
Detection of shared balancing selection in the absence of trans-species

polymorphism

Xiaoheng Cheng1,2 and Michael DeGiorgio∗2,3,4

1Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
2Department of Biology, the Pennsylvania State University, University Park, PA, USA

3Department of Statistics, the Pennsylvania State University, University Park, PA, USA
4Institute for CyberScience, the Pennsylvania State University, University Park, PA, USA

Abstract

Trans-species polymorphism has been widely used as a key sign of long-term balancing selection across

multiple species. However, such sites are often rare in the genome, and could result from mutational

processes or technical artifacts. Few methods are yet available to specifically detect footprints of trans-

species balancing selection without using trans-species polymorphic sites. In this study, we develop

summary- and model-based approaches that are each specifically tailored to uncover regions of long-term

balancing selection shared by a set of species by using genomic patterns of intra-specific polymorphism

and inter-specific fixed differences. We demonstrate that our trans-species statistics have substantially

higher power than single-species approaches to detect footprints of trans-species balancing selection, and

are robust to those that do not affect all tested species. We further apply our model-based methods to

human and chimpanzee whole genome sequencing data. In addition to the previously-established MHC

and malaria resistance-associated FREM3/GYPE regions, we also find outstanding genomic regions

involved in barrier integrity and innate immunity, such as the GRIK1/CLDN17 intergenic region, and

the SLC35F1 and ABCA13 genes. Our findings not only echo the significance of pathogen defense,

but also reveal novel candidates in maintaining balanced polymorphisms across human and chimpanzee

lineages. Finally, we show that these trans-species statistics can be applied to and work well for an

arbitrary number of species, and integrate them into open-source software packages for ease of use by

the scientific community.
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Introduction

Balancing selection is an evolutionary mechanism for maintaining diversity within populations

(Charlesworth, 2006). A number of different modes of balancing selection exist, such as heterozygote ad-

vantage (Charlesworth, 2006), pleiotropy (Johnston et al., 2013), negative frequency-dependent selection

(Mitchell-Olds et al., 2007), environmental fluctuations (Bergland et al., 2014), and segregation distortion

balanced by negative selection (Charlesworth and Charlesworth, 2010; Ubeda and Haig, 2004). Though

these different modes vary in how they maintain polymorphism over long periods of time, they all leave

behind similar genomic signatures of increased density of polymorphic sites nearby a balanced polymor-

phism, and often an enrichment of middle-frequency alleles in a narrow window surrounding the selected

locus (Charlesworth, 2006). These characteristic footprints have been utilized by a number of statistical

approaches for detecting long-term balancing selection (e.g., Hudson et al., 1987; Tajima, 1989; Andrés

et al., 2009; Leffler et al., 2013; DeGiorgio et al., 2014; Gao et al., 2015; Hunter-Zinck and Clark, 2015;

Sheehan and Song, 2016; Siewert and Voight, 2017; Bitarello et al., 2018).

However, until recently, the availability of methods for detecting long-term balancing selection has

been limited, and the most commonly-used approaches were the Hudson-Kreitman-Aguadé (HKA; Hudson

et al., 1987) and Tajima’s D (Tajima, 1989) statistics. While the HKA statistic captures increases in

polymorphism density, it does not consider allele frequency information, and therefore cannot sense the

enrichment of intermediate-frequency alleles. On the other hand, Tajima’s D measures the distortion of

the allele frequency spectrum from the expectation under a constant size neutrally-evolving population,

and has the ability to identify the footprint of an increased number of middle-frequency alleles in a genomic

region. However, as it does not require an outgroup to call substitutions, Tajima’s D ignores information

on changes in the density of polymorphism nearby a selected site. Despite the frequent application of these

two statistics, neither is specifically designed for long-term balancing selection, and both have been shown

to have limited power under such scenarios (DeGiorgio et al., 2014; Siewert and Voight, 2017; Bitarello

et al., 2018).

There has been a recent surge in the development of methods for specifically identifying signatures of

long-term balancing selection (DeGiorgio et al., 2014; Gao et al., 2015; Siewert and Voight, 2017; Bitarello

et al., 2018). Based on the Kaplan-Darden-Hudson model (Kaplan et al., 1988; Hudson and Kaplan, 1988),

DeGiorgio et al. (2014) presented a mechanism to compute probabilities of polymorphism and substitution

under long-term balancing selection, and developed the likelihood ratio test statistics T1 and T2. The latter

statistic uses both polymorphism density and allele frequency information, and exhibits higher power than
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a number of methods (DeGiorgio et al., 2014; Siewert and Voight, 2017). Complementary to model-based

methods, whose high power partly relies on sophisticated data, novel summary statistics have also recently

been developed for detecting long-term balancing selection. Notably, two new summary statistics, β

(Siewert and Voight, 2017) and non-central deviation (NCD; Bitarello et al., 2018), have been proposed to

capture departures of allele frequencies in a genomic window from a certain equilibrium frequency, and both

have been demonstrated to outperform the HKA and Tajima’s D statistics. Moreover, β, which adopts a

formulation similar to Tajima’s D, regards the equilibrium frequency as that of the polymorphic site that

a window is centered on, whereas NCD takes a user-assigned value. Further, while β does not benefit much

from incorporating sites of substitution (Siewert and Voight, 2017), Bitarello et al. (2018) have shown that

NCD exhibits substantially higher power and outperforms β when substitutions are provided in addition

to polymorphisms.

However, while several key examples (Klein et al., 1998; Ségurel et al., 2012; Leffler et al., 2013; Teixeira

et al., 2015) have illustrated that it is possible and potentially common for long-term balancing selection to

be established prior to speciation events, few extant approaches address the issue of identifying loci under

balancing selection shared by multiple species via genome-wide scans. Traditionally, polymorphisms shared

across species have been used in many studies as a tell-tale sign of shared long-term balancing selection (e.g.,

Takahata et al., 1992; Klein et al., 1998; Cho et al., 2006; Ségurel et al., 2012; Leffler et al., 2013), as they

are highly suggestive of its footprints (Wiuf et al., 2004). However, such co-incident (i.e., trans-species)

polymorphisms can also result from high mutation rates or technical artifacts introduced in sequencing

and mapping. Gao et al. (2015) addressed this issue by deriving, under the Kaplan-Darden-Hudson model,

the length of the balanced ancestral segment, the expected number of trans-species polymorphisms, as well

as the extent of linkage disequilibrium between such polymorphisms. Although powerful, this framework

is difficult to extend to an arbitrary number of species, and also requires that such trans-species poly-

morphisms are not missing from the dataset due to sampling or filtering. To circumvent some of these

hurdles, it would be useful to be able to uncover footprints of ancient trans-species balancing selection

by only using between-species substitutions and within-species polymorphisms, rather than trans-species

polymorphisms.

In this study, we present a number of summary- and model-based approaches for detecting ancient trans-

species balancing selection that do not rely on trans-species polymorphisms. In particular, we adapted the

framework of DeGiorgio et al. (2014) to construct likelihood ratio test statistics, T1,trans and T2,trans, to

detect trans-species balancing selection (see Theory and Supplementary Note 5). Moreover, we modified
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the HKA test so as to better accommodate genomic data of multiple species (denoted as HKAtrans; see

Supplementary Note 1), and extended the NCD statistic to NCDtrans (see Supplementary Note 2) for appli-

cation on multi-species data. Note that although the β statistic has been demonstrated to perform well in

detecting ancient balancing selection in single species, it does not benefit from the inclusion of substitutions

(as shown by Siewert and Voight, 2017), which can be highly informative when analyzing population-scale

genomic data of multiple species. We therefore chose to only consider single- and trans-species variants

of T1, T2, HKA (summary statistic analogue to T1), and NCD (summary statistic analogue to T2). We

performed extensive simulations to evaluate the performances of these methods, and addressed a variety

of confounding factors such as recent population size changes, inaccurate recombination maps, elevated

mutation rates, convergent balancing selection, and window size used to compute each statistic. Next, we

applied the model-based T2,trans statistic to whole-genome human and chimpanzee data to gain insights

on ancient balancing selection affecting these lineages. Further, so that these multi-species statistics can

be readily applied by the scientific community, we implemented the model-based and summary statis-

tic approaches into new software packages MULLET (MULti-species LikElihood Tests) and MuteBaSS

(MUlTi-spEcies BAlancing Selection Summaries), respectively.

Theory

Given a sample of n lineages, the equilibrium frequency x of a balanced polymorphism, and population-

scaled recombination rate ρ = 2Nr between a focal neutral site and a putative selected site, DeGiorgio

et al. (2014) demonstrated how the expected tree height H(n, x, ρ) and expected tree length L(n, x, ρ) of

a neutral genealogy linked to a site under strong balancing selection can be efficiently calculated. These

quantities can be utilized to identify genomic segments undergoing ancient balancing selection by using

polymorphism and divergence data in a pair of species.

Detecting trans-species balancing selection on two species

Consider polymorphism data from a pair of species, 1 and 2, in which we have obtained sites that are

polymorphic only in species 1, polymorphic only in species 2, and substitutions (fixed differences) between

the species. Suppose that at a site in the genome, the number of lineages sampled from species 1 is n1 and

the number from species 2 is n2. Denote the collection of sample sizes for the two species at a locus by

n = [n1, n2]. Further, suppose that by using genome-wide data, the estimated coalescence time between

the two species is Ĉ. Assuming a site is ρ recombination units from a site with alleles maintained at
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frequencies x and 1 − x through strong balancing selection, analogous to the computations of DeGiorgio

et al. (2014), the probability (Figure 1) of observing a polymorphic site only in species k, k = 1 or 2, is

pk(n, ρ, x) =
L(nk, x, ρ)

2Ĉ −H(n1, x, ρ)−H(n2, x, ρ) + L(n1, x, ρ) + L(n2, x, ρ)

and the probability of observing a substitution between the species is

s(n, ρ, x) =
2Ĉ −H(n1, x, ρ)−H(n2, x, ρ)

2Ĉ −H(n1, x, ρ)−H(n2, x, ρ) + L(n1, x, ρ) + L(n2, x, ρ)
.

Note that s(n, ρ, x) = 1 − p1(n, ρ, x) − p2(n, ρ, x), and that our model assumes that species 1 and 2 are

reciprocally monophyletic.

A composite likelihood ratio test

We can use these probabilities of polymorphism and substitution to create a likelihood ratio test for

detecting trans-species balancing selection. Consider a genomic window containing I informative sites,

where an informative site is a polymorphism only in species 1, a polymorphism only in species 2, or a

substitution. Let the sample sizes in species 1 and 2 at site i, i = 1, 2, . . . , I, be ni1 and ni2, respectively.

Further, suppose the derived allele counts in species 1 and 2 at site i are ai1 and ai2, respectively. Moreover,

assume site i is ρi recombination units from a site that we believe to be undergoing strong balancing

selection, maintaining a pair of alleles at frequencies x and 1 − x in the population. We call this site

under selection our test site. Assuming that ni = [ni1, ni2] and ai = [ai1, ai2], we define the vectors

N = [n1,n2, . . . ,nI ], A = [a1,a2, . . . ,aI ], and ρ = [ρ1, ρ2, . . . , ρI ] for convenience. Under the alternative

hypothesis of balancing selection, the composite likelihood that the test site is undergoing strong long-term

balancing selection is

L1(N,ρ, x ; A) =

I∏
i=1

[
s(ni, ρi, x)1{ai=ni1e1∨ai=ni2e2} +

2∑
k=1

pk(ni, ρi, x)

nik−1∑
j=1

1{ai=jek}

]
,

where ek is the two-dimensional standard basis vector in which all elements are 0 except for the kth element,

which is 1. This likelihood function is maximized at x̂ = arg max
x∈(0,1) L1(N,ρ, x ; A).

