used to find this mapping. In [29] an optimal policy,
f ∗, satisfying Eq. (11) for 0 ≤ t ≤ τ was derived.

f ∗ = arg inf E{ f }
[∫
φ(t, f , et− ) dt + ϕ (eτ− )

]
(11)

Here t− means infinitesimally before time t, φ is a cost
on the queue length and ϕ is a terminal cost. If φ =

a f + e i.e. it depends linearly on the queue length (e)
and the service rate ( f ), and ϕ = 0, then the bang-bang
controller of Eq. (12) emerges [29].

f ∗ = fmax1(et− > 0), for t ∈ [0, τ − a] (12)
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Bang-bang controllers are a class of policies that switch
between extremes in response to the controlled variable
(i.e. e). In this birth-process encoder design problem
there is no service rate cost (a vanishes) and J is non-
decreasing in e. Minimising φ thus achieves the mmse
J∗, for a fixed τ, and Eq. (12) implies birth-following.

Further, consider the cost limτ→∞
1/τE

∫
φ(et) +

ζ( f (et)) dt with φ and ζ as queue and service rate
charges. If φ(e) is non-decreasing and convex in e with
φ(0) = 0 and

∑∞
i=0 φ(i)ρi < ∞ then the f that minimises

this cost increases with e. This result from [31] and
[30] is called a monotone optimal policy. The mse crite-
rion satisfies these conditions with ζ = 0 for the encoder
design problem. The lack of a service charge means
fmax can be chosen when e = 1. Monotone optimality
then requires that fmax also be chosen for e > 1. Hence
f ∗ converges to birth-following. None of these results
depend on ρ, beyond requiring a stable queue.

Interestingly, this monotone optimal argument also
holds for complex networks of queues [32]. If the total
queue cost is φ =

∑
j φ j, with φ j as the jth queue cost,

then a network of birth-following encoders is optimal
[33]. As this network only consists of M|M|1 queues, it
is a Jackson network [27]. Jackson networks are special
because their constituent queues can be treated indepen-
dently and in isolation. This observation, together with
the fact that optimal results for Jackson networks also
tend to hold for more arbitrary distributions [34], moti-
vated the work in Section 3.2 and Section 3.3.

Thus, birth-following is a robust bang-bang rate con-
troller. In [35] the problem of controlling the rate of a
point process to maximise the probability of getting N
events in time τ is studied. Using the cost in Eq. (11),
[35] found that the minimum time policy is bang-bang
over [0, fmax]. Birth-following is therefore a minimum
time encoder. Eq. (6) maximises the speed at which
x2 can attain some x1 threshold, at any ρ = u/fmax. As
a result, birth-following could be important for realis-
ing fast and precise event timing in cellular transduc-
tion, especially when signals depend on thresholds [15].
These properties make birth-following ideal for probing
whether or not capacity is a reliable proxy for defining
precision on signalling pathways.

3.2. General Birth-Following
Having established the wider, meaningful optimality

of birth-following, its behaviour relative to the capacity-
based bounds of [1] is investigated. Previously, the x1
birth rate, u, was constant. This models constitutive ex-
pression in which a gene is continuously on, and com-
monly describes the behaviour of many housekeeping
genes [36]. Here Theorem 1 type results are shown to

hold for more complex and arbitrary x1 birth models,
suggesting that in many instances existing bounds do
not fully characterise achievable estimation precision.
Two main x+

1 generalisations are developed.
First the birth rate of X1 is allowed to be any time-

varying function, λ(t), constrained so that u/ε ≤ λ ≤ u,
with ε > 1. Then x1 ∼ Po(λ), and a Poisson channel
with constraints 〈 f 〉 ≥ u and max( f ) ≤ fmax is fixed. A
utilisation ρ = u/fmax is also defined. This description en-
compasses a rich set of dynamical behaviours including
(i) bursty models of gene expression that involve on-
off switches (e.g. between u/ε and u) [36], (ii) external
or environmental influences that change the constitutive
transcription rate [37], and (iii) arbitrary positive or
negative feedback controlled expression, in which λ(t)
varies between its limits as a function of x1 [15].

To prove relative performance, hypothetical species
at the limits of λ are needed. Let Y0 be one such species
with constant birth rate u and population size y0. Then
x1 can be constructed from y0 by independently ac-
cepting each y+

0 as a newly arriving customer in the
X1 � X2 queue with probability λ(t)/u [38]. This queue
is a consequence of X2 implementing birth-following.
This means y0 ≥ x1. If e0 = y0 − x2 is the number
of customers in a hypothetical Y0 � X2 queue, then
e = x1 − x2 ≤ e0. Computing the mmse on these queue
lengths gives J∗ ≤ J∗y0

= var(e0) = ρ (1 − ρ)−2. J∗y0
is

from Eq. (8) as the Y0 � X2 queue is M|M|1.
Denote another hypothetical species as Y1 with y1 ∼

Po(u/ε). Its diffusion approximation is a scaled version
of Eq. (5), and its bound, Dy1 =

(
−2ε log ρ

)−1. If the
unknown bound for X1 is D then D ≥ Dy1 (X1 has a
larger mean and variance than Y1, and is hence more
difficult to estimate on the same fixed capacity channel).
This also follows from known data processing inequali-
ties for thinned Poisson processes [39]. Combining J∗y0

with Dy1 leads to an inequality on ψ∗ for the X1 � X2
system, which is given in Eq. (13).

