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Abstract

Identifying genomic locations of natural selection from sequence data is an ongoing challenge in

population genetics. Current methods utilizing information combined from several summary statistics

typically assume no correlation of summary statistics regardless of the genomic location from which they

are calculated. However, due to linkage disequilibrium, summary statistics calculated at nearby genomic

positions are highly correlated. We introduce an approach termed Trendsetter that accounts for the

similarity of statistics calculated from adjacent genomic regions through trend filtering, while reducing

the effects of multicollinearity through regularization. Our penalized regression framework has high

power to detect sweeps, is capable of classifying sweep regions as either hard or soft, and can be applied

to other selection scenarios as well. We find that Trendsetter is robust to both extensive missing data

and strong background selection, and has comparable power to similar current approaches. Moreover,

the model learned by Trendsetter can be viewed as a set of curves modeling the spatial distribution

of summary statistics in the genome. Application to human genomic data revealed positively-selected

regions previously discovered such as LCT in Europeans and EDAR in East Asians. We also identified

a number of novel candidates and show that populations with greater relatedness share more sweep

signals.
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Introduction

Positive selection is one of the evolutionary processes through which populations adapt to their environments, and

identifying positively-selected genomic regions can help us uncover the differences in genes and consequently pheno-

types that differentiate populations from one another. Differentiating between diverse types of selective sweeps due

to positive selection (Hermisson et al., 2017), such as hard sweeps, which result from a beneficial allele on a single

genomic background rising in frequency, and soft sweeps, which occur when a beneficial allele on multiple genomic

backgrounds rises in frequency, can also provide us with insights into evolutionary processes. However, identification

of adaptive regions is a non-trivial task, as signatures of adaptation are often muddled by demographic events. For

instance, both population bottlenecks and selective sweeps can lead to similar decreases in genetic diversity (Wall

et al., 2002; Stajich and Hahn, 2004; Jensen et al., 2005). Developments in our understanding of evolutionary mech-

anisms and their individual importance have led to increasingly complex models (e.g., Nielsen et al., 2005), as well

as numerous tests for statistical differentiation between genomic regions undergoing natural selection and neutrality

(Vitti et al., 2013).

Several methods have recently been developed that incorporate information from multiple summary statistics to

locate positively-selected genomic regions (Lin et al., 2011; Ronen et al., 2013; Pybus et al., 2015; Schrider and Kern,

2016b; Sheehan and Song, 2016; Kern and Schrider, 2018; Sugden et al., 2018). Most existing supervised learning

approaches for detecting sweeps use combinations of summary statistics calculated in genomic windows of simulated

chromosomes to train classifiers using methods such as support vector machines, random forests, neural networks,

and boosting. Differing mechanisms have been employed to handle issues such as missing data and demographic

obstruction of selection signatures. For example, the approach taken by Sheehan and Song (2016) attempts to

jointly infer demographic and adaptive history. However, this framework requires a tremendous amount of training

data, making its application computationally challenging. Schrider and Kern (2016b) use a method of normalizing

summary statistics that lessens the impact of demographic events on selection footprints. In both of these approaches,

genomic regions missing percentages of data above a certain threshold are not included during analysis, leading to

sizable regions labeled as “unclassifiable”.

Current approaches (e.g., Schrider and Kern, 2016b; Sheehan and Song, 2016) attempt to capture the spatial

footprint of adaptation by computing summary statistics at adjacent genomic windows. However, such methods

do not explicitly account for the autocorrelation expected due to similarity because of physical proximity of these

statistics. Regions that have experienced recent selective sweeps due to positive selection exhibit wide stretches of

linkage disequilibrium (LD; Kim and Nielsen, 2004; Kim and Stephan, 2002; Sabeti et al., 2002), as recombination

has not had sufficient time to erode the signal. Therefore, directly accounting for correlations of summary statistics

computed at adjacent genomic regions should be important, and may lead to improvements in the ability to localize

adaptive events.

In this article, we introduce a multinomial regression method termed Trendsetter that directly models the genomic

spatial distribution of summary statistics. We employ trend filtering within a multinomial regression framework to
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penalize the differences between predictors, constraining them so that they are similar to adjacent values. We explore

how penalizing differences in predictors for statistics between one or more adjacent genomic regions transforms the

regression model and affects classification. We further compare the performance of Trendsetter to leading single-

population classification approaches (Lin et al., 2011; Schrider and Kern, 2016b; Kern and Schrider, 2018) developed

or modified to differentiate among hard sweeps, soft sweeps, and neutrality. Finally, we apply Trendsetter to whole-

genome data from worldwide human populations (The 1000 Genomes Project Consortium, 2015), to study the global

distribution of sweeps in recent human history.

Materials and Methods

In this section, we formalize the multinomial regression with trend filtering approach employed by our classifier

Trendsetter. We discuss choice of summary statistics used as features for the classifier, training and implementation

of the classifier, and calibration of class probabilities. We then describe simulation settings and associated parameters

to test the performance of Trendsetter, as well as its robustness to diverse demographic scenarios, confounding effects

of background selection, and missing data. We finalize by discussing the application of Trendsetter to empirical data

from global human populations.