If we condition only on informative sites, then denote the proportion of such sites across the genome that

are polymorphic only in species k with derived allele count a, 0 < a < nk, by p̂k(n, a), and the proportion

of such sites that are substitutions between the species by ŝ(n). From these definitions, it follows that the
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proportion of informative sites that are polymorphic only in species k is p̂k(n) =
∑nk−1

a=1 p̂k(n, a). Under

the null hypothesis of neutrality, the composite likelihood that the test site is evolving neutrally is

L0(N ; A) =
I∏

i=1

[
ŝ(ni)1{ai=ni1e1∨ai=ni2e2} +

2∑
k=1

p̂k(ni)

nik−1∑
j=1

1{ai=jek}

]
.

Based on the likelihoods under the null hypothesis of neutrality and the alternative hypothesis of trans-

species balancing selection, we can compute a log composite likelihood ratio test statistic that the test site

is undergoing strong long-term trans-species balancing selection as

T1,trans = 2{lnL1(N,ρ, x̂ ; A)− lnL0(N ; A)}.

A composite likelihood ratio test using the allele frequency distribution

DeGiorgio et al. (2014) demonstrated that such composite likelihood approaches can exhibit greater power

if information on the frequency spectrum is used in addition to information on the proportions of polymor-

phisms and substitutions in a genomic region. For a sample of n alleles, conditioning on a mutation leading

to a polymorphic site and assuming a locus undergoing strong balancing selection maintaining a pair of

alleles at frequencies x and 1− x, the probability under the Kaplan-Darden-Hudson model (Kaplan et al.,

1988; Hudson and Kaplan, 1988) of observing a derived allele with count a, 0 < a < n, at a neutral locus

ρ recombination units away from the selected site is f(n, a, ρ, x). Calculating f(n, a, ρ, x) analytically is

non-trivial, and we instead utilize a set of frequency spectra simulated under the Kaplan-Darden-Hudson

model as in DeGiorgio et al. (2014). Using the knowledge of this distribution of allele frequencies, we can

modify the likelihood under the alternative hypothesis of trans-species balancing selection by including

information on the frequency spectrum as

L1(N,ρ, x ; A) =
I∏

i=1

[
s(ni, ρi, x)1{ai=ni1e1∨ai=ni2e2} +

2∑
k=1

pk(ni, ρi, x)

nik−1∑
j=1

f(nik, j, ρi, x)1{ai=jek}

]
,

which is maximized at x̂ = arg max
x∈(0,1) L1(N,ρ, x ; A).

Analogous to the case without the distribution of allele frequencies, under the null hypothesis of neu-

trality, the composite likelihood that the test site is evolving neutrally is

L0(N ; A) =
I∏

i=1

[
ŝ(ni)1{ai=ni1e1∨ai=ni2e2} +

2∑
k=1

nik−1∑
j=1

p̂k(ni, j)1{ai=jek}

]
.
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Based on the likelihoods under the null hypothesis of neutrality and the alternative hypothesis of trans-

species balancing selection, we can compute a log composite likelihood ratio test statistic that the test site

is undergoing strong long-term trans-species balancing selection as

T2,trans = 2{lnL1(N,ρ, x̂ ; A)− lnL0(N ; A)}.

Results

To evaluate the performances of both extant and novel methods for detecting long-term balancing selection,

we chose to consider statistics that operate on the same set of informative sites, which are comprised of

within-species polymorphisms and cross-species substitutions. Specifically, we considered single- and trans-

species variants of T1 and its summary statistic analogue HKA (see Supplementary Note 1), as well as T2

and its summary statistic analogue NCD (see Supplementary Note 2). Considering there are eight different

statistics to compare, hereafter we will refer to those designed for two or more species as “trans-species

methods”, and the original variants as “single-species methods”. For empirical application, we applied the

trans-species variant of the T2 statistic (T2,trans) to whole genome data from humans (The 1000 Genomes

Project Consortium, 2015) and chimpanzees (Auton et al., 2012) to examine ancient balancing selection

affecting both great ape species.

Evaluating method performance on simulated data

We employed the forward-time simulator SLiM (Messer, 2013) to generate sequences of length 50 kilobases

(kb) evolving along a three-species phylogeny (Figure 2; see Materials and Methods), under diverse selection

scenarios with varying selection strength (s), dominance parameter (h), and selected allele age, as well as

confounding factors such as population size changes, skewed recombination rates, and elevated mutation

rates. Because footprints of ancient balancing selection are typically narrow (Hudson and Kaplan, 1988;

Charlesworth, 2006; Leffler et al., 2013; Siewert and Voight, 2017), and considering that summary statistics

for detecting such footprints often reach optimal performances when utilizing data from neighboring regions

of similar length, we adopted a window size of one kb for single- and trans-species variants of HKA and

NCD when applying them on simulated data to optimize their performances (see Figure S1 for their

performances using window sizes of 0.5, 1, 1.5, 2, 2.5 and 3kb. In particular, the footprints of long-term

balancing is in theory 1/(4Ner), which equals 2.5 kb when assuming a recombination rate of r = 10−8

per site per generation and an effective population size of Ne = 104. To ensure one kb is indeed a better
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choice of window size than 2.5 kb, we tested and compared their power for detecting balance selection of

varying age under three distinct demographic models (Figures 2 and S2, for methods using one-kb and

2.5-kb windows, respectively). To match the amount of data available at each step (e.g., DeGiorgio et al.,

2014; Siewert and Voight, 2017), we performed scans with the T1 and T2 variants with 10 informative sites

on either side of the test site (see Supplementary Note 3).

High power of trans-species methods for detecting shared balancing selection

To assess the performance of each method in detecting balancing selection of varying age, we first modeled

heterozygote advantage with selective coefficient s = 0.01 and dominance coefficient h = 100 at a genomic

position, with the selected allele introduced at varying time points along the branch ancestral to species H

under a demographic history of constant population size (Figure 2A). We then evaluated the powers at a

1% false positive rate (FPR) for each method. All single-species methods gain power with increasing age at

which the selected allele was introduced (Figure 2D). For example, the power of T2 for detecting balancing

selection has increased from almost zero to over 0.7 when the age of selection increased from one to 15

million years. Meanwhile, all trans-species methods have minimal power to detect selection established

after species H and C diverge, and exhibit a surge of power for balancing selection predating the species

split (Figure 2D). This jump in power is both expected and sensible because trans-species methods take

polymorphism data from both species into consideration, and the adaptive changes in only one of the two

should not be conspicuous enough for trans-species methods. Additionally, when balancing selection was

established prior to species divergence, all trans-species methods show higher power than methods designed

for single species, likely due to the greater amount of information used in their inferences.

For methods designed to operate on the same number of species, their relative performances follow

similar orders. Both only utilizing polymorphism density data, the HKA and T1 variants show comparable

powers (Figure 2D). Integrating allele frequency information in addition to polymorphism density data,

both T2 and NCD variants outperform the T1 and HKA variants. Moreover, the T2 variants exhibit

substantially higher power than the NCD variants, which is sensible given that T statistics are based

on an explicit model and take distances between informative sites and the test site into consideration.

The superior performance of T2 variants over other approaches remains consistent across varying selection

strengths s and dominance coefficients h (Figures S3A, D, and G), and both display decreased power

as selective advantage of heterozygotes (i.e., composite parameter hs) decreases. T1 and HKA still have

similar powers, and both perform better when hs decreases. Meanwhile, the close margin between the
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HKA and T1 variants is probably because HKA and HKAtrans were given optimal window sizes, whereas

T1 and T1,trans may be able to effectively use information outside of the window size it was given. When

the window size increases (Figure S4), T1 variants exhibit higher power than HKA variants.

Recent collapses or expansions in population size can also affect the allele frequency spectrum, as

well as polymorphism density, and therefore potentially confound inferences of balancing selection. To

test the robustness of each method to recent population size changes, we simulated models with a recent

bottleneck (Figure 2B) or expansion (Figure 2C), using parameters inferred by Lohmueller et al. (2009)

(see Materials and Methods). We first tested the robustness of each statistic to falsely attributing effects

of population bottlenecks or expansions as footprints of balancing selection (Figure S5). These results

illustrate that all methods are robust to neutral regions that are affected by strong recent bottlenecks

(Figure S5A) and by recent expansions (Figure S5B). When species H underwent a recent bottleneck

(Figure 2E) or expansion (Figure 2F), we observed that all trans-species methods still maintain high power

to detect balancing selection whose onset predated the species divergence, outperforming their single-species

counterparts. Moreover, their specificity for trans-species balancing selection also remained unaltered, and

these properties also persist across different selection parameters (Figure S3).

Distinguishing ancestral and convergent balancing selection

The trans-species statistics we developed for shared balancing selection evaluate whether there exists an

increased density of polymorphic sites, an enrichment of middle-frequency alleles at polymorphic sites, or

both, and whether this pattern is shared across the species examined. Because they do not directly address

whether balancing selection on a candidate site predates speciation as would that of Gao et al. (2015), the

statistics may be sensitive to shared, non-ancestral (i.e., convergent) balancing selection.

To test whether our trans-species methods can distinguish ancestral from convergent balancing selection,

we simulated three scenarios in which a mutation under selection (s = 0.01 with h = 100) was introduced

in one species (Figures S6A and D), two selected mutations were introduced independently in both sister

species at the same site (Figures S6B and E), and two selected mutations were introduced independently

in both sister species but at different sites that are 10 kb apart (Figures S6C and F). Unsurprisingly, all

trans-species statistics exhibit substantially higher power than single-species statistics when the balanced

alleles independently arose in both species at the same site (Figures S6B and E), compared to when only

one species was affected (Figures S6A and D). This result suggests that convergent balancing selection

can indeed leave similar footprints as ancestral balancing selection, provided it is old enough (four million
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years, or 2× 105 generations in our simulations), and acts on the same site in both species.

Nonetheless, when balancing selection in two species occurred instead at two nearby sites, the trans-

species statistics (Figures S6C and F) show only moderate increases in power to falsely identify this

convergent process as ancestral, and perform no better than the single-species variants. This robustness is

sensible because long-term balancing selection leaves a small footprint in the genome (Hudson et al., 1987;

Charlesworth, 2006; Siewert and Voight, 2017; Bitarello et al., 2018), such that the footprints around sites

that are relatively close in the genome would still be unlikely to overlap and confound our trans-species

methods. These results suggest that balancing selection acting on distinct sites has limited misleading

effects for trans-species methods, provided the distance between these sites is larger than the expected long-

term balancing selection footprint. Further, in situations where the distance between selected sites is smaller

than the selection footprint, the biological mechanisms leading to their maintenance of polymorphisms are

likely similar.

Effect of error in recombination rate estimation

In addition to the improved power of trans-species methods to detect ancient balancing selection, we have

demonstrated the superior specificity and robustness of the model-based T2 statistics, especially T2,trans.

Nonetheless, other non-adaptive events, such as skewed recombination rates or inaccurate recombination

maps, may potentially interfere with the detection of long-term balancing selection, and perhaps have a

more deleterious impact on the model-based T statistics that rely on estimates of recombination rates.