ψ∗ =
J∗

D
≤

J∗y0

Dy1

=
2ε

(1 − ρ)2

[
ρ log

1
ρ

]
(13)

The −ρ log ρ factor means that ψ∗ < 1 exists and so
birth-following outperforms the capacity-based bound
under finite, arbitrary, time-varying birth rates.

In the original x1
u
−→ x1 + 1 case, the inter-birth event

(or waiting time) distribution is exponential with mean
1/u. The second generalisation investigated here relaxes
this exponential waiting time to any distribution with the
same mean. Births are still independent and identically
distributed but x1 no longer conforms to a Poisson pro-
cess description, and therefore no longer has to satisfy
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var(x1)/E[x1] = 1. Non-exponential waiting distributions
have been used to model burstiness and memory in tran-
scription, as well as multi-step (e.g. gamma distributed)
delays in protein production [40] [41].

Applying birth-following with e = x1 − x2 leads to a
G|M|1 queue instead of the usual M|M|1. The ‘G’ indi-
cates that the customer arrival distribution is generalised
instead of exponential. The G|M|1 queue length distri-
bution is P(e = k) = ρ(1 − σ)σk−1 [27], with 0 ≤ σ < 1
derived from the chosen generalised arrival distribution.
At σ = ρ the M|M|1 case is recovered. Since the mmse
is unknown for this estimation problem, the mse is com-
puted instead, resulting in Eq. (14).

J = E[e2] = ρ(1 + σ)(1 − σ)−2 (14)

The channel constraints are unchanged so D is from
Eq. (7). The gives ψ∗ ≤ ψ = J/D as shown in Eq. (15).

ψ∗ ≤ ψ =
2(1 + σ)
(1 − σ)2

[
ρ log

1
ρ

]
(15)

Enumerating over σ characterises the birth-following
performance of all possible generalised distributions.
Since every possible arrival distribution has σ < 1 [27],
and the −ρ log ρ factor appears, then over some region
of small ρ, ψ∗ ≤ ψ < 1 is achieved as in Theorem 1. The
capacity therefore provides a misleading assessment of
achievable precision for a wide range of bimolecular es-
timation problems. The next section considers whether
this observation holds for more complex networks.

3.3. Arbitrary Signalling Networks

The synthesis rate of the target molecule, X1, was pre-
viously generalised. Here the molecular network that is
estimating x1 is generalised instead. This models com-
plex pathways where several species are involved in sig-
nalling (e.g. molecular relays with scaffold proteins)
or where multi-step delays are present. Similar, though
more complex queue networks (e.g. with death events
or feedback) have been used to study the lac operon and
enzymatic correlations [42] [43]. While the approach
here is simpler, the demonstrated performance of birth-
following networks suggests its usability in synthetic
circuit design (see Appendix B). Related results that in-
clude deaths are in Appendix A. Achievable precision is
compared to that predicted by pathway capacity.

Consider arbitrarily configured molecular cascades
with n − 1 hidden species, {X2, . . . , Xn}, that estimate
an upstream X1. Let only the final output of this net-
work, xn+1, be observable. Each X j for j ∈ Zn+1

2 en-
codes its input using birth-following. An M|M|1 queue

network results. As every encoder is independently con-
strained, each queue can have a different utilisation.
Only feedforward networks are considered so that the
signalling architecture is composed of splits and joins.
The feedforward assumption is common in intracellular
signalling analyses [15]. Burke’s theorem states that
the output process of any M|M|1 queue is Poisson with
rate equal to its input process [28]. Consequently, xn+1
must have rate u, by the principle of local balance [27].

e1

e2

e3 e4

e5
x1 x6

(1− p)x2

px2 px4 px5

(1− p)x3

Figure 3: Example signalling network. Information about the target
population, x1, is indirectly transferred to the observed population x6
by four intermediates. The network splits x2 (p-thinning) and then
joins the branches as an input to the final queue (superposition). Birth-
following is applied throughout so each queue is M|M|1.

A network with four intermediate species is given in
Fig. 3 to illustrate the types of signalling architectures
possible. Fig. 3 has five queues with parallel and serial
connections. The jth queue has length e j and utilisation
ρ j < 1. The splitting process on the output of the e1
queue is a random Poisson thinning with probability p.
The joining process that is the input of the e5 queue is
a Poisson superposition [27]. All species have Po(u)
statistics by Burke’s theorem. It is necessary to first de-
rive capacity-based bound for these arbitrary networks.

Any such network can be modelled as a set of effec-
tively serial links, each with rate u. Fig. 3 has three: e1,
e5 and an effective one with the parallel queues. Every
network always has at least one truly serial queue due
to xn+1. While the capacity, Cn, of an arbitrary cascade
with n queues is unknown for n > 1, it is no greater than
that of its most restrictive single, serial Poisson chan-
nel [44]. Without loss of generality it is assumed that
the en queue has the largest utilisation in the network,
ρ = max j ρ j. Consequently, Cn < C1 = −u log ρ, and
the bound Dn > D1 =

(
−2 log ρ

)−1 (see Eq. (7)).
The jth queue has stationary distribution P(e j = k j) =

(1 − ρ j) ρ
k j

j , k j ∈ Z∞0 . The effective error between the
target and observed species, e = x1 − xn+1 is of in-
terest. Solving across the network, it is found that in
general e =

∑n
j=1 e j. Jackson’s theorem states that the

e j are mutually independent so P(e1 = k1, . . . , en =

kn) =
∏n

j=1 P(e j = k j) [27]. The optimal decoder is
g∗ = E[x1 | xn+1

t
0] [25]. Let the mmse be J∗n = E[(x1 −

g∗)2]. Then J∗n = E[(
∑n

j=1 e j − E[
∑n

j=1 e j | xn+1
t
0])2]. Us-
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ing a corollary of Burke’s theorem, which states that
queue e j is independent of its past departures [28],
gives E[

∑n
j=1 e j | xn+1

t
0] = E[

∑n
j=1 e j]. This implies that

J∗n = var(
∑n

j=1 e j), which when expanded gives Eq. (16).