Multinomial regression with trend filtering

Trend filtering has enjoyed great attention in a number of fields, including economics (e.g., Hodrick and Prescott,

1997), finance (e.g., Tsay, 2005), and medicine (e.g., Greenland and Longnecker, 1992). The essential idea behind this

approach is to fit a non-parameteric curve to time-series or spatially-varying data, in which consecutive data points

are highly correlated. Specifically, in the case we consider here, we can imagine that our data points are summary

statistics calculated at adjacent single-nucleotide polymorphisms (SNPs), which are correlated due to LD. We would

expect that the spatial distribution of statistics calculated at these SNPs should behave like a curve under models

of natural selection, in which some statistics are increased or decreased near a site under selection as portrayed in

Figure 1.

Here, we plan to perform multinomial regression, accounting for correlations among observations of a particular

statistic across neighboring genomic regions through trend filtering. We consider our response to come from K

classes, and we wish to classify a particular focal SNP as coming from one of the K classes. For example, if we have

K = 3 classes, then we may want to consider responses as neutrality, hard sweep, or soft sweep. To accomplish

this task, we will assume that we have observations on m summary statistics, with each statistic computed at the

focal SNP, and D SNP data points upstream and D downstream of the focal SNP. These D SNPs can either be

contiguous or be specified more sparsely across the dataset, which is how we have chosen the set of SNPs in this

article. Therefore, for each summary statistic, we will have p = 2D + 1 observations of the statistic to capture its

spatial distribution. We choose to use the spatial distribution of a statistic at SNPs rather than at fixed physical
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distances (e.g., Chen et al., 2010; Schrider and Kern, 2016b), as it may enhance robustness to missing data when

not explicitly accounted for in the training of the classifier.

Suppose we have training data from n simulated replicates. Let the true class for simulated replicate i, i =

1, 2, . . . , n, be yi. Suppose that the observed value of summary statistic s at SNP data point j in replicate i is

denoted by xi,s,j . For observation i, denote the probability of observing class yi given data xi by P[yi |xi], where xi

is a vector of length m× p and has transpose

xT
i = [xi,1,1, xi,1,2, . . . , xi,1,p, xi,2,1, xi,2,2, . . . , xi,2,p, . . . , xi,m,1, xi,m,2, . . . , xi,m,p].

Let βk,s,j denote the coefficient for class k, k = 1, 2, . . . ,K, for summary statistic s, s = 1, 2, . . . ,m, at SNP data

point j, j = 1, 2, . . . , p. For class k, let βk be a vector of length m× p that has transpose

βT
k = [βk,1,1, βk,1,2, . . . , βk,1,p, βk,2,1, βk,2,2, . . . , βk,2,p, . . . , βk,m,1, βk,m,2, . . . , βk,m,p].

Define the matrix B containing m× p rows and K columns by

B = [β1,β2, . . . ,βK ].

Let βk,0, k = 1, 2, . . . ,K, denote the intercept for class k, and let β0 be a vector of length K containing these

intercept terms with transpose

βT
0 = [β1,0, β2,0, . . . , βK,0].

To learn a model that is capable of predicting class y from observed data x, we need to provide a collection of

observed data point tuples {(yi,xi)}ni=1 that represent example training inputs xi and outputs yi of the model. We

then want to learn a model that relates an observed input x to an output y given model parameters {β0,B}. We

therefore wish to compute the conditional probability (Hastie et al., 2009)

P[yi = k |xi,β0,B] =
eβk,0+xT

i βk∑K
`=1 e

β`,0+xT
i β`

of observing that the output yi of example i was class k given the input xi and model parameters. Given this

conditional probability, the log likelihood of the model parameters {β0,B} given the collection of observed data

point tuples {(yi,xi)}ni=1 is
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logL(β0,B ; {(yi,xi)}ni=1) =
1

n

n∑
i=1

K∑
k=1

logP[yi |xi,β0,B]1{yi=k}

=
1

n

n∑
i=1

[
K∑
k=1

(βk,0 + xT
i βk)1{yi=k} − log

(
K∑
`=1

eβ`,0+xT
i β`

)]

=
1

n

n∑
i=1

[
K∑
k=1

(
βk,0 +

m∑
s=1

p∑
j=1

βk,s,jxi,s,j

)
1{yi=k}

− log

(
K∑
`=1

eβ`,0+
∑m

s=1

∑p
j=1 β`,s,jxi,s,j

)]
,

where 1{yi=k}, k = 1, 2, . . . ,K, is an indicator random variable that takes the value 1 if yi = k and 0 otherwise.

We seek to find the set of coefficients {β0,B} that maximize the log likelihood function with a penalty term that

we denote PENγ,d(B), which places a penalty on the coefficients B. Denoting the pair of tuning parameters λ1 ≥ 0

and λ2 ≥ 0, we therefore obtain parameters that maximize a penalized log likelihood function (Hastie et al., 2009)

as

(β̂0, B̂, λ̂1, λ̂2) =
arg max

β0,B, λ1, λ2

[
logL(β0,B ; {(yi,xi)}ni=1)− λ1PENγ1,0(B)− λ2PENγ2,d(B)

]
, (1)

where

PENγ,d(B) =
K∑
k=1

m∑
s=1

p−d∑
j=1

∣∣∣∣∣
d∑

h=0

(−1)d−h
(
d

h

)
βk,s,j+h

∣∣∣∣∣
γ

(2)

for γ ≥ 1 and d a non-negative integer. When d = 0, 1, or 2, the penalty respectively reduces to