To examine method robustness to skewed recombination rates, we generated 50 kb long sequences under

models of unevenly-distributed recombination rates fluctuating every one kb along the sequence, and

we considered fluctuations of two different orders of magnitude. Specifically, assuming a recombination

rate of r = 10−8 per site per generation under our earlier scenarios of a uniform recombination map,

we set recombination rate to alternate along the sequence from 10r to r/10 (102-fold change between

adjacent regions; Figures S7A and C) or from 100r to r/100 (104-fold change between adjacent regions;

Figures S7B and D). With the correctly informed coalescence time, polymorphism-to-substitution ratio,

and derived allele frequency spectra, we applied all methods on the simulated sequences, and let T statistics

assume a uniform and constant recombination rate of ρ = 2Ner, as they do in all other simulation scenarios.

Providing T statistics with such an erroneous recombination map permits us to evaluate the robustness of

these statistics when the recombination rates are grossly mis-specified.

All methods are robust to falsely identifying neutrally-evolving regions with massive fluctuations in
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recombination rate as balancing selection (Figures S7A and B). Furthermore, for sequences with recombi-

nation rate fluctuating by 104-fold (Figure S7B), the proportion of false signals for each method further

decreases, most outstandingly for T2 and T2,trans. On the other hand, when an allele under balancing selec-

tion (s = 0.01 with h = 100) was introduced in the ancestral population 15 million years ago, all methods

show increased power when recombination rate fluctuates by 102-fold (Figures S7C and E). When the rate

fluctuates by 104-fold (Figure S7D), all single-species methods show compromised power compared with

those under 102-fold change (Figures S7D and E). However, single- and trans-species variants of both poly-

morphism density-based methods, T1 and HKA, exhibit improved power under skewed recombination maps

compared to those under a uniform map, whereas variants of methods that incorporate information on

allele frequencies, T2 and NCD, do not always gain power (Figure S7E). Despite that T2,trans and NCDtrans

both have marginally higher power under skewed recombination maps, the increase in power exhibited by

T1,trans and HKAtrans was considerably greater. This discrepancy may be due to irregular recombination

shifting the spatial distribution of polymorphic sites around a selected site, while exerting little influence

on allele frequencies at these polymorphic sites.

Robustness to high mutation rate

Another non-adaptive phenomenon that may confound inferences of ancient balancing selection is the

increase in mutation rate at a genomic region. To test the robustness of each method against elevated

mutation rate, we simulated sequences neutrally evolving along the demographic history in Figure 2A, and

mutating at rates that are five-, 10-, or 20-fold higher than the original rate of µ = 2.5× 10−8 per site per

generation. In addition to mutational hotspots shared across all species, we also considered the scenarios

in which the hotspots are species-specific. To examine the robustness of each method to species-specific

elevation of mutation rates, we simulated a set of scenarios in which sequences in species H (as labeled

in Figure 2A) started to mutate at rate 5µ, 10µ, or 20µ after splitting from species C (see Materials and

Methods). We then applied both single- and trans-species methods on these sequences with the same

window sizes used in previous power analyses so as to mimic the effect of unexpected mutation hotspots.

Note that for T statistics, we provided estimates of coalescence time, proportions of polymorphisms and

substitutions, and site frequency spectra based on neutral data generated under the original mutation

rate µ. Similarly, we provided the HKA statistics with proportions of polymorphisms and substitutions

expected from neutral data simulated with the original mutation rate µ.

When mutation rates were elevated across all sequences along the phylogeny, most statistics exhibited
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elevated proportions of false signals (Figure S8), with higher mutation rates leading to greater numbers of

false signals. One exception is NCD, whose proportion of false signals at a 1% FPR remains substantially

smaller than 0.01 for all scenarios with elevated mutation rates (Figure S8). This robustness of NCD

results from the increased number of informative sites incorporated in each window, which leads to smaller

variance of NCD scores. Among the statistics that exhibited increased mis-identification rates, T statistics

(especially Ttrans) reported lower proportions of false signals than others. Meanwhile, both single- and

trans-species HKA statistics exhibit considerable proportions of false signals at a 1% FPR (Figures S8D-

F), even reaching 0.7 when the mutation rate elevated 20-fold (Figure S8F), which is almost twice the

mis-identification rates of T1 and T2. Nonetheless, this inflation is sensible for HKA because its chi-square

formulation (Supplementary Note 1) accounts for the number of informative sites within the window (i.e.,

number of observations), and would yield larger values when more sites are considered. Further, because

HKA was not specifically designed for detecting balancing selection, but rather to identify departures from

expected numbers of polymorphisms and substitutions, it is natural that it should uncover regions with

higher mutation rates.

When instead the mutation rate increased only in species H, we found that all single-species methods

mis-identified substantial proportions of such sequences as evolving under long-term balancing selection

(Figure S9). In particular, they showed considerably inflated mis-identification rates compared with scenar-

ios of mutation rates elevated uniformly across all species (Figure S8), among which single-species variants

of T1 and HKA even reported over 90% false signals at a 1% FPR across all three elevated mutation

rates considered. Meanwhile, although trans-species methods (except for NCDtrans) displayed considerable

increases in proportions of false signals under species-specific accelerated mutation (Figure S9) compared

with those under uniformly elevated mutation rates (Figure S8), this inflation in false signals was substan-

tially less dramatic than for variants of single-species statistics. This higher robustness of trans-species

relative to single-species methods is consistent with their behaviors under uniform mutation rate increases

(Figure S8).

Despite the large performance margin for each statistic between scenarios of shared and species-specific

mutational hotspots, it is sensible that the latter would be more misleading, especially for T1 and HKA.

When the mutational process is only partially accelerated along the phylogenic tree relating multiple

species, the accumulation of mutations along certain lineages can lead to elevated polymorphism-to-

substitution ratios. Such distortions can be observed in our simulated sequences in species H (Figure S10),

which explains the drastic inflation of the false signals identified by T1 and HKA (Figure S9). Meanwhile,
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as expected, the allele frequency spectra are unaffected (Figures S10), thereby providing advantage to

methods, such as T2 and NCD, that also employ information on allele frequencies. When data from both

species are considered, however, the distortion in polymorphism density was ameliorated (Figure S11),

but the proportion of polymorphisms segregating in species H drastically increased as the species-specific

mutation rate increased. Considering that the overall proportions of substitutions (Figure S11) as well

as allele frequency spectra remain relatively constant, this distortion in proportions of sites being poly-

morphic in species H makes it reasonable that trans-species methods identify more false signals than they

would under uniformly high mutation rate, but are still much less affected by the species-specific muta-

tional hotspot than were the single-species statistics. We further explore the reasons for the inflation of T

statistic mis-identification rates under scenarios of increased mutation rate in the Discussion section.

Effect of window size

For all extant methods to detect signatures of long-term balancing selection, the length of the genomic

region considered (hereafter referred to as “window size”) when computing their scores could substantially

impact their powers. In our study, we applied all summary statistics on windows with a fixed number of

nucleotides, and T statistics with a fixed number of informative sites surrounding each test site. To best

match the amount of data provided to T statistics, we set the number of informative sites flanking the test

site on either side as I, such that 2I+1 is closest to the expected number of sites included in a one kb region

under neutrality given the simulation parameters (see Supplementary Note 3). Because long-term balancing

selection typically leaves behind narrow genomic footprints, i.e., of length approximately 1/(4Ner), where

r is the per-site per-generation recombination rate (Hudson and Kaplan, 1988), extant methods often

reach optimal power when the window size is of the same magnitude of this size, which in humans is

approximately 2.5 kb, given an effective size of N = 104 and r = 10−8. To choose the optimal window size

for our analyses on simulated data, we examined the relative performances of summary statistics under

0.5, 1, 1.5, 2, 2.5, and 3 kb windows (Figure S1), and accordingly adopted the size of one kb for other

simulated data. However, although their powers can be optimized by adopting window sizes close to the

narrow footprint generated by long-term balancing selection, with data derived from such a limited genomic

region, estimation of these statistics can be noisy and potentially misleading. In empirical applications, it

may therefore be preferable to incorporate information from a wider genomic region for the estimation of

these statistics to reduce stochasticity. Hence, it is important to examine how window size affects method

performance.
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To this end, we applied all single- and trans-species methods considered in this study to simulated

data, and varied window sizes under which the statistics were calculated (see Materials and Methods), and

compared their powers. To ensure that all methods operated on the same data, we applied the summary

statistics with windows containing a fixed number of informative sites, which is how the T statistics are

computed. We tested windows with I = 5, 10, 30, 50, 100, 150, 200, 250, 300, and 350 informative sites

on each side of the test site (i.e., the site on which windows are centered). Because we are interested

in ancient trans-species balancing selection, we chose to examine the scenario in which the selected allele

(s = 0.01 with h = 100) arose 15 million years (assuming a generation time of 20 years) prior to sampling.

As predicted, powers of all methods drastically decrease as window size increases (Figure S12A). While

powers of all other methods eventually decrease toward zero for large windows, T2 and T2,trans still maintain

considerably higher power than other methods, with powers reaching approximately 0.2 when the number of

informative sites considered is larger than 200 sites on either side of the test site (i.e., 401 informative sites

covered by each window). This contrast can be better illustrated in Figure S12B, where T2 and T2,trans

are the only two statistics that, as the window size increases, experience decay in power substantially

slower than all other statistics, and stabilize at non-zero values. The relative robustness of T2 and T2,trans

is sensible because they incorporate distances from the test site of each informative site, reducing the

influence of sites too far from the tested site. However, although both T1 and T2 account for the spatial

distribution of informative sites, the powers of T1 and T1,trans decrease more drastically than of T2 and

T2,trans, albeit not as quickly as its summary-statistic counterpart HKA (Figure S12B). Additionally, the

powers of HKA variants decay much faster than those of NCD variants as window size increases. In general,

statistics based only on polymorphism density, such as single- and trans-species variants of T1 and HKA,

are more vulnerable to large window sizes when compared to those accounting for allele frequency, such

as single- and trans-species variants of T2 and NCD. This gap in robustness between these two classes of

statistics is likely due to the large emphasis that allele frequency-based statistics place on the presence of

moderate-frequency alleles, thereby requiring a larger number of additional neutral informative sites for

the evidence of the signal established from these intermediate-frequency alleles to attenuate.

Applying T2,trans on great ape genomic data

To examine long-term balancing selection affecting both human and chimpanzee lineages, we applied T2,trans

on genomic data merged from human (108 Yoruban individuals; The 1000 Genomes Project Consortium,

2015) and chimpanzee (10 western chimpanzees (Pan troglodytes verus); Auton et al., 2012). Variant
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calls from both species were mapped to human reference genome hg19 and polarized with the matching

sequence from gorilla reference genome gorGor3 (Kent et al., 2002). We retained bi-allelic sites that

were polymorphic within a single species or that were substitutions between the two species, and adopted

stringent filters (see Materials and Methods) to reduce the potential influence of technical artifacts. We

then performed a whole-genome scan with T2,trans based on an inferred human recombination map (The

International HapMap Consortium, 2007), and considered 100 informative sites directly upstream and

directly downstream of the test site (i.e., 201 informative sites in total).

To infer statistical significance of each test site, we employed the coalescent simulator ms (Hudson, 2002)

to generate 5 × 107 independent replicates of 25 kb long sequences, evolving neutrally along the inferred

demographic histories of the Yoruban, chimpanzee, and gorilla lineages (Auton et al., 2012; Prado-Martinez

et al., 2013; Terhorst et al., 2017, see Materials and Methods), with sample sizes matching the empirical

data. We applied T2,trans on the first 201 informative sites of each sequence, using the 101st site as the test

site, providing a single T2,trans score for each replicate (see Materials and Methods). We assigned p-values

to each test site in the empirical scan based on the distribution of T2,trans scores from the neutral replicates

(Figure S13). To correct for multiple testing, a test site reaches genome-wide significance if its p-value is

smaller than 0.05/106 = 5 × 10−8, which uses the common assumption that there are approximately 106

independent sites in the human genome (Altshuler et al., 2008). Thus, based on the distribution shown in

Figure S13, sites with a T2,trans score greater than 223.709 were considered statistically significant outliers.