J∗n =
∑n

j=1 ρ j

(
1 − ρ j

)−2
< nρ (1 − ρ)−2 (16)

The optimal decoder is g∗ = xn+1 + E
[∑n

j=1 e j

]
. The

network performance ratio, ψ∗n, is derived as Eq. (17).

ψ∗n <
J∗n
D1

<
2n

(1 − ρ)2

[
ρ log

1
ρ

]
(17)

Intriguingly, ψ∗n is bounded by a Theorem 1 type ex-
pression. Hence, for any network the bound of [1] will
be violated by birth-following codecs at low maximum
utilisation ρ. Consequently, over a large space of sig-
nalling networks, the capacity does not provide a com-
plete description of the best achievable precision.

3.4. Poisson Sampling at Infinite Capacity
Birth-following broadly outperforms known capac-

ity bounds when ρ is small. This corresponds to the
maximum constraint ( fmax) being large relative to the
mean (〈 f 〉) one. However, birth-following fixes 〈 f 〉 = u
(M|M|1 property). Here this equality is relaxed, and the
limit, fmax → ∞, of the conditions under which J∗ < D
is achieved is scrutinised. This results in unlimited in-
formation transfer (C → ∞) and perfect timing preci-
sion (signalling events can respond immediately to x+

1 ).
Both Poisson and Gaussian channel models predict per-
fect estimation mmse (i.e. D → 0) at this limit [13].
Comparing J∗ to this prediction informs on how well C
appraises precision in an information rich setting.

While transmitting unlimited information may seem
impractical (real cells have finite rates), this analysis
has several applications. First, it models the extreme of
rapid cellular signalling, where X2 is much faster than
X1. This situation is common in genetics and enzyme
kinetics, where time scale separation methods are often
used to eliminate the fast reactions from analysis [45].
This is equivalent to setting fmax → ∞. Second, infinite
reaction rates may be explicitly assumed for simplicity.
In [46] and [47] this is done to model fast binding be-
tween ribosomes and mRNA or substrates and catalysts.

Since signalling is without delay the estimation prob-
lem reduces to one of sampling and reconstructing the
x1 ∼ Po(u) population under the mean constraint 〈 f 〉 =
u/b, with b > 0 as a mismatch parameter. Sampling is
equivalent to encoding and reconstruction is the ana-
logue of decoding. At any sampling time, τ, x2(τ) =

x1(τ) and between samples x2 does not change. As a

result x1 is referred to directly. For simplicity xt is used
for x1(t) (the time index is more important here). With-
out loss of generality x0 = 0 is assumed. The aim is to
design an optimal sampler or stopping strategy, f , that
minimises mse while satisfying E[τ] = 〈 f 〉−1 = b/u.

The sampling time, τ, is a stopping time with respect
to xτ0, and Mt = xt − ut obeys the optional sampling
theorem [48]. This states that stopping times satisfy
E [Mτ] = E [M0] and gives E [xτ] = b when combined
with the E[τ] constraint. This means that only f func-
tions that sample, on average, every b births of X1 are
valid. The optional sampling theorem also applies to
M2

t − ut [48]. The further relation E[M2
τ ] = b results.

The conservation law of Eq. (18), which linearly trades
between the variance of the samples and sample times,
is derived by expanding this and noting that E [Mτ] = 0.

b = var(xτ) + u2 var(τ) (18)

The mse of reconstruction for some decoder g is J =

Eτ[E[(xτ − g)2]] [49]. The τ subscript emphasises that
averages are now across stopped trajectories. This is an
ensemble equivalent to previous mse expressions. The
optimal decoder x̂t = g∗ = E[xt | Fτ] achieves mmse
J = J∗, with Fτ = [x0, f ] as the total causal information
available (t ≤ τ), due to the Markov nature of X1 [24].

Before treating birth-following, deterministic proto-
cols, which sample at a fixed τ, are examined. This is
known as periodic sampling [50]. Let the encoder here
be fd (‘d’ indicates deterministic). As fd has no infor-
mation about X1 then Fτ = x0 and g∗ = E[x] = ut. This
gives J∗d = 1/τ

∫ τ

0 var(xt) dt = b/2. In this case b = uτ and
var(τ) = 0 and so var(xτ) = b by Eq. (18). This scheme
therefore maximises the sample variance.

A birth-following type protocol, called b-following,
can be constructed by sampling every b events. This
forces var(xτ) = 0 so that var(τ) = b/u2, is maximised
(other extreme of Eq. (18)). This classes b-following as
an adaptive sampler [50]. Adaptive samplers are known
to improve upon deterministic schemes, such as the pe-
riodic one, by exploiting informative events [51]. At
b ≤ 1 birth-following is recovered as an adaptive sam-
pler. Biologically, b-following also makes sense since
signalling on a threshold of molecular accumulation is
a common motif in genetic networks [20] [15].