PENγ,0(B) =

K∑
k=1

m∑
s=1

p∑
j=1

|βk,s,j |γ

PENγ,1(B) =
K∑
k=1

m∑
s=1

p−1∑
j=1

|βk,s,j+1 − βk,s,j |γ

PENγ,2(B) =
K∑
k=1

m∑
s=1

p−2∑
j=1

|βk,s,j − 2βk,s,j+1 + βk,s,j+2|γ ,

which represent summations across classes and summary statistics for finite difference analogues to the zeroth, first,

and second derivatives of functions defined by summary statistic s from class k. That is, the component of the penalty

βk,s,j+1 − βk,s,j in the second equation (d = 1) represents an approximation to the first derivative of the function

defined by statistic s at SNP data point j for class k, whereas the component of the penalty βk,s,j−2βk,s,j+1+βk,s,j+2

in the third equation (d = 2) represents an approximation to the second derivative of the function defined by statistic

s at SNP data point j+1 for class k. In general,
∑d
h=0(−1)d−h

(
d
h

)
βk,s,j+h represents a finite difference approximation

to the dth derivative of the function defined by statistic s for class k at SNP data point j. Letting γ = 1 gives the

`1 penalty commonly employed in lasso, and setting γ = 2 gives the `2 penalty commonly used in ridge regression

frameworks (Hastie et al., 2009).
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In this article, we consider the situation in which γ1 = γ2 = 1, permitting simultaneous regularization and feature

selection. The first penalty term PEN1,0(B) associated with tuning parameter λ1 is identical to the one used by lasso

(Hastie et al., 2009). This penalty ensures that the values of regression coefficients for summary statistics that are

highly correlated with other selected (important) summary statistics will be reduced to zero, thus reducing the effects

of multicollinearity. In contrast, the second penalty term deals with the autocorrelation of summary statistics, or how

each summary statistic is correlated across physical space. For the second penalty term PEN1,d(B) associated with

tuning parameter λ2, we consider values of d = 1 and d = 2. The scenario with d = 1 approximates a function with

a step or piecewise-constant function and is termed constant trend filtering, whereas d = 2 approximates a function

with a piecewise-linear function and is termed linear trend filtering (Kim et al., 2009; Hawkins and Maboudou-Tchao,

2013; Tibshirani, 2014; Wang et al., 2016). Using d = 2 measures the curvature of the function for statistic s at SNP

data point j+1. The entire penalty PEN1,2(B) therefore represents the total curvature across all summary statistics,

and assesses the ruggedness of the set of curves. By penalizing in this manner, we are imposing a smoothness on the

spatial distribution of the summary statistics. The combination of this trend penalty with that of the lasso penalty

PEN1,0(B) has a similar effect to a group lasso (Ming and Yi, 2006) penalty, in which the inclusion or exclusion of

all values of a summary statistic is decided rather than the inclusion or exclusion of each feature separately. Other

trend penalties focusing on lower- and higher-order derivatives have been considered in the literature (Tibshirani,

2014; Wang et al., 2016).

Choosing summary statistics

The choices of summary statistics are critical when designing a regression approach for isolating signals of natural

selection. First, summary statistics that interrogate different aspects of genetic variation are important. For example,

statistics such as the mean pairwise sequence difference π̂ (Tajima, 1983) can be used to evaluate skews in the

site frequency spectrum. Linkage disequilibrium statistics, such as the squared correlation coefficient r2 (Hill and

Robertson, 1968) between a pair of SNPs can be used to evaluate speed of decay of SNP correlation with distance

from a focal SNP. Furthermore, summaries of haplotypic variation, such as the number of distinct haplotypes Nhaps

and expected haplotype homozygosity H1 (Garud et al., 2015) can be used to evaluate skews in the distribution of

haplotypes as a function of distance from a focal SNP. Second, summary statistics that should be relatively robust

to the confounding effects of background selection, such as haplotype-based statistics (Enard et al., 2014), should be

considered, as background selection has been demonstrated to be a ubiquitous force in a number of diverse lineages

(e.g., McVicker et al., 2009; Comeron, 2014). In this article, we focus on a set of m = 6 summary statistics, including

mean pairwise sequence difference π̂ (Tajima, 1983), the squared correlation coefficient r2 (Hill and Robertson, 1968)

of a SNP and the focal SNP, the number of distinct haplotypes Nhaps, and the H1, H12, and H2/H1 statistics of

Garud et al. (2015). The latter three statistics were chosen as they have been demonstrated to exhibit high power

to detect both hard and soft sweeps, as well as the ability to collectively distinguish between hard and soft sweeps.

It is important to note that it is possible to extend our approach to unphased genotypes, by using unphased-
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genotype analogues of the haplotype-based statistics. That is, following Harris et al. (2018), we can substitute the

number of distinct haplotypes Nhaps with the number of distinct multilocus genotypes Ngeno, replace H1, H12, and

H2/H1 respectively with G1, G123, and G2/G1 (Harris et al., 2018), and use HR2 (Sabatti and Risch, 2002) as

a surrogate for r2. Because the multilocus genotype analogues G1, G123, and G2/G1 have been demonstrated to

retain similar detection and classification abilities as H1, H12, and H2/H1 (Harris et al., 2018), they should be

suitable substitutions. Making these summary statistic substitutions permits application of Trendsetter to data

from organisms that cannot be phased, as well as for studies in which it is important to avoid phasing errors (see

Discussion).