Significant evidence of shared balancing selection on the MHC region, FREM3/GYPE locus,

and GRIK1/CLDN17 intergenic region

The major histocompatibility complex (MHC) has been repeatedly demonstrated to maintain high poly-

morphism levels across multiple species (Takahata et al., 1992; Leffler et al., 2013). Consistent with previous

evidence, the T2,trans statistic exhibits significantly outstanding scores in the MHC region (Figure 3). A

closer examination reveals that all peaks identified in the MHC region (Figure 3) locate on the genes

previously-identified to exhibit signatures of long-term balancing selection (Hedrick et al., 1991; Takahata

et al., 1992; Andrés et al., 2009; Sanchez-Mazas, 2007; DeGiorgio et al., 2014; Siewert and Voight, 2017;

Bitarello et al., 2018). Specifically, across the region (Figure 3) approximately four clusters of genes exhibit

prominent scores, with large peaks over HLA-A, over HLA-B and HLA-C, over HLA-DRB genes, and over

HLA-DPB genes. This pattern is consistent with the one reported by DeGiorgio et al. (2014), where these

regions were extreme outliers in the scan for long-term balancing selection in human populations. Note-

15

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2018. ; https://doi.org/10.1101/320390doi: bioRxiv preprint 

https://doi.org/10.1101/320390
http://creativecommons.org/licenses/by-nc-nd/4.0/


worthily, we observed that the most outstanding signal within this region falls on the gene HLA-DPB1

and its pseudogene HLA-DPB2 (Figure S14), with the former making up the beta chain of the MHC II

molecules. The beta chain of MHC II is responsible for presenting extracellular immunogens, and contains

polymorphisms that diversify peptide-binding specificity (Dı́az et al., 2003). These results agree with the

observations that polymorphisms in the MHC region are often shared among species (Takahata, 1993),

and have been maintained since before the split of multiple great ape species (Takahata et al., 1992; Meyer

et al., 2017).

In addition to the MHC region, we observed similarly extraordinary signals on chromosome 4, between

the genes FREM3 and GYPE (Figure S15). This locus was previously reported by Leffler et al. (2013)

to harbor trans-species polymorphisms shared by humans and chimpanzees, and is functionally associated

with malaria defense (Malaria Genomic Epidemiology Network, 2015; Leffler et al., 2017). More specifically,

the polymorphisms on this locus exist in accordance with the copy number variation of GYPB and GPYA,

which can result in polymorphism of a blood-group antigen that effectively defends malaria infection (Leffler

et al., 2017). Interestingly, while both the MHC and FREM3 /GYPE regions exhibit an enrichment

of polymorphic sites (Figures S14D and S15D), we only observed a specific enrichment of minor allele

frequency on the FREM3 /GYPE locus, where a 400 kb-long region surrounding the peak still exhibits

a distinguishable enriched frequency of approximately 0.3 (Figures S15B and C). In the MHC region,

however, even after narrowing the range considered down to 200 kb around its largest peak, multiple

modes can still be observed (Figures S14B and C), suggestive of complex balancing selection processes

operating on this region and matching the footprints of multiple balanced loci with different equilibrium

frequencies (Meyer et al., 2017).

Another significant candidate region falls on chromosome 21, between the genes GRIK1 and CLDN17

(Figure 4). A number of transcription factor binding sites locate on the peak region, binding the factors

CTCF, RAD21, and FOS (data from Ziller et al., 2013, as the ENCODE transcription factor ChIP-seq

track shown on the UCSC genome browser). Although the regulatory activity of this intergenic region

still remains elusive, the genes surrounding the region have potentially intriguing functional implications.

Upstream of the peak locates a kainate-selective glutamate receptor gene GRIK1, which has been associated

with epilepsy (Sander et al., 1997) and schizophrenia (Shibata et al., 2001). Mice knocked-out of GRIK1

would exhibit decreased pain perception (Gardiner and Costa, 2006), implying that the fine-tuning of its

expression may be important for an appropriate level of perceptional acuity. On the other side of the peak,

the CLDN17 gene encodes claudin-17, which forms anion-selective channels on tight-junction barriers. It is
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highly expressed in kidneys and is hypothesized to be involved in chloride re-uptake (Krug et al., 2012). It is

also expressed in intestine and the brain (Lonsdale et al., 2013), potentially contributing to the integrity of

important barriers such as intestine and blood-brain barriers. Similarly, claudin-8, encoded by the nearby

CLDN8 gene, is also involved in chloride resorption in kidneys (Hou et al., 2010). It is an integral part of

the intestine barrier (Groschwitz and Hogan, 2009), and studies have associated the gene with inflammatory

bowel diseases (Zeissig et al., 2007). Moreover, claudin-8 has also been reported to be susceptible to gut

bacteria endotoxin (Shrestha and McClane, 2013). To make the case more intriguing, there seems to be

another high-scoring region upstream of the two claudin genes (Figure 4A), which is in the vicinity of a

cluster of genes encoding hair keratin-associated proteins (Shibuya et al., 2004). As if corresponding to the

two peaks, the site frequency spectra of both human and chimpanzees (Figures 4B and C) show enrichment

of two different frequencies, suggesting that two distinct equilibrium frequencies may have been maintained

if balancing selection were acting on this region.

Multiple genes with outstanding evidence of trans-species balancing selection

Because we took a conservative approach to obtain p-values of test sites (see Discussion), few outstanding

peaks are identified as significant genome-wide. However, some of them do show top scores that are

close to the genome-wide significance cutoff, and locate on genes with potentially important functional

implications, including SLC35F1 (Figure S16) and ABCA13 (Figure S17). Among the regions that did

not meet the genome-wide significance threshold, the highest-scoring candidate is SLC35F1, which is

located on chromosome 6 and encodes a putative ion channel. Although no functional study has been

reported on this gene, multiple studies have associated it with resting heart rate levels (Pfeufer et al.,

2009; Den Hoed et al., 2013), risk of atrial fibrillation (Christophersen et al., 2017), and heart attack risks

(van der Ende et al., 2018). However, despite its associations with cardiac health, SLC35F1 is mainly

expressed in brain tissues, especially the cerebral cortex (Uhlén et al., 2015). Additionally, while the SNPs

previously associated with cadiac functions mostly enrich under the minor peak around position 118.6 Mb

of chromosome 6 (Figure S16A; eQTL data from Lonsdale et al., 2013; Ziller et al., 2013), the major peak

on this gene locates around position 118.3 Mb on chromosome 6 within a cluster of DNAaseI sensitive

loci (Ziller et al., 2013) in the first intron on SLC35F1. These results suggest a possible role of selection

on regulatory function and potential pleiotropy. Another candidate gene ABCA13, the longest in its gene

family, harbors a region with outstanding T2,trans scores (Figure S17). This ATP-binding cassette (ABC)

transporter gene is highly expressed in multipotent adult progenitor cells (MAPC; Tang et al., 2010), a
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rare type of multipotent stem cells that can differentiate into not only mesodermal, but also endodermal

and ectodermal cells (Hof et al., 2007), and are important for wound-healing and tissue repair (Reyes and

Verfaillie, 2001). In addition to bone marrow (Uhlén et al., 2015), where most blood stem cells are found,

expression of ABCA13 can also be detected in tracheae, thymus, testes, and ovaries (Prades et al., 2002;

Barros et al., 2003). Moreover, the peak within this gene sits immediately upstream of the trans-membrane

ABC2 domain (Figure S17), suggesting a potential selective force to diversify either the splicing or the

functionality of this domain, which may be sensible given the wide variety of cell lineages that MAPC can

differentiate into. Although functional studies of ABCA13 are lacking, both its expression pattern and the

location of the peak present an intriguing case for a potential target of long-term balancing selection.

Extending extant frameworks to K > 2 species

So far we have demonstrated that the two-species versions of the T1, T2, HKA, and NCD statistics are

specifically-tailored to detect trans-species balancing selection, display substantially higher power than

single-species statistics, and can recover well-characterized cases of balancing selection shared between the

human and chimpanzee lineages. Furthermore, as described in Supplementary Notes 1, 2, and 5, all extant

frameworks can be extended to an arbitrary number of species K.

To test the performances of these K-species extensions, we simulated 50 kb long sequences over a

five-taxon tree (Figure 5A), which in addition to the three-species (species H, C, and G) examined in

earlier simulations, features a fourth and fifth species diverging from the others 12 and 17 million years

ago, respectively, analogous to that of orangutans (denoted by species O) (Scally et al., 2012) and gibbons

(denoted by species B) (Carbone et al., 2014). All other parameters remained the same as for the three-

species tree with constant population sizes (see Materials and Methods). We introduced a selected mutation

with strength s = 0.01 and dominance h = 100 in the lineage ancestral to species H at varying time

points, and evaluated the performances of each method. For each statistic, we tested their extensions for

application on two, three, and four species, and traced their powers as a function of time at which the

selected allele arose, in addition to their single-species variant (Figure 5).

Consistent with earlier results for two-species statistics (Figure 2), all two-species statistics show sub-

stantially higher power than their single-species counterparts in uncovering balancing selection introduced

prior to the split of species H and C. Similarly, all three-species statistics exhibit a surge in power once the

age of balancing selection surpasses that of the divergence of species G, and all four-species statistics show

an analogous increase for selection predating the divergence of species O. This relation among each K-
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species (K = 1, 2, 3, or 4) variant remains consistent for T1, T2, HKA, and NCD (Figures 5B, C, D, and E,

respectively). Moreover, for every statistic and for each branch of interest (colored using incrementally

darker shades in Figure 5) where balancing selection was introduced, the highest power can always be

observed in the variant of a method that is specifically tailored for the corresponding number of species

sharing the selection event. That is, for a specific method, the variant with the highest power is the one

that operates on the entire set (and only this set) of species descending from a specific ancestral branch in

which the selected allele arose. These results illustrate the applicability of K-species extensions of extant

methods for detecting long-term balancing selection, and also for broadly constraining the time at which

selected alleles arose at sites undergoing balancing selection.

In addition to their powers, we also examined the abilities of each method to localize the site under

balancing selection (Figure 6). For each statistic, the absolute distance from their highest score to the

true location decreases as the age of the balanced allele increases, consistent with the fact that older

balancing selection would leave characteristically narrower genomic footprints. Within each method, each

trans-species variant exhibits a steep drop in mean distance to the true site of selection once the age of

selection predates the divergence of all species it examines. This improvement in accuracy accords with

the sharp increase in power. As the power of each method surpases 0.8 (Figure 5), the mean distance to

the true site of selection decreases to less than one kb (Figure 6). This result demonstrates that under

scenarios in which methods exhibit high power to detect ancient balancing selection, their ability to isolate

the true location of the selected site is considerable.