The optimal decoder for b-following over t ≤ τ is
g∗ = E[xt | xt

0 < b] =
(∑b−1

i=0 ipi

) (∑b−1
i=0 pi

)−1
with P(xt =

i) = pi = (ut)ie−ut/i!. Solving gives Eq. (19).

x̂t = ut
(∑b

i=1
(ut)i

i!

) (∑b−1
i=0

(ut)i

i!

)−1
(19)

Eq. (19) satisfies x̂t | b≤1 = 0 ≤ x̂t ≤ ut = x̂t | b→∞. In-
terestingly, these limits recommend a transition in de-

8

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/319889doi: bioRxiv preprint 

https://doi.org/10.1101/319889
http://creativecommons.org/licenses/by-nc-nd/4.0/


coding from maintaining the last sampled value (here
x0 = 0) when b ≤ 1 to a linear, uninformative function
that matches the periodic sampler decoder as b → ∞.
This exemplifies how signalling rate constraints can al-
ter the definition of good performance.

If ti := inf{t : xt ≥ i} then ti ∼ Erlang(i, u) with den-
sity Pti = uiti−1e−ut/(i−1)! and (t0, tb) = (0, τ). The mmse
is J∗b = u/bE{ti}[Ω] with expectations taken over Pti

and Ω =
∫ tb

0 (b − 1 − x̂t)2 dt +
∑b−1

i=1

(
ti − 2

∫ ti
0 (i − x̂t) dt

)
.

These expressions yield J∗b≤1 = 0. Since D = 0 here,
capacity is a reliable proxy for precision when b ≤ 1.
For b ∈ Z∞2 performance is not so promising. This is
unsurprising as samples are taken less frequently than
x1 births and the optimal reconstruction, x̂1, becomes
dependent on (imperfectly) interpolating between these
samples [52]. As a result J∗b increases with b.

At large b, J∗b ≈ J∗d = b/2 and the extra knowl-
edge from adaptive sampling dissipates. At b = 2,
x̂t = ut/1+ut and Ω is

∫ t1
0 (−ut/1+ut)2 dt +

∫ t2
t1

(1/1+ut)2 dt
= 1/u

(
1 + ut1 − 1/1+ut2 − 2 log(1 + ut1)

)
. Using E1(s) :=∫ ∞

s t−1e−tdt gives J∗2 = 1/2 (1 − eE1(1)) ≈ 0.2018. The
b-following approach at b = 2 is illustrated in Fig. 4.
Adaptive samplers at b > 1 therefore cannot achieve
perfect precision, even with infinite capacity.

For comparison, a mmse of J∗2 is achievable on a fi-
nite fmax birth-following channel with just C ≈ 0.4616
nats. Thus, higher capacities do not always guarantee
improved precision. This contrasts the intuitive relation-
ship between information and estimation found in both
[1] and Gaussian channel descriptions. This reflects the
fact that Gaussian capacities only depend on a single pa-
rameter (snr), while Poisson ones are sensitive to two in-
dependent constraints: 〈 f 〉 and fmax. Appendix C shows
that the many combinations of (〈 f 〉, fmax) yielding the
same C can lead to very different notions of absolute
precision. Knowing the channel constraints is vital.

3.5. Removing the Diffusion Approximation

The inability of the capacity bound, D, to completely
specify realisable precision has been proven. This has
been largely attributed to the diffusion approximation
of X1 inherent in D [17]. Here this approximation is
made exact, and fmax → ∞ is considered as in Sec-
tion 3.4. Since C → ∞, the estimation problem is now
one of sampling and reconstruction. Let xt be a Brow-
nian motion with drift that describes the target popula-
tion at time t, with x0 = 0, so that dxt = u dt +

√
u dw

(Eq. (5)) holds. Designing samplers for xt under these
conditions, at which D = u/2C → 0 [1], is investigated.

The goal is to optimally sample and reconstruct xt as
a function of the mean encoding constraint 〈 f 〉 = u/b =

Figure 4: Fast codecs. The target molecule, x1 (dashed in both pan-
els) is sampled and reconstructed (solid in both panels) over Poisson
channels with infinite capacity. Here samples can be taken instanta-
neously ( fmax → ∞) but the average sampling time is set to b/u, with
u as the x1 synthesis rate. The top panel shows the optimal adaptive
b-following codec with b = 2 for x1 as a birth-process. The bottom
panel illustrates the optimal adaptive threshold sampler for any b with
u = 1, but with x1 − ut as a standard Wiener process (see main text).

E[τ]−1, with τ as the sample time. Using the ergodic
Markov nature of xt, the mmse can be computed as the
ensemble average: J∗ = u/bEτ[

∫ τ

0 var(xt | Ft) dt] [49]
[52]. Here Ft is all the causally observable informa-
tion about xt. Sampling and reconstruction is equiva-
lent to encoding and decoding in this problem. Peri-
odic sampling, in which samples are taken every τ time
units with var(τ) = 0 is first examined. As the sampler
is independent of xt, var (xt | Ft) = var(xt) = ut and so
J∗d = u2/2b (var(τ)+b2/u2) = b/2, with ‘d’ for deterministic.