Training the classifier

We computed the value of a summary statistic at each of the 2D+1 SNP data points, as described in the Multinomial

regression with trend filtering subsection. Specifically, for each SNP data point, we considered five SNPs directly

upstream and five SNPs directly downstream of the SNP data point, making a window of 11 total SNPs (Figure S1).

Each summary statistic was calculated using the data across these 11 SNPs. Specifically, Nhaps, H1, H12, and H2/H1

for a given SNP data point were based on the haplotypic variation defined by the 11 SNP window surrounding (and

including) the SNP data point. The mean pairwise sequence difference π̂ for a given SNP data point was computed as

the mean across all 11 SNPs in the window surrounding (and including) the SNP data point. The squared correlation

coefficient r2 for a given SNP data point was computed as the mean r2 for all 11 SNPs in the window with the focal

SNP within the set of 2D + 1 SNP data points. Computing r2 in such a way permitted the method to evaluate the

speed at which LD decays from a focal SNP data point (putative site under selection). In this article, we use D = 100,

so that each summary statistic is computed across 201 data points. Adjacent SNPs will be highly correlated, and

we have a trade-off between the number of data points to learn the function for the summary statistic through trend

filtering and the running time due to increased numbers of features. To accomplish this, we chose to compute SNP

data points every five SNPs, so that we still capture the genomic signal across a wide spatial distribution, while also

having adjacent data points that are highly correlated. Such an approach permits us to examine the spatial variation

of a summary statistic spanning a total of 10(D + 1) SNPs, while only using 2D + 1 data points. As a consequence

of how we compute summary statistics at each data point, values at neighboring data points will be based on data

from a partially overlapping set of SNPs, and will therefore be correlated by construction. For a sample of size 100

haplotypes, in a population with diploid effective size N = 104 (Takahata, 1993) and per-site per-generation mutation

rate µ = 1.25 × 10−8 (Scally and Durbin, 2012), setting the 10(D + 1) = 1010 SNPs (segregating sites) equal to

its neutral expectation (Ewens, 1974) gives the expected length of a neutrally-evolving region with this many SNPs

to be 10(D + 1)(4Nµ
∑100−1
i=1 1/i) = 390, 159 nucleotides, or approximately 390 kb. In regions that have undergone

recent strong selective sweeps, much of the genetic variation would have been lost, and so the genomic region with

the same number of SNPs would be considerably wider.

To train a classifier under a given demographic model, we used the coalescent simulator discoal (Schrider and
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Kern, 2016a) to generate 103 neutral, 103 hard sweep, and 103 soft sweep scenarios to use as training data, and

computed the 2D+ 1 values for each of the six summary statistics using the set of SNPs closest to the center of the

simulated region. All simulations assumed a uniform per-site per-generation mutation rate of µ = 1.25×10−8 (Scally

and Durbin, 2012) and a uniform per-site per-generation recombination rate of r = 10−8 (Payseur and Nachman,

2000) across sequences of length L = 1.1 Mb. For all selection simulations, beneficial mutations were introduced

at the center of the simulated region with per-generation selection coefficient s drawn uniformly at random on a

log scale over the interval [0.005, 0.5]. Moreover for soft sweeps on standing variation, the starting frequency of the

beneficial allele was drawn uniformly at random over the interval [0.01, 0.10]. For all selective sweep simulations,

the time at which the adaptive allele reached fixation was drawn uniformly at random between zero and 1,200

generations in the past. Note that because discoal conditions on the time at which a sweep completes, given a

specified selection coefficient, the time at which the sweep initiated is already some function of these parameters.

Therefore, sweeps associated with small selection coefficients tend to initiate farther in the past than those with

larger selection coefficients. Moreover, because discoal allows the specification of both sweep strength and sweep

completion time, selected alleles with very small selection coefficients will still not be lost, but will instead have been

introduced distantly in the past. As a consequence, sweeps from such weakly-beneficial alleles would likely not be

detectable by Trendsetter.

As is common for regularized regression models (Hastie et al., 2009; Simon and Tibshirani, 2012), values for

summary statistic s at SNP data point j were standardized so that they had mean zero and standard deviation one

across the set of 3 × 103 simulated training replicates. We then used Equation 1 to estimate the coefficients from

these data points using 10-fold cross validation (Hastie et al., 2009) with balanced training samples from each class.

We subsequently applied Trendsetter to simulated and empirical data to classify focal SNPs, where we standardized

each summary statistic in the test and empirical datasets using the standardization parameters we applied for the

respective training sets.

Implementation

The optimization problem in Equation 1 is convex, but is non-trivial as it contains two different components—one

that is smooth (i.e., the log likelihood function) and the other that is non-smooth (i.e., the penalty function).