Discussion

In this study, we developed multi-species variants of summary-statistic and model-based approaches that

employ polymorphism and substitution data from an arbitrary number of sampled species to localize sites

undergoing shared balancing selection, and have comprehensively evaluated their performances through

simulations. We applied the model-based T2,trans statistic to genomic data from humans and chimpanzees,

and recovered the previously-reported MHC and FREM3 /GYPE regions as the most outstanding can-

didates. We have also characterized novel candidate regions on the cardiac health-associated SLC35F1

and the ATP-binding cassette gene ABCA13, presenting intriguing cases of long-term balancing selection

shared by human and chimpanzee lineages that potentially diversifies these genes’ functionality.
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Performance of trans-species methods on simulated data

In our simulation study, we demonstrated that all trans-species statistics exhibit specificity in detecting

long-term balancing selection shared by multiple species. They have low power relative to their single-

species variants when only a single species is undergoing balancing selection, and display high power

when selection initiated prior to the divergence of all input species (Figure 2). Moreover, we tested

the performances of each method under different demographic parameters (Figure 2), varying selection

parameters (Figure S3), skewed recombination maps (Figure S7), and elevated mutation rates (Figures S8-

S10). Our results have shown that the specificity of trans-species methods for shared balancing selection

remains robust across diverse scenarios. Overall, as expected, methods using more information for the same

genomic region generally attained higher power. Specifically, T2 and NCD, which consider information on

allele frequencies in addition to polymorphism density, outperform T1 and HKA, which do not consider

allele frequencies. Similarly, the model-based T statistics also outperform their corresponding summary

statistic analogues (i.e., HKA to T1, and NCD to T2), as the model accounts for the spatial distribution

of informative sites, in addition to regional polymorphism density and allele frequency distribution. We

are also aware that Bitarello et al. (2018) reported a superior performance of NCD over T2, and that

both β (Siewert and Voight, 2017) and NCD outperform T1. However, in the Bitarello et al. (2018)

experiments, both T statistics were assigned a window size of 100 informative sites on either side of the

test site (i.e., covering 201 informative sites, which matches a physical window of approximately 10 kb),

whereas NCD was assigned a window size of 3 kb. We have shown in the Results that after matching the

window size used by each method, both the single- and trans-species variants of T1 and T2 outperform the

respective single- and trans-species HKA and NCD variants, respectively. An exception is under settings

with elevated mutation rates, which we further explore in the subsequent subsection The effect of multiple

tests under elevated mutation rates. Additionally, we noticed that the powers of NCD statistics tended to

be close to those of T2 when the equilibrium frequency is close to the target frequency assigned to NCD.

Integrating an optimization processes into the NCD framework, however, did not improve the robustness to

varying equilibrium frequencies, but instead lowered the power of the specific optimization approach that

we employed (see Supplementary Note 6). In contrast, the performances of variants of the T2 statistics

were not hindered by optimization (see Supplementary Note 6). Taken together, these results indicate

that the model-based Ttrans statistics have superior performance relative to complementary approaches for

robustly identifying loci evolving under ancient trans-species balancing selection.
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The effect of multiple tests under elevated mutation rates

We observed that, regardless of whether high mutation rate was uniform across the phylogeny or was

species-specific, the model-based T statistics reported notable increases in their proportions of false signals

(Figures S8 and S9). However, because these statistics are computed at every informative site in a genomic

region, regions with a higher density of informative sites due to elevated mutation rates will by chance

harbor larger test scores. To examine whether this multiple testing issue can explain the inflated proportions

of false signals in T statistics, we down-sampled the number of test sites so that the number of T scores

computed along sequences with elevated mutation rates matched that of the original mutation rate. We

considered two down-sampling approaches, which we refer to as dense and sparse. In the dense scenario, we

sampled a specified number of test sites contiguously along the sequence, such that each pair of neighboring

test sites had the same number of informative sites in common used in their computation as do those

under the original mutation rate. In the sparse scenario, we evenly sampled the test sites along the

simulated genomic region, such that informative sites distributed across the whole simulated region could

be considered, but the neighboring test sites would share fewer informative sites in their computation

compared to the sequences with the original mutation rate.

Indeed, either by densely (Figures S18A-C) or sparsely (Figures S18D-F) down-sampling, all T statis-

tics showed substantially improved performances for sequences under uniformly elevated mutation rates

(compare to Figure S8), highlighting the effect of multiple testing on inflating the proportions of false

signals. For sequences with species-specific increase of mutation rates, T statistics also respond to down-

sampling (Figure S19) in a similar fashion. Moreover, we observed that the sparse down-sampling scheme

(Figures S18D-F and S19D-F) did not rescue the proportions of false signals as much as the dense scheme

(Figures S18A-C and S19A-C). This performance margin echoes the fact that test sites that were sampled

in the sparse scheme are less correlated. That is, because two neighboring test sites have fewer informa-

tive sites in common used for their calculation, even after down-sampling to match the number of sites

on sequences under the original mutation rate, the set of test sites from the sparse scheme still has a

larger effective number of tests. Therefore, multiple testing contributed to the substantially inflated mis-

identification rates of T statistics, and when the number of tests is properly controlled, the T statistics

(especially T2,trans) should be robust to genomic regions with high mutation rate.

Further, it is worth pointing out that this multiple-testing issue does not result from inherent statistical

properties of T statistics, but rather the way in which windows were chosen to compute the statistics. We

set the T statistics to perform a test on every informative site that could be centered on, and computed
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the likelihood ratios based on a test window with a fixed number of informative sites. As a consequence,

the number of computed tests for T statistics will be close to the number of available informative sites,

and similarly, if other statistics were computed using windows identical to T statistics, then their numbers

of computed tests would also match the number of informative sites. When we computed single- and

trans-species variants of NCD and HKA with a window size of 21 informative sites and step size of one

informative site (i.e., making the identical number of computations on identical data as do T statistics)

both summary statistics mimicked the behaviors of their respective model-based analogs (i.e., HKA to

T1, and NCD to T2; Figure S20) under scenarios of high mutation rate, both when all species have high

mutation rate (Figures S20A-C) and when it is specific to only species H (Figures S20D-F). These results

highlight that the performance of a statistic is highly dependent on the type and number of windows it is

applied with, and that the poor performance of HKA and the excellent performance of NCD under elevated

mutation rate was simply due to the manner in which we computed the statistics, with physical-length

windows and a fixed number of windows per simulated genomic region.

Detecting long-term balancing selection with and without trans-species polymorphisms

Because our aim has been to circumvent potential issues surrounding trans-species polymorphisms, we only

considered within-species polymorphisms and cross-species fixed differences as input data for multi-species

variants of T1 and T2. Nonetheless, when conditions allow, it is possible for multi-species variants of T1

and T2 to include trans-species polymorphisms in the model (hereafter referred to as T1,TSP and T2,TSP,

respectively; see Supplementary Note 4), and be applied to input data with all three types of informative

sites. To assess the ability of these new statistics to detect trans-species balancing selection, we examined

the powers of T1,TSP and T2,TSP under settings in which trans-species polymorphisms are removed and in

which they are included in the dataset.

When applied to the same set of simulated sequences as in previous analyses while also permitting

information on trans-species polymorphisms, T1,TSP and T2,TSP show substantial increases in power relative

to T1,trans and T2,trans (Figures S21), while remaining largely unaffected by balancing selection occurring

after the split of the pair of species. Both statistics reached a power higher than 0.8 when selection was older

than 13 million years, and T2,TSP almost reached a power of 1.0 when the selected allele was introduced

15 million years ago. This power increase is expected due to the high probability that trans-species

balancing selection would lead to trans-species polymorphisms, particularly compared to the relatively low

probability expected from neutrality (e.g., Takahata, 1993; Leffler et al., 2013; Gao et al., 2015). Moreover,
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in contrast to T1,trans and T2,trans, we observed that T1,TSP and T2,TSP display a gradual increase in power

with increasing age of trans-species balancing selection. This pattern resembles that of single-species T1

and T2 statistics, and can partially explain why T1,trans and T2,trans, which do not utilize information on

polymorphisms established prior to species splits, maintain their powers around a constant level instead of

gaining power with selection age. Moreover, when trans-species polymorphisms are absent from the data,

the powers of T1,TSP and T2,TSP, albeit respectively slightly lower than T1,trans and T2,trans, remain similar

to the T1,trans and T2,trans variants that do not account for trans-species polymorphisms, suggesting that the

trans-species polymorphism-inclusive model can be robustly applied to data with or without trans-species

polymorphisms present.

Despite this improvement in performance, however, incorporating trans-species polymorphisms in our

analysis can increase the vulnerability of T statistics to non-adaptive processes such as mapping errors at

paralogs across species and high mutation rate, both of which can lead to trans-species polymorphisms.

To test the robustness of TTSP statistics to elevated mutation rates, we applied them on sequences neu-

trally evolving with mutation rate five- or 20-fold higher than the original rate of µ = 2.5 × 10−8 (Fig-

ures S22A and D, respectively). In both scenarios, when trans-species polymorphisms are included in the

input, TTSP statistics falsely identified considerably more sequences as undergoing trans-species balancing

selection than when such information was not provided. Moreover, higher mutation rates lead to a greater

number of false signals identified by TTSP statistics when trans-species polymorphisms are included (Fig-

ure S22). In contrast, without using trans-species polymorphisms, TTSP statistics perform only slightly

worse than Ttrans statistics in mis-classifying highly mutable regions as undergoing balancing selection. On

the other hand, when we applied TTSP statistics on sequences with mutation rate 20-fold higher in species

H, TTSP statistics no longer report a greater number of false signals than do Ttrans statistics (Figure S22G).

This is because when the elevation in mutation rate occurred only in species H, the resulting trans-species

polymorphisms would not increase as much as they did when both species H and C have high mutation

rate.

To examine the effect of multiple testing on the proportion of false signals identified by TTSP statis-

tics, we performed down-sampling following the same procedures as described in subsection The effect of

multiple tests under elevated mutation rates, such that regardless of whether trans-species polymorphisms

are considered, the same number of test sites were sampled to infer proportions of false signals for all T

statistics. We found that although accounting for the number of tests rescued the mis-identification rates

of all Ttrans and TTSP statistics (Figure S22B, C, E, F, H, and I), the relative differences in the rates of
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identifying false signals between TTSP and Ttrans still persist. These results are likely due to the emphasis

that TTSP statistics place on trans-species polymorphisms, and highlight the sensitivity of TTSP to the

presence of such polymorphisms regardless of the processes that generated them. Therefore, because such

trans-species polymorphisms can be generated by technical artifacts in addition to non-adaptive evolu-

tionary processses, we recommend excluding trans-species polymorphisms while applying T statistics, and

when such data are included, candidate regions obtained by TTSP statistics that also harbor trans-species

polymorphisms should be further validated using the framework of Gao et al. (2015), which only considers

trans-species polymorphisms and is complementary to our T statistics.