Adaptive or event based sampling can improve per-
formance by capitalising on informative events in xt

[50]. What signifies such an event, however, is not as
clear as when xt ∼ Po(u). Since the sampling problem
with drift is no different from one without it [51], the as-
sociated process, yt, obeying dyt =

√
u dw, is examined.

Further, u = 1 is set without loss of generality (time can
be rescaled linearly to recover the

√
u). Such changes

maintain D = 0 and make sampling results from [49]
and [50] applicable. These state that it is mmse optimal
to sample every time yt crosses a symmetrical threshold
of ±r. This crossing is the informative event.

If τ1 is the first crossing time then E[τ1] = r2 [48]
and r =

√
b. The optimal decoder under this sampler

holds ŷt at the last sample value before t. Fig. 4 shows
ŷt with a threshold sampling event leading to a step-
wise shift in the reconstructed estimate (bottom panel).
The mmse, J∗b , for this scheme is computed in Eq. (20),
which is the limit of a relation derived in [49] using
optimal stopping theory, with e as the natural exponent.
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J∗b = lim
s→0

∫ r
0 e−sz2 ∫ z

0 v2esv2
dv dz∫ r

0 e−sz2
∫ z

0 esv2 dv dz
=

b
6

(20)

In [50] this threshold based sampler was shown to im-
ply a stationary conditional variance of r2/6. As a result
of this and Eq. (20), var(yt | Ft) = b/6, for any time scal-
ing. Since the difference between xt and yt is simply a
drift term then Eq. (20) gives the mmse for xt as well.

At finite 〈 f 〉 (b > 0) it is thus impossible to recon-
struct xt perfectly, in contrast to D. While the optimal
threshold sampler is not analogous to birth-following,
it is similar to a toggle based encoder in [17], which
outperforms the bound for birth-death processes. The
persistence of these mismatches, even when the diffu-
sion approximation is no longer a source of error, high-
lights the difficulty in characterising the precision lim-
its of birth-processes with capacity. The relationship
between information and achievable precision thus re-
mains complicated, and potentially misleading.

3.6. Example Applications
Birth-following is an optimal strategy that has been

found to broadly disrupt the known limits of achievable
precision. Examples of real or modelled biosystems, to
which these results can provide practical insight follow.

(a) Proportional synthesis. In bacteria and eukary-
otes the subunits of many multiprotein complexes are
produced in stoichiometric quantities [53] [54]. This
sharply constrained production, which does not employ
feedback, is called proportional synthesis and relies on
finely tuned birth rates that are proportional to the de-
sired subunit quantities. Tight coupling is necessary be-
cause synthesis is costly and subunit population mis-
matches can lead to misfolding or aggregation errors
[53]. This stoichiometric requirement means that com-
plexes with subunits in a 1:1 ratio would have equal sub-
unit (mean) synthesis rates. This motif applies to stable
proteins, so death rates can be neglected [53].

The mechanism underlying proportional synthesis re-
mains unknown [54]. If a 1:1 complex with proteins
X1 and X2 (a heterodimer) is considered, then a min-
imum model for efficiently generating stoichiometric
quantities could be: x1 ∼ Po(u(t)), x2 ∼ Po( f (t)) with
〈u〉 = 〈 f 〉. This model, which focuses on the subunit
coupling, abstracts multistep processes that could lead
to the formation of individual proteins by making the
synthesis rates arbitrary and time varying. Such an ab-
straction was found sensible in [55] (see Appendix B).

The X1 and X2 birth (synthesis) rates must be coupled
else the mmse between their populations could explode.
Under these conditions birth-following is the optimal

coupling solution (see Section 3.2), minimising mis-
match, while maintaining the mean equality constraint.
This would support the belief that proportional synthe-
sis minimises the negative effects of uncomplexed sub-
units while maximising synthesis efficiency [53] and
could help characterise the limiting precision of this mo-
tif. Other stoichiometric ratios of 1:b could be realised
by modifying birth-following so that it signals b times
for every x1 event, as explored in [18].

(b) Targeted protein degradation. ClpXP is a pro-
tease in E. coli that catalytically degrades mistrans-
lated proteins. [47]. It possesses multiple sites, to
which substrate proteins will often simultaneously bind.
ClpXP achieves efficient degradation by processing sub-
strate molecules in turn, creating a waiting line over its
sites. This has been naturally modelled as a queue with
the protein molecules as customers, and ClpXP as the
server, which processes (i.e. degrades) the customers in
sequence [56] [47]. If e is the number of queueing cus-

tomers then the model used in [47] is e
η(N−M)
−−−−−−→ e + 1,

e
fmaxΘ(e)
−−−−−−→ e−1, with N and M counting the total number

of binding and unoccupied sites, η as a rate constant and
Θ(e) as a step function that is 1 when e > 0.

This conforms to the framework in Section 3.2 with
u = ηN and effectively realises a birth-following
through Θ(e). However, this only holds if fmax is suffi-
ciently large so that e ≤ N. When this model is extended
to allow for multiple protein classes then a more com-
plex queue network is obtained to which results from
Section 3.3 and Appendix A apply. The properties of
birth-following explain several observations such as the
low latency of the waiting line, the approximately expo-
nential departure times of substrate from ClpXP, even
in cases involving complex networks and the high tem-
poral precision of the response, which targets aberrant
proteins for fast degradation but then immediately turns
off once no more excess substrate exists [56] [47].