Liu et al. (2010) developed an efficient algorithm for solving this problem, and we adapted this framework for our

purposes. Specifically, we augmented the approach of Liu et al. (2010) to add linear trend filtering, which requires

solving a pentadiagonal rather than tridiagonal system of linear equations as was used by the original constant trend

filtering implementation. More generally, for a given value of the derivative d, this linear system amounts to inverting

a symmetric banded Toeplitz matrix with bandwidth d. To ensure that the optimization is computationally feasible

in reasonable time, we employed the PTRANS-1 algorithm (Liu et al., 2010) for solving general pentadiagonal linear

systems, which requires only O(n) operations for a matrix of size n× n (where n = p− 2 = 2D − 1 in our scenario

for linear trend filtering), and therefore has complexity O(D) for D SNP data points flanking either side of the focal
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SNP.

Calibrating class probabilities

Our model, similar to others (e.g., Lin et al., 2011; Schrider and Kern, 2016b; Sugden et al., 2018), not only assigns

class labels, but also provides a probability for each of the K classes. A properly-calibrated classifier should be one

in which the probability of observing a given class is the actual fraction of times that the classifier chooses this class.

This calibration ensures that the assigned probability for each class can be interpreted as the empirical proportion

of simulations at each threshold.

To examine whether Trendsetter yielded properly-calibrated probabilities, we plot a set of reliability curves for

each trained classifier. To calibrate classifier probabilities, it is possible to employ Platt scaling (Platt, 1999) applied

to the output probabilities of a classifier. Specifically, an extra set of training data must be set aside to train a

multinomial logistic model using the probabilities output from Trendsetter as the independent variables, and the

true class as the dependent variable (Naeini, 2017). To calibrate our classifiers, we use 1000 examples from each class,

for a total training set of 3000. Because we expect the majority of polymorphisms in some species (e.g., humans)

to be classified as neutral, it may in some cases be useful to calibrate a classifier with this assumption in mind, as

increasing the number of neutral examples may be necessary to achieve proper calibration (Sugden et al., 2018).

Simulations to examine Trendsetter performance

We examined a number of simulation settings to better understand the ability of Trendsetter to detect and classify

sweeps, as well as its robustness to common confounding factors. Specifically, we considered differences in demo-

graphic history inspired by population size fluctuations inferred from human genomic data (Terhorst et al., 2017), the

influence of soft shoulders (Schrider et al., 2015), background selection due to long-term purifying selection (McVicker

et al., 2009; Comeron, 2014), extensive missing data due to regions of poor alignability or mappability, sample size,

and selection strengths.

Demographic history

We considered a constant-size demographic history with effective size of N = 104 diploid individuals (see Training

the classifier), as well as models incorporating population size change that are inspired by parameters inferred from

human history (Terhorst et al., 2017)—with models that incorporate recent population expansions that occurred

in populations of sub-Saharan African ancestry (e.g., LWK and YRI), and models with strong recent population

bottlenecks that occurred in populations of non-African ancestry (e.g., GIH, TSI, CEU, CHB, and JPT). We used

these piecewise-constant demographic histories inferred by Terhorst et al. (2017) to train our models. We chose to

use the models of Terhorst et al. (2017) instead of those from Tennessen et al. (2012), because in addition to allele

frequency information used by Tennessen et al. (2012), Terhorst et al. (2017) also incorporated patterns of LD to infer

demographic histories, thereby potentially making their inferred models more accurate (Beichman et al., 2017)—
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though linked-selection may bias inferences of demographic history from whole-genome methods that incorporate

LD, and so masking such regions, as can be done within the Terhorst et al. (2017) framework, may be important. We

used 200 time points and corresponding effective population sizes throughout human history for each of our seven

populations of interest, which included African (YRI and LWK), European (CEU and TSI), South Asian (GIH),

and East Asian (CHB and JPT) groups (see Application to empirical data). We utilized these data points as 200

intervals describing the growths and declines of these populations as inputs to discoal along with a range of selection

strengths s ∈ [0.005, 0.5] for hard and soft sweeps. The per-site per-generation mutation and recombination rates

used for simulating all Terhorst et al. (2017) demographic histories are µ = 1.25× 10−8 and r = 10−8, respectively.

In simulations with hard and soft sweeps, we ensure the beneficial allele fixes between 1200 generations ago and the

present, with fixation time drawn uniformly at random over this time period.

Linked-sweep classes

Previous work has shown that when classifying genomic regions with window-based methods, it may be possible to

mis-classify genomic regions near a hard sweep as soft sweeps via a phenomenon termed “soft shoulders” (Schrider

et al., 2015; Schrider and Kern, 2016b). To test whether Trendsetter is affected by soft shoulders, we simulated

linked-sweep regions by moving the location of a beneficial mutation away from the center by steps of 100 kb, in both

the upstream and downstream directions. We do this for both hard sweeps and soft sweeps. To form the training set

for the linked sweep classes, we combine 100 simulations from each of the 10 sets of sweep simulations with selected

sites distant from the test site.

Background selection

To evaluate the robustness of Trendsetter to regions evolving under background selection, we first followed the

protocol described in Schrider and Kern (2017). We employed the forward-time simulator SLiM 2 (Haller and

Messer, 2017) to generate 103 simulated replicates for sequences of length 1.1 Mb, where the number, lengths, spatial

distribution, and distribution of fitness effects of functional elements across the simulated region matched random

regions from the human genome. Specifically, we sampled a 1.1 Mb region of the human genome uniformly at random,

and determined the sites within that region that are either included in the phastCons database (Siepel et al., 2005)

or found within an exon in the GENCODE database (Harrow et al., 2012). In simulations, sites falling within these

regions were determined to be undergoing purifying selection, with 25% of mutations occurring in these sites being

neutral and 75% having a selection coefficient drawn from a gamma distribution with mean −0.0294 as described by

Boyko et al. (2008).