Applicability of trans-species methods on empirical data

In this study, we introduced a number of trans-species methods, including summary- and model-based

approaches. In addition to their nuanced performances on simulated data, their applicability on empirical

data also varies. In particular, two major considerations are the evolutionary relationship of the set of

study species as well as the availability of sophisticated data. With respect to evolutionary relationships,

divergence times between pairs of species is crucial—particularly for the model-based Ttrans statistics,

as their underlying models assume reciprocal monophyly. Specifically, under the Kaplan-Darden-Hudson

model (Kaplan et al., 1988; Hudson and Kaplan, 1988), the tallest coalescent tree manifests at the site

under long-term balancing selection, where the symmmetric population-scaled mutation rate θsel between

the balanced alleles further controls the expected tree height. The greater the value of θsel, the shorter time

to the most recent common ancestor for the set of alleles sampled within a species (Hudson and Kaplan,

1988). To ensure monophyly at neutral sites close to the selected site, we set θsel = 0.05, as did DeGiorgio

et al. (2014), such that the mean coalescence time within a species is approximately 12 coalescent units at

the site under selection. Therefore, sister species such as humans and chimpanzees, which have a split time

of approximately 12.5 coalescent units (Prado-Martinez et al., 2013), would be suitable for our current

implementation of Ttrans statistics. Meanwhile, for more recently diverged species such as chimpanzees

and bonobos, whose inter-species divergence is approximately three coalescent units (Prüfer et al., 2012;

Prado-Martinez et al., 2013), the value of θsel needs to be increased for Ttrans to be applied. However,

lowering the maximum expected tree height to such a small level would reduce the distinction between

the model of balancing selection and neutrality, and likely lead to a dramatic decrease in the power of the

Ttrans statistics. On the other hand, the complementary summary-based HKAtrans and NCDtrans statistics

can be applied regardless of the species split times.
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Differences in data requirements between the summary- and model-based approaches will also influence

the breadth of their application. For all methods we introduced, it is important that polymorphism data

is available for at least two species, and that the reference genomes of these species can be aligned.

Further, because the footprint of long-term balancing selection is small (Hudson and Kaplan, 1988), all

the methods discussed here are applicable on species with draft genomes that may have relatively short

scaffolds, although larger scaffolds may be important for biological interpretations. Moreover, all these

methods must be applied to chromosomes that recombine, as their application hinges on the premise that

only neutral variation nearby a selected site is influenced by balancing selection.

In addition to these requirements, the model-based approaches also require a recombination map, which

may limit their applicability on non-model organisms. Nonetheless, we argue that adopting a uniform

recombination rate should be reasonable as well, considering that recombination maps may not necessarily

match across the set of study species (Smukowski and Noor, 2011). Moreover, our simulations (Figure S7)

have demonstrated that dramatic changes in recombination rate and grossly mis-specified recombination

maps have limited effect on the performance of Ttrans statistics. Another limitation to the application of the

T2,trans statistic is that it uses derived allele frequency spectra, and therefore requires a reference genome

from an outgroup species to polarize alleles as ancestral or derived. In contrast, the T1,trans statistic (as

well as HKAtrans) is not subject to this constraint, as it does not require information on allele frequency.

As a consequence, both HKAtrans and T1,trans can be applied to datasets in which allele frequencies cannot

be estimated well, but in which polymorphic sites may be inferred with confidence (Van Tassell et al., 2008;

Cutler and Jensen, 2010; Schlötterer et al., 2014).

Examining ancient balancing-selection shared by humans and chimpanzees

In our empirical study, we applied T2,trans on human and chimpanzee genomic data to re-examine long-

term balancing selection shared by these sister species. Without employing information from trans-species

polymorphisms, we recovered well-established cases, such as the MHC and FREM3 /GYPE regions, both

of which were previously well-characterized with ample evidence of shared polymorphisms. We addi-

tionally reported a number of novel and relevant candidate regions with outstanding scores, such as the

GRIK1 /CLDN17 intergenic region, the cardio health-related SLC35F1 gene, and the ABC transporter

gene ABCA13. Despite SLC35F1 ’s frequent association with cardiac health (Den Hoed et al., 2013;

Christophersen et al., 2017; van der Ende et al., 2018), it is, in contrast, mainly expressed in brain (Uhlén

et al., 2015). Meanwhile, the gene ABCA13 encodes a lipid transporter (Prades et al., 2002), and is mainly
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expressed in MAPCs (Tang et al., 2010), one of the bone marrow stem cells that have high differentiation

potency, and are heavily involved in wound-healing and tissue repair (Hof et al., 2007). Though both

novel candidates lack empirical functional studies, they are both involved in multiple intriguing tasks, and

further functional investigations could potentially substantiate their selection mechanisms.

Despite the array of trans-species statistics we presented, we chose to perform the empirical scan with

T2,trans due to the high power and robustness it shows in our simulation study, including its ability to

integrate more information within a larger genomic region than summary-based approaches, thereby min-

imizing the noise accompanied with smaller window sizes (see Robustness to large window sizes). Specifi-

cally, because we observed that T2,trans had substantially higher power than other approaches with a large

window size of 100 informative sites upstream and downstream of the test site (Figure S12), we chose this

window size so that T2 can make use of as much data as possible, while still maintaining reasonable power.

To infer statistical significance of each test site, we performed rigorous and extensive simulations to

generate a neutral distribution for p-value inference. We performed T2,trans with the exact same set of

parameters used in the empirical scan, such that scores from neutral simulations were based on the empirical

inter-species coalescence time, polymorphism density, and site frequency spectra as well as the same window

size of 100 informative sites. Although the significant candidate regions are less than a handful, we believe

the significance cutoff based on our simulations was conservative, as we did not include ubiquitous processes

such as background selection that lead to overall reductions in diversity (McVicker et al., 2009; Comeron,

2014), and because the simulated datasets tended to have a higher density of informative sites due to the

stringent filters applied to the empirical dataset. With these factors considered, it is sensible that the

distribution of T2,trans scores for neutral replicates is right-shifted, compared with that for the empirical

data (Figure S13), further highlighting the outstanding footprints of balancing selection on our significant

candidate regions—the MHC, FREM3 /GYPE, and GRIK1 /CLDN7 loci.

Curating and validating candidate regions

The detection of long-term balancing selection has long been hindered by numerous confounding factors,

such as high mutation rate, the effects of which we have evaluated extensively (see Results and Discussion),

as well as technical artifacts during sequencing and mapping, which were not accounted for in our genetic

simulations. We applied stringent filters (see Materials and Methods) on our empirical data to remove

as many regions as possible that were repetitive and that exhibited mapping issues based on available

tracts. Despite that more than half of all mappable sites were removed from analyses using these filters,
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we still observed outstanding signals likely resulting from artifacts (e.g., the largest peak on chromosome

13, shown in Figure S23). To further distinguish artifacts and true signals, for high-scoring candidate

regions we obtained the sequencing coverage separately averaged across human and chimpanzee samples

(see Materials and Methods), and also performed single-species T2 scans on each of the two sister species.

For a reliably mapped genomic region, a majority of sampled individuals should harbor reasonable

numbers of sequencing reads at the region, and the mean sequencing depth should not be an outlier with

respect to the neighboring genomic regions or to the entire genome. Therefore, in addition to using tracts

from datasets of known problematic regions (e.g., RepeatMasker and CRG100 alignability and mappability

tracts), another approach to ensure data quality is to flag abnormalities in the numbers of sequencing

reads across sampled individuals. Additionally, for regions with high data quality, it would be reassuring if

footprints of long-term balancing selection also manifested separately in each species if selection occurred

ancestrally and affected all species. However, this should not be a requirement, as the power to detect true

signals using single-species statistics is considerably lower than with trans-species approaches.

In our results, we found that both the MHC (Figure S24) and the FREM3 /GYPE (Figure S25) regions

exhibited these positive features. Specifically, the peaks at these regions in single-species scans with T2

aligned well with those of the trans-species scan with T2,trans (Figures S24A and S25A). Moreover, within

either humans or chimpanzees, most of the samples reported sequencing reads, and the mean numbers

of reads (i.e., sequencing depths) across all samples within each species at these peaks did not deviate

substantially from neighboring genomic regions. Note that although the sequencing depths did fluctuate

at a small region around gene GYPB on chromosome 4, and around HLA-DQA and HLA-DQB genes

on chromosome 6, these abnormal patches either were already removed by filters prior to the scan, or

did not produce high scores. Similarly, within the one Mb genomic regions covering GRIK1 /CLDN17

(Figure S26), SLC35F1 (Figure S27), or ABCA13 (Figure S28), the sequencing depths across all samples

in both species are evenly distributed across the genomic regions. Meanwhile, the T2 scores of both species

across these regions do not align as well as in the peaks at HLA-DPB2 or FREM3 /GYPE, and T2,trans

seems to match closer with the T2 score for chimpanzees.

In contrast, we observed potential signs of artifacts when curating other candidate regions, such as at

the gene THSD7B, the PGLYRP3 /PGLYRP4 cluster, and the gene SNTG2. For one, although THSD7B

(Thrombospondin Type I Domain Containing 7B) harbors an outstanding peak surrounding one of its

variants (rs1469621) associated with atopic dermatitis and asthma (Figure S29; Weidinger et al., 2013),

this peak region also features abnormally high numbers of reads in chimpanzee genomes (Figure S30),

27

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2018. ; https://doi.org/10.1101/320390doi: bioRxiv preprint 

https://doi.org/10.1101/320390
http://creativecommons.org/licenses/by-nc-nd/4.0/


which often occurs at regions with problematic mapping, such as duplicated and repetitive regions. Simi-

larly, in the case of the PGLYRP3 /PGLYRP4 gene cluster (Figure S31), these two genes not only encode

the bactericidal peptoglycan recognition proteins (Kashyap et al., 2011, 2014), but also locate within the

psoriasis-sensitive PSORS4 locus (Sun et al., 2006) with associations to several autoimmune disorders

(Dziarski and Gupta, 2010; Zulfiqar et al., 2013). However, despite that innate immunity has been spec-

ulated to be a major target of balancing selection (Prugnolle et al., 2005; Ferrer-Admetlla et al., 2008;

Fumagalli et al., 2009), sequencing depths around the PGLYRP3 /PGLYRP4 cluster in the chimpanzee

genomes are also abnormally high (Figure S32), raising concerns for potential mapping issues in this region.

In addition to abnormal increases of sequencing depths, an abrupt decrease in the numbers of reads may

also be indicative of a region that is problematic to map, as in the case for the SNTG2 (Syntrophin Gamma

2; Figures S33 and S34) gene on chromosome 2. As a cytoplasmic adaptor protein, γ-2 syntrophin is heavily

expressed in neuronal cells (Piluso et al., 2000), and interacts with the autism-related neuroligin 3 and 4X

(Yamakawa et al., 2007). However, although there are several eQTLs for its expression in testes in the peak

region (Figure S33A; eQTL data from Lonsdale et al., 2013), the genomic segment immediately upstream

of the peak is almost devoid of sequencing reads across the YRI samples (Figure S34B). Such regions of

low coverage are suggestive of a deletion, where erroneous mapping is prone to occur, and therefore we

believe that caution should be warranted before making functional interpretations at this candidate gene.

Likewise, the peak located on chromosome 13 (Figures S23 and S35A) is highly suspicious. Although

this peak is a statistically-significant outlier and has some transcription factor-binding sites enriched nearby

(ChIP-seq data from Ziller et al., 2013), we could not identify any coding genes within the one Mb region

surrounding this peak. A closer look at the sequencing depths of this region (Figure S36) reveals an elevated

plateau in depth under the peak followed by a sudden drop across the human samples (Figure S36B),

suggesting that this region could harbor incorrectly mapped reads, potentially from an unfiltered duplicated

region. Further, although sequencing depths in chimpanzees are evenly distributed under the peak, due to

the lack of a segmental duplication filter for chimpanzee genomes, it is possible that the erroneous mapping

resulted form a duplicated segment elsewhere in the genome confounded the variant calls. This suspicion is

echoed when we examined the spatial distribution of allele frequencies on this region (Figures S23B and C,

and Figure S37). We observed long tracks of alleles with identical moderate frequencies in the chimpanzee

samples, some extending as long as almost 500 kb. Such extended tracks of identical allele frequencies are

unlikely to be produced by natural processes, and further cast doubt on the validity and reliability of the

signal at this region.
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Lastly, it is worth noting that although these dubious signals arise on regions not included in filters

such as RepeatMasker and CRG100 alignability and mappability, applying more filters does not necessarily

guarantee their removal, and may discard true signals in the process. For example, when we removed all

regions with copy number variation in the human genome (data obtained from Firth et al., 2009), the

dubious peak on chromosome 13 was indeed successfully removed (Figure S35B). However, this additional

filter halved the usable data in the process, and removed the functionally relevant and established (Prugnolle

et al., 2005; Meyer et al., 2017; Leffler et al., 2017) signals at the MHC and FREM3 /GYPE regions as well.