Birth-following could provide a useful reference for
assessing the mmse achievable by these targeted degra-
dation systems, where X1 is the aberrant protein and the
X2 is the degraded substrate. Minimising the mse corre-
sponds to removing the aberrant protein with minimum
delay. The usefulness of birth-following as an explana-
tory mechanism may hold more generally as many other
enzymes may exhibit queue like processing [56].

Many further applications exist. Models describing
the observational limits of fluorescent proteins [36], ac-
curate protein production from a single transcript [41],
coding performance in sensory transduction [3] [14],
and rate precision in phylodynamic processes [57] [58]
are all amenable to this analysis. This follows from the
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ubiquitous importance of discreteness, stochastic de-
lay and timing accuracy in biosystems. Birth-following
could serve as a null hypothesis here for contextualis-
ing observed performance against realisable limits, pro-
viding insight without the need for comprehensive bi-
ological knowledge. Systems not implementing birth-
following under the relevant constraints, for example,
cannot be optimising for speed. The capacity would not
be a reliable proxy for precision in these systems.

4. Discussion

Noise plays a formative role in cell biology, of-
ten shaping the mechanisms and motifs that regulatory
molecular networks have to implement in order to attain
precise functionality [4]. Many of these mechanisms,
such as those behind stoichiometric synthesis or cou-
pled feedback, are still unknown or under investigation
[59] [22] [60]. Information theory has proven useful
in this context by allowing initial analyses of what sig-
nalling pathways can and cannot achieve without requir-
ing detailed knowledge of the complex molecular net-
work involved [3] [8]. Specifically, studies have com-
puted the capacities of signalling pathways and used
this to support or refute hypothetical motifs about the
achievable precision on that pathway [7] [61] [5].

While several important insights have emerged from
this approach, the relationship between capacity and
precision is still unclear and sometimes deceptive, es-
pecially when the discreteness and causality of the in-
formation transmitted on a pathway are taken into ac-
count [1] [14] [17]. This work cautions against over-
interpreting this relationship by clarifying, for a class of
simple but non-trivial birth-process networks, what is
an optimal signalling mechanism (encoder) and how it
redefines the plausibly achievable estimation precision
on a signalling pathway of known capacity.

By taking a discrete, Poisson channel approach to sig-
nalling, it was found that birth-following, a scheme pre-
viously thought heuristic [17], is actually the unique
minimum time encoding solution for birth-process es-
timation (Section 3.1). Birth-following behaves like
a molecular switch or relay [62], activating at maxi-
mum speed on an observed target birth, and then de-
activating with minimum delay once no events remain
to be signalled. This scheme achieves the most precise
signal timing possible (within its rate constraints), and
could be an important null hypothesis for evaluating ob-
served biomolecular motifs. A regulatory birth-process
network that fails to even approximate birth-following
likely does not prioritise response speed.

The optimal properties of birth-following also make
it an excellent candidate for synthetic circuit design, es-
pecially when multiple, precisely timed signals are of
interest [62]. This encoder could potentially be re-
alised either exactly using a queueing approach or ap-
proximately using circuits that implement sharp, sig-
moidal Hill functions (see Appendix B) [56]. Inter-
estingly, birth-following, which can also be thought of
as a coupled random telegraph, would not have been the
optimal encoding choice had a Gaussian channel model
been used. While random telegraph signals achieve the
capacity of Poisson channels [26], only normally dis-
tributed inputs can maximise information flow on Gaus-
sian ones [12]. This hints at how continuity approxima-
tions can lead to misleading conclusions [14].

Given its optimality, birth-following was used to
probe how realisable precision compares to the best
known theoretical bounds from [1], which quantify how
Poisson channel capacity specifies maximum precision.
Birth-following was found to achieve higher precisions
(lower mse values), provided the dynamic range of the
channel, fmax/〈 f 〉, was large enough and the mean sig-
nalling rate 〈 f 〉 was no smaller than the mean target
birth-rate. This violation persisted over wide generalisa-
tions to both the target molecule rate and the signalling
network architecture (Section 3.2 and Section 3.3). Mis-
matches were maintained even when death reactions,
which model molecular turnover, were included, though
an extra channel was needed to compensate for the ex-
tra death noise (see Appendix A). These results greatly
extend and contextualise those in [18].

Several biological systems, including those imple-
menting proportional synthesis and targeted degradation
(Section 3.6), lie within this generalised birth-following
framework [56] [20] [53]. It appears that channel ca-
pacity is not sufficient to completely characterise, and in
fact may underestimate, the best possible performance
on a signalling pathway. This underestimation emerges
from existing bounds using a diffusion process to ap-
proximate the dynamics of the target molecule (see Sec-
tion 2.2). When fmax/〈 f 〉 is large and 〈 f 〉 is no smaller
than the average target birth rate, signalling events can
respond to individual jumps in the target species. Target
discreteness therefore cannot be ignored, and may be
doubly important in cellular systems given that many
molecular species are present in low numbers [4].

The 〈 f 〉 and fmax conditions that promote mismatches
correspond to Poisson channels with high capacity. This
suggests that the common belief of increased capac-
ity implying increased precision still holds, just not al-
ways as derived in [1]. To challenge this assertion
fmax and hence capacity were allowed to become un-
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bounded, resulting in the estimation problem reducing
to one of sampling and reconstruction. In this case both
the bound from [1] and standard Gaussian channel anal-
yses predict that zero reconstruction error is possible.