Along with this empirically-based background selection scenario, we wanted to investigate a potentially more

extreme setting, with a single genic element located at the center of a large genomic region, in which strongly

deleterious alleles arise continually within this genic element. We also used SLiM 2 to generate 103 simulated

replicates for sequences of length 1.1 Mb, where a central 11 kb “gene” evolved under purifying selection. Specifically,
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this central genic region was composed of 5’ and 3’ untranslated regions (UTRs) that flanked a set of 10 exons, which

were separated by introns as in Cheng et al. (2017). We set the lengths of these UTRs, exons, and introns to be based

on their means in the human genome (Mignone et al., 2002; Sakharkar et al., 2004), such that the lengths of each

intron, exon, 5’ UTR, and 3’ UTR were 1000, 100, 200, and 800 nucleotides, respectively. We simulated differences

in proportions of deleterious mutations arising in each of these genic elements, by simulating 75%, 50%, and 10%

of mutations arising in exons, UTRs, and introns as deleterious, respectively, and deleterious mutations having a

strong selective disadvantage of s = −0.1 per generation. Finally, as a third background selection scenario, we also

considered the exact setting as this second central genic element scenario, but with the recombination rate decreased

to 100-fold lower in the 11 kb genic region relative to the surrounding neutral regions. This scenario permitted us

to examine whether Trendsetter was robust to strongly-deleterious mutations arising in regions of elevated linkage

disequilibrium. We then tested whether this set of three background selection settings would be falsely classified

as a sweep by Trendsetter trained using simulations of the constant-size demographic history discussed in section

Training the classifier.

Missing data

Due to a number of technical issues, large segments of missing data are scattered throughout the genome (Lander,

2011). Filtering such segments can lead to a large fraction of the genome that cannot be classified (Schrider and

Kern, 2016b; Sheehan and Song, 2016), unless it is properly accounted for within the training dataset, as missing

data can masquerade as footprints of lost diversity, mimicking patterns expected from selective sweeps. Trendsetter

computes summary statistics at SNP data points rather than as averages over physical regions, potentially enabling

it to be robust to falsely attributing regions with missing data as candidate sweeps. The rationale is that missing

data would cause SNP data points to be farther in terms of both physical and genetic distance than if there was no

missing data, thereby making SNP data points close to the focal SNP less correlated than expected under selection

models. Such an approach should be conservative, likely leading to classifications of sweeps as neutral and not

mis-classifying neutral regions as sweeps. To evaluate robustness to missing data, we masked SNPs in the testing

dataset, amounting to 30% of the total number of SNPs in each simulation and approximately 30% of the total

length of the chromosome. We did this by removing 10 genomic chunks each with size equalling 3% of the total

number of simulated SNPs, with a starting position for each missing chunk chosen uniformly at random from the

set of SNPs, provided the chunk did not overlap with previously-missing chunks. Removing SNPs in this fashion

simulates missing data that would be filtered due to genomic regions with poor alignability or mappability (Mallick

et al., 2009).

Effect of sample sizes on classification rates

The number of individuals sequenced can differ in projects depending on sample availability and funding resources

for sequencing. Larger sample sizes are expected to yield better estimates of summary statistics, and therefore more
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accurate interrogations of genomic diversity. To explore how sample size affects classification accuracy, we tested the

ability of Trendsetter to correctly classify hard sweeps, soft sweeps, and neutral regions as a function of sample size,

choosing sample sizes of 100, 25 and 10 diploid individuals for a set of selection strengths s ∈ [0.005, 0.5] ranging

from moderate to strong.

Selection strengths and classification rates

The strength of selection has an impact on the speed at which a selected allele increases in frequency toward fixation,

and thus the amount of time for mutation and recombination to erode the signature. Specifically, the size of the

genomic footprint Lfootprint can be approximated by the equation Lfootprint = s/(2r ln(4Ns)), where s is the per-

generation selection coefficient, r is the per-site per-generation recombination rate, and N is the diploid effective

population size (Gillespie, 2004; Hermisson and Pennings, 2005; Garud et al., 2015). Here, the footprint is positively

correlated with the strength of selection, whereas it is negatively correlated with the rate of recombination. To

test the effects that different selection strengths have on overall classification rates, we simulated hard and soft

sweeps with selection coefficients chosen from two non-overlapping intervals: strong selection with s ∈ [0.05, 0.5] and

moderate selection with s ∈ [0.005, 0.05]. We conducted simulations under a constant-size demographic model using

discoal as described in section Training the classifier.