We therefore recommend that comprehensive curation of candidate regions be considered when searching

for genomic regions evolving under long-term balancing selection, which, in addition to extensive filters,

should take both sequencing quality and potential biological mechanisms into account.

Concluding remarks

In this study, we presented a set of methods, including both model-based and summary statistic approaches,

for detecting multi-species balancing selection without dependence on the knowledge of trans-species poly-

morphism, and have comprehensively evaluated their performances. We have shown that all multi-species

methods have specificity in detecting shared balancing selection, and have addressed how their powers

could be influenced by recent demographic changes, uneven recombination rates, selection strengths and

equilibrium frequencies at loci undergoing balancing selection, as well as large window sizes. We also

demonstrated that our model-based approaches can be augmented to accommodate data on trans-species

polymorphism to increase detection ability, but caution the use of such alterations as they can lead to

false signals due to non-adaptive processes, whereas avoidance of such issues was a major impetus of this

study. Application of the model-based method T2,trans on human and chimpanzee genomic data not only

recovered well-established candidates, but also revealed a number of novel putative targets that contribute

to the hypothesis that pathogen defense, both in terms of adaptive immunity and of innate immunity, has

been one of the prime driving forces maintaining polymorphisms across humans and chimpanzees. Lastly,

we developed the software packages MULLET (http://www.personal.psu.edu/mxd60/mullet.html)

and MuteBaSS (http://www.personal.psu.edu/mxd60/mutebass.html) for the respective implemen-

tation of the multi-species model-based and summary statistic approaches presented here, and we

provide values for the T2,trans test statistic and associated p-values from our empirical scans at

http://www.personal.psu.edu/mxd60/mullet.html.
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Materials and Methods

Simulating genetic data

We employed SLiM (Messer, 2013) to generate simulated sequence data. As recommended, we initiated

each replicate simulation with a burn-in of 10N = 105 generations, where N = 104 is the diploid effective

population size. Our simulations assumed a per-base per-generation mutation rate of µ = 2.5 × 10−8

(Nachman and Crowell, 2000), and a per-base per-generation recombination rate of r = 10−8 (Payseur and

Nachman, 2000). To speed up simulations, we applied the common method of scaling parameters by a

factor λ. Under this scaling, we multiplied the per-generation mutation rate, per-generation recombination

rate, and per-generation selection coefficient by λ, and we divide all times in generations by λ and the

diploid effective size also by λ. This scaling generates the same levels of variation expected under a

simulation without scaling, except simulations run approximately λ2 faster, permitting an interrogation

of a wider parameter space. For scenarios based on a model of constant population size or on a model

of recent population expansion, we used λ = 100. For scenarios based on a model of a recent population

bottleneck, we used λ = 50.

Examining performances of two-species statistics

We simulated a demographic history analogous to that of the great apes, assuming a uniform generation

time of 20 years, as did numerous prior studies (Caswell et al., 2008; Becquet and Przeworski, 2007; Langer-

graber et al., 2012). To comprehensively examine performances of two-species statistics, we simulated a

three-species demographic history (Figure 2A) in which two sister species, analogous to humans and chim-

panzees (Kumar et al., 2005), diverging τ1 = 5×106 years ago, split with the reference species τ2 = 8×106

years ago, analogous to gorillas (Scally et al., 2012). At the end of each simulated replicate, we sampled 50

haploid lineages from each of the sister species, and one haploid lineage from the outgroup species (species

G in Figure 2A) to polarize alleles as derived or ancestral.

To examine common demographic histories that are consistent with human evolution, we simulated

models with a recent population bottleneck and a recent population expansion based on parameters inferred

by Lohmueller et al. (2009). Under a scenario of a recent population bottleneck, we modeled forward in

time a reduction in population size from N = 104 diploid individuals to Nb = 550 diploid individuals

τb = 3.0 × 104 years ago, followed by an increase in population size to N = 104 diploid individuals

τe = 2.2 × 104 years ago. Under a scenario of a recent population expansion, we modeled forward in
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time an increase in population size from N = 104 diploid individuals to Ng = 2 × 104 diploid individuals

τg = 4.8× 104 years ago.

We generated 103 replicates evolving neutrally along the three-species demographic history with con-

stant population sizes (Figure 2A), and 400 replicates evolving neutrally under those of a recent population

bottleneck (Figure 2B) or expansion (Figure 2C). For every scenario in which balancing selection was intro-

duced, we generated 00 replicates for scenarios with selection coefficient s = 0.01 and dominance parameter

h = 100, and 200 replicates for all other scenarios. For a given demographic model, we used the poly-

morphism and substitution data across all neutral replicate simulations to estimate the mean inter-species

coalescence time Ĉ, the proportions of polymorphism and substitution observed in each species, and the

derived allele frequency spectra for each species (DeGiorgio et al., 2014). These quantities were provided

as background genomic data for single- and trans-species variants of HKA, T1, and T2, as they require

information about patterns of variation expected across the genome. For single-species variants of HKA,

NCD, T1, and T2, substitutions were called as fixed differences between one ingroup species and the out-

group species. However, for two-species variants HKAtrans, NCDtrans, T1,trans, and T2,trans, substitutions

were called as fixed differences between the two sister species. In addition, for application of HKAtrans,

NCDtrans, T1,trans, and T2,trans, we filtered out any site that was polymorphic in both sister species.

To simulate species-specific elevations in mutation rates, we employed SLiM2 (Haller and Messer, 2016,

version 2.6), which allows the mutation rate to be reset, albeit globally, at a given generation. We adopted

all the parameters of the three-species demographic model with constant population size (Figure 2A), and

used a scaling factor of λ = 100. For each replicate, we set up two simulations, denoted as mut and null, to

run in parallel using the same seed and initial model parameters. Immediately after species H and C split,

all sequences in the mut simulation experienced a change in mutation rate, whereas the mutation parameter

did not change in the null simulation. When simulations completed, 50 haploid lineages of species H were

sampled from the mut simulation, whereas 50 lineages of species C and one lineage of species G were

sampled from the null simulation. Data from these samples were then merged for downstream analyses.

In this pipeline, because mut and null simulations start with the same seed and initial parameters, we can

consider the evolutionary process in the two as identical until species H and C split, and that the elevation

in mutation rate only occurs in species H, as we only sample lineages from species H in the mut simulation.

We considered three scenarios in which the mutation rate was increased to 5µ, 10µ, or 20µ, with µ

being the initial mutation rate of 2.5 × 10−8 per site per generation, which was used throughout the null

simulations. We also simulated one additional scenario where neither the mut nor the null simulation reset
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their mutation rate and instead remained constant at rate µ. We applied the same sampling and parsing

procedures to this set of simulations, and used these simulation replicates to generate a null distribution to

obtain false positive rates. We simulated 400 replicates for each of these four scenarios, and performed the

same analysis procedures as in other simulation settings. We supplied single- and trans-species variants of

HKA and T1 with proportions of polymorphisms and substitutions inferred from the concatenated sequences

from the constant mutation rate scenario, from which we also derived the inter-species coalescence time

and allele frequency spectra for the application of T2 variants. All summary statistics were applied with

windows of size one kb, and model-based T statistics with 10 informative sites flanking each side of the

test site.

Assessing power of K-species statistics

To assess the ability of K-species (K = 2, 3, or 4) variants of NCD, HKA, T1, and T2 to detect and

localize sites undergoing ancient balancing selection, we included two additional species onto the three-

species demographic history in Figure 2A, with the fourth and fifth species diverging τ3 = 12 × 106 and

τ4 = 17 × 106 years ago, respectively, analogous to that of orangutans (Auton et al., 2012) and gibbons

(Carbone et al., 2014) (respectively denoted by species O and B in Figure 5A). We simulated 50 kb-long

sequences evolving along the tree, with a uniform recombination rate of r = 10−8 per site per generation,

and a mutation rate of µ = 2.5×10−8 per site per generation across all species, consistent with our previous

simulations. We also assumed a constant population size of N = 104 diploids across the entire phylogeny.

Fifty haploid lineages were sampled each from species H, C, G, and O in the present, and one lineage was

sampled from species B. Derived alleles were called based on a single sampled lineage from the nearest

outgroup species to the set of K species examined. That is, we used one sampled lineage from species C to

polarize alleles in species H for one-species experiments, species G to polarize alleles in species H and C for

two-species experiments, species O to polarize alleles in species H, C, and G for three-species experiments,

and species B to polarize alleles in species H, C, G, and O for four-species experiments.

We generated 400 neutral replicates under the five-species demographic history, and 200 replicates

for each scenario featuring alleles under balancing selection. We parsed each replicate such that the

informative sites include only intra-species polymorphisms and inter-species substitutions that agree with

the phylogeny. We provided K-species HKA variants with the proportion of each type of informative

site computed across the entire set of neutral replicates. We provided K-species T1 and T2 variants with

polymorphism and substitution configurations and site frequency spectra computed across the entire set
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of neutral replicates, in addition to the inter-species coalescence times calculated from known simulation

parameters. We applied all K-species variants of HKA and NCD with sliding windows of length one kb

with a step size of 500 nucleotides to advance the window. To match the approximate quantity of data

utilized by each summary statistic, we provided K-species variants of T1 and T2 with 10 informative sites

on either side of the test site.

Empirical data analyses

We used allele frequency data of all 10 unrelated western chimpanzee individuals from the PanMap Project

(Auton et al., 2012), as well as 108 African human individuals of the Yoruban (YRI) population from the

1000 Genomes Project (The 1000 Genomes Project Consortium, 2015). The data for the two species were

originally mapped to the chimpanzee panTro2 (March 2006, Washington University Build 2 Version 1) and

the human hg19 (February 2009, GRCh37 Genome Reference Consortium Human Reference 37) reference

genomes, respectively. We mapped the chimpanzee variant call data to hg19, and used the sequence

information from the gorilla gorGor3 reference genome (Kent et al., 2002, downloaded from UCSC Table

Browser) to polarize alleles as ancestral or derived. Aligned sites that are not included in the variant

call datasets were assumed to be monomorphic for the reference allele, and only bi-allelic single-nucleotide

sites segregating across lineages from all three species were considered. Moreover, we only considered

genomic regions mappable among all three species, and regions of human reference genome hg19 that did

not uniquely map to chimpanzee reference genome panTro2 were also removed.

To circumvent potential mapping issues from paralogs, we performed one-tailed tests on both chim-

panzee and human data for Hardy-Weinberg equilibrium as described by Wigginton et al. (2005), and

discarded sites with excessive heterozygosity in each dataset as determined by p-values less than 10−4.