By generalising birth-following to b-following and
deriving optimal reconstruction functions, it was proven
that perfect precision is impossible for any 〈 f 〉 smaller
than the target birth rate (Section 3.4). To explore
this observation further the sampling problem was re-
examined with the target species conforming to a dif-
fusion process so that the bounds of [1] become exact.
By applying the known optimal threshold-based sam-
pler for this problem [51], it was found that perfect
precision can never be achieved at any finite 〈 f 〉 (Sec-
tion 3.5). Channel capacity, C, therefore cannot be used
as a bijective predictor of biological precision.

Analyses that compute C directly (e.g. by calculat-
ing the maximum mutual information of a pathway [3])
could potentially be misleading since the various com-
binations of 〈 f 〉 and fmax that map to the same computed
C may impose very different restrictions on the attain-
able precision. For example, sometimes the same C and
fmax correspond to both a 〈 f 〉 > u and 〈 f 〉 < u setting
(see Appendix C). The bound of [1] would then overes-
timate the achievable precision in the first case, and un-
derestimate it in the second. To truly gauge the precision
achievable on a pathway, it is therefore more important
to establish what signalling rate constraints hold. This
aligns with the implication in [22] that more experi-
mental investigation must focus on ‘how biochemical
properties place constraints on individual motifs’.
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Appendix A. Death Reaction Networks

The pure birth-processes analysed in the main text are
good models for the accumulation of stable molecules.
Here a standard protein production-degradation model
[2], x1

u
−→ x1 + 1, x1

µx1
−−→ x1 − 1, is used to examine

how deaths alter the information structure and hence the
form of optimal encoders. These reactions suggest that
x1 can be thought of as the number of customers in an
M|M|∞ queue with utilisation ρ∞ = u/µ = E[x1] [27].
The ‘∞’ refers to an unlimited number of servers. The
aim is to compute and compare J∗ and D for this system.

The network of Fig. A1 uses two channels, employ-
ing birth-following between x+

1 � x2 and x−1 � x3.
The combined scheme is termed birth-death following
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(x3 tracks molecular deaths). Here x2 and x3 are birth-
processes, and the e1 and e2 queues are both M|M|1 by
birth-following. Identical signalling rate constraints are
placed on both channels. By applying Burke’s theorem
to the M|M|∞ queue, it is found that customers enter
both M|M|1 queues with rate u (see Section 3.3). The
utilisation of both e1 and e2 queues is then ρ = u/fmax.

x1

e1

e2

x+
1

x2

x−
1

x3

Figure A1: Birth-death following network. Signalling molecules
x2 and x3 observe the target population births, x+

1 , and deaths, x−1 .
The x1 queue is M|M|∞ with number of customers equal to the target
population size. The e1 and e2 queues are M|M|1 by birth-following.

Since two parallel channels are used the Poisson ca-
pacity doubles [1]. Using the queueing structure in
Fig. A1 yields the new capacity bound of Eq. (A.1).

D =
(
−2 log ρ + ρ∞

−1
)−1

(A.1)

Let Ft = [x2
t
0, x3

t
0] be all the observable information.

The optimal decoder is g∗ = x̂1 = E [x1 | Ft] [24].
No extra information about one M|M|1 queue, given
its output, is obtained by observing the output of the
other M|M|1 [18] so E [ei | Ft] = E[ei | x2

t
0] = E[ei] for

i ∈ Z2
1. The last equality is from Theorem 1. The mmse

is J∗ = E[(x1−E[x1 | Ft])2] with e = x1− x̂1. Expanding
gives J∗ = E[(e − (E[e1 | Ft] − E[e2 | Ft]))2].

Using previous equalities and that E[e1] = E[e2]
leads to J∗ = E[(x1−(x2−x3))2]. The optimal decoder is
then the simple population difference x̂1 = g∗ = x2 − x3.
Substituting e1−e2 = x1−(x2−x3), withω = corr (e1, e2)
and var(e1) = var(e2) = ρ(1 − ρ)−2 gives Eq. (A.2).

J∗ = 2(1 − ω)ρ(1 − ρ)−2 (A.2)

The correlation derives from the partial synchronisation
of the M|M|1 inputs and results in what is known as a
Flatto-Hahn-Wright description [63]. The relative per-
formance ratio, ψ∗ = J∗/D then follows as Eq. (A.3).

ψ∗ =
2(1 − ω)
(1 − ρ)2

[
2ρ log

1
ρ

+
ρ

ρ∞

]
(A.3)

Since synchrony is never perfect: 0 ≤ ω < 1. Further,
ρ∞ = E[x1] > 0. For small ρ, −2ρ log ρ � ρ/ρ∞ and

ψ∗ ≈ 4(1−ω)/(1−ρ)2
(
−ρ log ρ

)
≤ 4/(1−ρ)2

(
−ρ log ρ

)
. This

generalises Theorem 1. Birth-death following therefore
also outperforms the capacity bound, and is analogous
to birth-following for a pure birth-process. However,
its efficiency, η = ψ∗b/ψ∗bd (‘b’ and ‘d’ signify births and
deaths), is reduced due to the death noise, which in-
creases ψ∗. Here η = 1/2 (1 − ω)−1 ≥ 1/2, so up to 50%
of the birth-following precision is lost due to deaths.