Application to empirical data

We used phased haplotypes from variant calls of the 1000 Genomes Project (The 1000 Genomes Project Consortium,

2015). Specifically, we analyzed genomes from the sub-Saharan African Yoruban (YRI) population, Gujurati Indian

from Houston, Texas, USA (GIH), Han Chinese in Beijing, China (CHB), Japanese in Tokyo, Japan (JPT), Luhya in

Webuye, Kenya (LWK), Toscani in Italy (TSI) and Utah Residents with European Ancestry (CEU). We first filtered

regions with poor mappability and alignability as in Huber et al. (2016). Specifically, we segmented each chromosome

into 100 kb non-overlapping regions, and filtered SNPs in regions with a mean CRG100 score (Derrien et al., 2012) less

than 0.9. Because sweeps tend to affect large genomic regions, filtering in this manner will remove large regions with

poor average quality, decreasing the likelihood that Trendsetter would be misled by genetic variation in unreliable

genomic regions. After masking these regions, we computed summary statistics in an identical manner as for the

simulated datasets. However, for each chromosome, we classify every fifth SNP beginning from the 505th using

information from 100 data points (505 SNPs) upstream and 100 data points (505 SNPs) downstream of the focal

SNP. It is important to note that each focal SNP classified by Trendsetter should not be viewed as the site or exact

location of the beneficial mutation, but rather should be considered as a proxy for the location. If the focal SNP is

close enough to the location of the adaptive variant, then we would expect the genetic variation surrounding the focal

SNP to look similar to the diversity around the adaptive site. Therefore, using summary statistics that compute a

single value at a given SNP (e.g., iHS or XP-EHH; see Discussion section) may enhance the ability of Trendsetter

to only classify polymorphisms that are close to the true adaptive site as a sweep.
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When training Trendsetter for application to empirical data, our treatment differed from when we evaluated

Trendsetter ’s performance on simulated data in two ways. First, because human recombination rate varies across

the genome, we accounted for recombination rate variation by following Schrider and Kern (2017) and drawing

the recombination rate for a particular training simulation from an exponential distribution with mean 10−8 and

truncated at three times the mean. Second, because we have introduced another variable into our training simulations

(namely recombination rate), we chose to increase the number of independent training simulations by five fold, leading

to 5000 neutral, 5000 hard sweep, and 5000 soft sweep replicates.

Comparison to other methods

A number of powerful approaches have recently emerged to localize and classify sweeps from genomic data. We

compare the classification ability of Trendsetter to the binary classifier evolBoosting (Lin et al., 2011), as well as the

multi-class approaches of S/HIC (Schrider and Kern, 2016b) and diploS/HIC (Kern and Schrider, 2018). Following

Schrider and Kern (2016b), to compare binary to multi-class classifiers, we expanded evolBoosting to greater than two

classes by training a classifier to differentiate between sweeps (combined hard and soft) and neutrality, and training

another classifier to differentiate between hard and soft sweeps. This procedure is analogous to how Lin et al.

(2011) differentiated among sweeps, population bottlenecks, and a constant-size demographic history in the article

that introduced evolBoosting. Moreover, to enable direct comparison of S/HIC and diploS/HIC to Trendsetter,

we employed three-class versions of S/HIC and diploS/HIC approaches, whereas their native states include five

classes. We later expand Trendsetter to five classes to permit direct comparison with the default states of S/HIC

and diploS/HIC. In addition to direct comparison across methods, we also evaluated detection capabilities and

robustness to confounding factors when Trendsetter operates on the expanded set of summary statistics used by

S/HIC. Specifically, S/HIC uses 10 summary statistics: Tajima’s D (Tajima, 1983), the maximum value of ω (Kim

and Nielsen, 2004), Tajima’s π̂ (Tajima, 1983), H1 (Garud et al., 2015), H12 (Garud et al., 2015), H2/H1 (Garud

et al., 2015), number of haplotypes Nhaps, Zns (Kelly, 1997), Fay and Wu’s H (Fay and Wu, 2000), and Watterson’s

θ̂W (Watterson, 1975) calculated in each of 11 contiguous windows. Because Trendsetter uses many more data points

for summary statistics to capture their spatial distribution across the genome, we computed each of the 10 summary

statistics in each of 110 contiguous windows, where each window was 1/10th the size of the window used by S/HIC,

thereby requiring Trendsetter to operate on the same data.

We tested the classification rates for both the constant (d = 1) and linear (d = 2) trend penalties employed by

Trendsetter. Moreover, because S/HIC was developed to classify genomic regions as either neutral, a sweep, or linked

to a sweep, we also included linked-hard and linked-soft classes to examine whether they enhance the robustness of

Trendsetter to soft shoulders (Schrider et al., 2015; Schrider and Kern, 2016b). Finally, we compared Trendsetter

to diploS/HIC (Kern and Schrider, 2018), a recently-developed approach that utilizes deep neural networks and

image analysis to learn the spatial distribution of summary statistics nearby a sweep region—similar in concept to

accounting for the spatial orientation of summary statistics that gives Trendsetter its power. Similarly to testing
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with S/HIC-specific statistics, we tested Trendsetter using the statistics specified by diploS/HIC in 110 contiguous

windows. This feature vector includes statistics measuring the variance, skewness, and kurtosis of the distribution

of multilocus genotype distances.

Results

To examine the power and robustness of Trendsetter, we evaluate its performance under common settings that

would typically be encountered in empirical data. Specifically, we test the ability of Trendsetter to correctly classify

simulated sweeps of differing selection strengths, scenarios that include extensive missing data, and settings of realistic

population size changes. We compare the accuracy and robustness of Trendsetter to other powerful methods designed

to localize sweeps in single populations such as evolBoosting (Lin et al., 2011), S/HIC (Schrider and Kern, 2016b),

and diploS/HIC (Kern and Schrider, 2018), and exclude complementary approaches developed to isolate sweep signals

using data from multiple populations (e.g., SWIF(r); Sugden et al., 2018).