For the one-tailed Hardy-Weinberg test in humans, we used human genotype data from all individuals

in the 1000 Genomes Project, as mapping issues would manifest across all populations, and the larger

sample would increase power to reject Hardy-Weinberg equilibrium. Moreover, this pooling of individuals

is not affected by the Wahlund effect (Wahlund, 1928), as we specifically performed a one-tailed test to

uncover sites with excess heterozygotes rather than also testing for excess homozygotes. Further, we dis-

carded genomic regions with 100-mer mappabilities (i.e., CRG scores computed by Derrien et al., 2012)

less than 1.0. We also removed all variants that intersected segmental duplications annotated in hg19

or simple repeats annotated in panTro2, as well as all repetitive regions in both hg19 and panTro2 sug-

gested by repeatMasker (all obtained from UCSC Table Browser; Kent et al., 2002). Matching the filtered
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data, we adopted the inferred recombination map of human hg19 reference genome (The International

HapMap Consortium, 2007), and removed the chromosomal regions not covered by the map. We then ex-

amined the proportions of polymorphism and substitution, derived allele frequency spectra, and estimated

human-chimpanzee inter-species coalescence time (Prado-Martinez et al., 2013) for consistency with our

expectations.

To assign p-values to test sites in our empirical scan, we employed the coalescent simulator ms (Hudson,

2002) and generated 5× 107 independent replicates of 25 kb-long sequences. We simulated a three-species

demographic history, with parameters for the YRI human population adopted from Terhorst et al. (2017),

and from Prado-Martinez et al. (2013) for chimpanzees and gorillas. Specifically, for temporal changes in

great ape population sizes, we used the parameters estimated by PSMC in Prado-Martinez et al. (2013).

For humans, we adopted the SMC++ estimates of Terhorst et al. (2017). For the split times between

humans and chimpanzees, and between humans and gorillas, we adopted the ILS CoalHMM estimates

reported by Prado-Martinez et al. (2013). For all simulated sequences, we assumed a generation time of

20 years, a uniform mutation rate of 1.25× 10−8 per site per generation and a uniform recombination rate

of 10−8 per site per generation (as used by Terhorst et al., 2017). For each sequence, we applied T2,trans

on the first 201 informative sites to compute a single score at the 101th informative for each simulated

replicate, with the same parameters adopted in the empirical scan, including inter-species coalescence time,

genome-wide proportions of polymorphisms and substitutions, as well as genome-wide estimates of the site

frequency spectra of both species.

To further interrogate the footprints uncovered in candidate regions, we re-examined the sequencing

quality in both humans and chimpanzees at these regions. We obtained the BAM files of mapped sequencing

reads for each human and chimpanzee individual included in this study, and generated whole-genome

maps of sequencing depth across individuals. For each genomic region, we computed the mean sequencing

depth across individuals from the same species, and flagged regions with more than half of the sampled

individuals devoid of sequencing reads. Furthermore, to investigate whether copy number variation could

have contributed to false signals due to technical artifacts, we took advantage of the human copy number

variation map provided by the DECIPHER project (Firth et al., 2009), and performed another scan with

T2,trans applied to data with regions containing copy number variation further filtered. Moreover, we

also separately applied the single-species T2 statistic (DeGiorgio et al., 2014) on human and chimpanzee

data to examine whether there was concordance with shared signals identified from our T2,trans scan.

Specifically, to ensure the data used in the scans within each species were comparable, we only considered
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sites that were mappable across hg19, panTro2, and gorGor3 reference genomes, and that have passed all

the aforementioned filters. For application to human (chimpanzee) data, we applied T2 on sites that were

either polymorphic within human (chimpanzee) or substitutions with respect to gorGor3.
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H. Holm, R. E. Handsaker, et al. Identification of heart rate–associated loci and their effects on cardiac

conduction and rhythm disorders. Nature genetics, 45(6):621, 2013.
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J. Klein, A. Sato, S. Nagl, and C. O’hUiǵın. Molecular trans-species polymorphism. Annu Rev Ecol Evol

Syst, 29(1):1–21, 1998.

S. M. Krug, D. Günzel, M. P. Conrad, R. Rosenthal, A. Fromm, S. Amasheh, J. D. Schulzke, and M. Fromm.

Claudin-17 forms tight junction channels with distinct anion selectivity. Cell Mol Life Sci, 69(16):2765–

2778, 2012.

S. Kumar, A. Filipski, V. Swarna, A. Walker, and S. B. Hedges. Placing confidence limits on the molecular

age of the human-chimpanzee divergence. Proc Natl Acad Sci, 102(52):18842–18847, 2005.

K. E. Langergraber, K. Prfer, C. Rowney, C. Boesch, C. Crockford, K. Fawcett, E. Inoue, M. Inoue-

Muruyama, J. C. Mitani, M. N. Muller, M. M. Robbins, G. Schubert, T. S. Stoinski, B. Viola, D. Watts,

R. M. Wittig, R. W. Wrangham, K. Zuberbhler, S. Pbo, and L. Vigilant. Generation times in wild

chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc Natl

Acad Sci, 109(39):15716–15721, 2012.

39

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2018. ; https://doi.org/10.1101/320390doi: bioRxiv preprint 

https://doi.org/10.1101/320390
http://creativecommons.org/licenses/by-nc-nd/4.0/


E. M. Leffler, Z. Gao, S. Pfeifer, L. Ségurel, A. Auton, O. Venn, R. Bowden, R. Bontrop, J. D. Wall,

G. Sella, P. Donnelly, G. McVean, and M. Przeworski. Multiple instances of ancient balancing selection

shared between humans and chimpanzees. Science, 339(6127):1578–1582, 2013.

E. M. Leffler, G. Band, G. B. Busby, K. Kivinen, Q. S. Le, G. M. Clarke, K. A. Bojang, D. J. Conway,

M. Jallow, F. Sisay-Joof, et al. Resistance to malaria through structural variation of red blood cell

invasion receptors. Science, 356(6343):eaam6393, 2017.

K. E. Lohmueller, C. D. Bustamante, and A. G. Clark. Methods for human demographic inference using

haplotype patterns from genomewide single-nucleotide polymorphism data. Genetics, 182(1):217–231,

2009.

J. Lonsdale, J. Thomas, M. Salvatore, R. Phillips, E. Lo, S. Shad, R. Hasz, G. Walters, F. Garcia, N. Young,

et al. The genotype-tissue expression (GTEx) project. Nature Genet, 45(6):580, 2013.

Malaria Genomic Epidemiology Network. A novel locus of resistance to severe malaria in a region of ancient

balancing selection. Nature, 526(7572):253–257, 2015.

G. McVicker, D. Gordon, C. Davis, and P. Green. Widespread genomic signatures of natural selection in

hominid evolution. PLoS Genet, 5(5):e1000471, 2009.

P. W. Messer. SLiM: simulating evolution with selection and linkage. Genetics, 194(4):1037–1039, 2013.

D. Meyer, V. R. Aguiar, B. D. Bitarello, D. Y. Brandt, and K. Nunes. A genomic perspective on hla

evolution. Immunogenetics, pages 1–23, 2017.

T. Mitchell-Olds, J. H. Willis, and D. B. Goldstein. Which evolutionary processes influence natural genetic

variation for phenotypic traits? Nature Rev Genet, 8(11):845–56, 11 2007. Copyright - Copyright Nature

Publishing Group Nov 2007; Last updated - 2014-03-31.

M. W. Nachman and S. L. Crowell. Estimate of the mutation rate per nucleotide in humans. Genetics,

156(1):297–304, 2000.

B. A. Payseur and M. W. Nachman. Microsatellite variation and recombination rate in the human genome.

Genetics, 156(3):1285–1298, 2000.

A. Pfeufer, S. Sanna, D. E. Arking, M. Müller, V. Gateva, C. Fuchsberger, G. B. Ehret, M. Orrú, C. Pattaro,
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Figure 1: Schematic of the procedure for computing probabilities of polymorphism and substitution for a
pair of species, under a model of long-term balancing selection. Blue triangles represent the subtrees of
the neutral genealogy comprised of all sampled lineages for each species, where within-species polymorphic
sites are generated. The orange line, which has length 2Ĉ−H(n1, x, ρ)−H(n2, x, ρ), represents the length
of the branch separating the two species, where substitutions are generated. Ĉ denotes the estimated
expected coalescence time between species 1 and 2. H(n, x, ρ) is the expected height of the subtree for a
site with n alleles observed that is ρ population-scaled recombination units from a site undergoing long-
term balancing selection and maintaining alleles at frequencies x and 1 − x. L(n, x, ρ) is the expected
length of this subtree.
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Figure 2: Performances of single- and trans-species variants of HKA, NCD(0.5), T1, and T2. (A-C)
Schematic of demographic models relating three species, representing human (species H), chimpanzee
(species C), and gorilla (species G), adopted in simulations. (A) All three species maintain constant pop-
ulation size of N = 104 diploid individuals, with species H diverging from species C five million years ago
(Mya), and the common ancestor of species H and C diverging from species G eight Mya. (B) Species H
went through a 400-generation population bottleneck with size Nb = 550 diploids 22 to 30 thousand years
ago (kya). (C) Species H doubled its population size to Ne = 2×104 diploids 48 kya. Simulations assumed
a generation time of 20 years across the entire phylogeny. (D-F) Powers at a 1% false positive rate (FPR)
of single- and trans-species variants of HKA, NCD(0.5), T1, and T2 to detect balancing selection (s = 0.01
with h = 100) of varying age under (D) constant population size, (E) recent strong population bottleneck,
and (F) recent population expansion scenarios. Red vertical dashed lines represent the times at which
species H and C split, and at which species G split, respectively.
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Figure 3: T2,trans scores within the MHC region on chromosome 6. Gene tracks are displayed below, with
only the longest transcript of each gene shown. If a gene does not have a longest transcript to cover all
exons, then the minimum number of transcripts are displayed. Regions enriched with high-scoring peaks
are shaded in gray, and genes falling in these areas are labeled with black fonts. The red dashed line
represents the cutoff value for statistical significance, and the test sites with significant scores are shown
in red.
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Figure 4: Patterns consistent with long-term balancing selection within the GRIK1 /CLDN17 inter-
genic region. (A) T2,trans scores within the one Mb genomic region on chromosome 21 encompassing the
GRIK1 /CLDN17 intergenic region. Gene tracks are shown on the corresponding location, with key genes
labeled with larger fonts. The red dashed line represents the cutoff value for statistical significance, and
the test sites with significant scores are shown in red. (B-D) Minor allele frequency spectra at polymorphic
sites for human (B) and chimpanzee (C), and proportion of informative sites that are polymorphisms (D)
within a 200 kb region encompassing the GRIK1 /CLDN17 intergenic region, compared with those of the
whole genome.
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Figure 5: Performances of K-species variants of HKA, NCD(0.5), T1, and T2, with K = 1, 2, 3, or 4. (A)
Schematic of the simulated five-species tree, relating species H, C, G, O, and B. Branches ancestral to
species H are shaded based on the number of species that descend from that branch, with darker shades
corresponding to larger numbers of species. (B-E) Powers at a 1% false positive rate (FPR) of one-, two-,
three-, or four-species variants for (B) T1, (C) T2, (D) HKA, and (E) NCD(0.5) to detect balancing selection
(s = 0.01 with h = 100) of varying age. K-species variants of HKA, NCD(0.5), T1, and T2 with darker
shaded lines are those that consider a greater number of species K.
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Figure 6: Mean absolute distances from location of signal peak to true site under balancing selection
(s = 0.01 with h = 100) of varying age for K-species variants of (A) T1, (B) T2, (C) HKA, and (D)
NCD(0.5). Error bars represent the standard deviation of all 200 replicates of the corresponding simulated
scenario. Statistics are color-coded as in Figure 5.

50

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2018. ; https://doi.org/10.1101/320390doi: bioRxiv preprint 

https://doi.org/10.1101/320390
http://creativecommons.org/licenses/by-nc-nd/4.0/