Deaths therefore change the information structure of
the signalling problem, requiring two channel encoding.
Single channel solutions are possible, but require com-
plex, non-biological codecs [17]. Importantly, it is con-
sistently found that birth-following is a high performing
strategy and that capacity does not fully depict achiev-
able molecular precision. Note that, practically, both
births and deaths can be monitored by tracking molecu-
lar population numbers across time [64].

Appendix B. Biological Realisability

Birth-following is an optimal encoder for problems in
which a target molecule X1 must be sensed, monitored
or tracked by a signalling one, X j. Mechanistically, it
acts as a minimum time molecular switch or relay; ac-
tivating on an event (X1 births), completing a signalling
objective (effecting an X2 birth) and then deactivating
with maximum speed. This allows it to achieve sharp
timing (see Fig. 2), attain desired signalling thresholds
quickly and make multiple signals efficiently by rapidly
turning on and off [62]. Consequently, as it could be
useful for synthetic genetic circuit design, the biologi-
cal realisability of birth-following is examined.

Many biosystems (e.g. cooperative ligand binding
or transcriptional regulation) implement non-linear, sig-
moidal responses to target molecules that are described
by Hill functions [65]. Eq. (B.1) defines a rising
Hill function with maximum fmax, input e, coefficient
h(which controls its shape) and midpoint at e = 1.

f (e, h) = fmax

(
1 + e−h

)−1
(B.1)

Fig. B1 shows that as h increases Eq. (B.1) converges
to Eq. (6). Birth-following can therefore be easily ap-
proximated as a Hill function response to the excess in
signalling over target molecules (i.e. e = x1 − x2).

Hill functions have previously been realised, but at
moderate h. Toggle switch circuits can, however, model
severe Hill type responses and so synthetically mimic
Eq. (6) [19]. Birth-following can also be implemented
using its queuing interpretation. While this has not been
explicitly done yet, a similar queueing circuit has been
designed, for ClpXP modelling (Section 3.6) in [56].
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Figure B1: Hill function encoding. For a molecular count, e, Hill
function encoders, f (e, h) are shown (solid grey) for a threshold value
of 1, and with Hill coefficient, h. As h increases the Hill functions
approximate a birth-following switch (Eq. (6)) (dashed grey).

One issue that synthetic circuits face is that of context
dependence. While circuits are often designed to obtain
some desired functionality, they may fail to do so once
integrated into cellular processes due to changing envi-
ronments, fluctuating in-cell conditions or unexpected
coupling. These factors form the cell context [66]. An
advantage of birth-following is that it maintains its prop-
erties (at least under the condition of fast signalling or
low ρ) despite environmental fluctuations.

Consider a synthetic problem where birth-following
is designed to allow X2 to monitor X1 under the be-
lief that x1 ∼ Po(λ). Let z, a stochastic environmental
variable, unexpectedly modulate X1 so that in the cell
Po(λr(z)) is the actual system, with r(z) as some func-
tion. This environmental effect can be marginalised so
x1 ∼ Po(λE[h(z) | x1]) [55]. If this rate, which is now
deterministic in x1 [25], can be bounded by a constant
u then results from Section 3.2 apply. Birth-following is
therefore context independent under bounded perturba-
tions, and suitable for synthetic realisation.

Appendix C. Mapping capacity to constraints

Experimental approaches to ascertaining the absolute
precision of a signalling pathway often compute capac-
ity, C, directly from empirical probability distributions
[3] [7]. These distributions are used to calculate the
maximum mutual information, which estimates the ca-
pacity. This is then mapped to a measure of precision
(e.g. mse) by assuming either a Gaussian or Poisson
channel model. Under both models a bijective relation-
ship between capacity and precision exists [13] [1].

The latter model and its precision relationship (the dis-
tortion bound of [1]) represents the current state of the
art, and has yielded several important insights.

However, as shown in Section 3.4 and Section 3.5 in
the case of the Poisson capacity becoming very large,
varying absolute precisions can be attained at the same
capacity. Depending on the existing combination of
mean, 〈 f 〉, and maximum, fmax, signalling constraints,
the bounds of [1] can either be violated or found valid.
This work posits that this is a consequence of the non-
bijective relationship between C and its constraints.

Figure C1: Non-bijective capacity-constraint relationships. All
possible combinations of the mean (〈 f 〉) and maximum ( fmax) sig-
nalling rate satisfying the ratio C/u = 1 are shown. Knowing only the
capacity (C) is insufficient for characterising absolute precision. Even
specifying C and fmax is not enough as two different 〈 f 〉 values corre-
spond to these settings. If C is very large (see Section 3.4), then these
settings can lead to strikingly distinct beliefs about precision (demar-
cated by arrows with J∗ as the mmse and D the bound [1]).

For a given C with 〈 f 〉 = ku and fmax = µu the expres-
sion in Eq. (2) can be manipulated to obtain µ = k e C/ku,
with e as the natural exponent. Hence a range of sig-
nalling constraints can be combined to obtain the same
C. This curve is given in Fig. C1 at C/u = 1. While C
alone is clearly insufficient for characterising precision,
the additional knowledge of fmax is still inadequate as
two 〈 f 〉 values can be valid, one at k < 1 and one at
k > 1. If C is very large then these conditions can cor-
respond to the best achievable precision or mmse, J∗,
either being over or underestimated by the bounds, D
from [1]. This was shown in Section 3.4 with b = 1/k.
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