Detecting and classifying selective sweeps

We trained Trendsetter with a linear (d = 2) trend filter penalty on data simulated under a constant-size demographic

model as described in section Materials and Methods. We obtained optimal values for λ1 and λ2 through ten-fold

cross validation. We first examined whether probability calibration was required for Trendsetter, and the reliability

curves in Figure S2 suggest that no further calibration is needed. Based on this trained classifier, we are able to

correctly classify 81.9% of hard, 97.1% of neutral, and 78.3% of soft sweep scenarios (Figure 2). Of the mis-classified

soft sweeps scenarios, 15.5% are mis-classified as hard sweeps, and 6.2% are mis-classified as neutral. We compared

the performance of Trendsetter against several existing classification methods, where each method was modified to a

three-class classification system (Lin et al., 2011; Schrider and Kern, 2016b; Kern and Schrider, 2018). Note that the

native state of evolBoosting is two classes, whereas S/HIC and diploS/HIC employ five classes by default. We will

examine classification ability of Trendsetter with five classes later in this subsection, allowing for it to be directly

compared to the native states of S/HIC and diploS/HIC. From these simulated scenarios, all methods had comparable

ability to detect and classify sweeps and to differentiate between hard and soft sweeps (Figures 2, 3, and S3).

By examining the values of the regression coefficients for each summary statistic, we can identify the relative

importance of each statistic as well as the spatial distribution modeled. Specifically, summary statistics will tend

to be more important when their regression coefficients are of larger magnitudes than other statistics. Moreover,

the spatial distribution of the regression coefficients for a particular summary statistic calculated for a specific class

should yield a curve, with summaries important for detecting sweeps likely exhibiting a sharp increase in magnitude

near the site (central SNP) under selection (see schematic in Figure 1). These sharp peaks are the result of the

combination of lasso and trend filter penalties that Trendsetter employs when fitting a regression model. If the value

of a regression coefficient is reduced to zero, neighboring regression coefficients are also more likely to be zero. In
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contrast, the values of regression coefficients in regions of importance will be constrained by the higher values of

neighboring coefficients. Figure 4 depicts the regression coefficients for H12 and the number of haplotypes Nhaps

under both constant (d = 1) and linear (d = 2) trend filter penalties as a function of the class and SNP position, with

Trendsetter trained on a range of selection strengths s ∈ [0.005, 0.5]. We can see that number of haplotypes is clearly

a less important statistic, with regression coefficients exhibiting low magnitudes at the peaks. The likely reason for

this lack of importance is that, conditional on the number of SNPs, the number of distinct haplotypes will likely be

narrowly constrained. In contrast, H12 played a large role in distinguishing between sweeps and neutrality, with its

peak reaching the greatest magnitude, likely due to sweeps skewing the distribution of haplotype frequencies and

thereby having a large influence on the H12 statistic. We also notice that some regression coefficients (such as H1

in Figure S4) tend to increase in magnitude toward the beginning or end of the analyzed region. This phenomenon

may be due to the value of the coefficient only being constrained from a single direction, rather than both directions.

We explore whether these upticks or downticks in regression coefficients at the ends of the analyzed region affect the

accuracy of Trendsetter in the Discussion section.

In a similar manner to fitting a linear (d = 2) trend penalty, we trained Trendsetter with a constant (d =

1) trend penalty that resulted in similar classification performance as when we trained under the linear penalty

(Figures 2 and 3). This overall similarity in classification rates between constant (d = 1) and linear (d = 2) trend

filtering is reflected in their similar distributions (Figure 4), with comparable relative importance levels, magnitudes,

and spatial distributions of regression coefficients. Interestingly, the linear penalty is better at localizing the SNP

closest to the site of selection relative to the constant penalty, based on the regression coefficients for H12 (Figure 4).

Because of their similarity in performance, our discussion will be based on linear trend filtering (d = 2), unless

otherwise specified.

We expect a disparity in the power of Trendsetter to detect sweeps resulting from different selection strengths

s. The selection strength of test simulation sets strongly influences its hard sweep classification rates (Figure S5), in

that simulations of strong hard sweeps are classified correctly more often than moderate hard sweeps. Further, from

the curves displayed in Figure S6, we find that Trendsetter exhibits equal power in differentiating between neutrality

and soft sweeps, regardless of the selection strength. This pattern is also reflected in Figure S5, which indicates that

selection strength does not lead to substantial differences in mis-classification rates of soft sweeps for the selection

strengths that we have considered—though Trendsetter as well as other approaches would likely have little ability

to detect and classify soft sweeps from sufficiently weak selected alleles.

In contrast to the models we have considered so far, both S/HIC and diploS/HIC include two other classes in their

native states, so that in addition to classes representing neutrality, hard sweeps, and soft sweeps, there are also classes

representing regions that are linked (or nearby) to hard sweeps and linked to soft sweeps. The motivation for including

these classes was to increase robustness of these methods to soft shoulders (Schrider et al., 2015; Schrider and Kern,

2016b; Kern and Schrider, 2018). We observe a slight increase in the mis-classification of linked-hard regions as

soft sweeps (Figure S7) when we test simulations containing linked sweeps using Trendsetter trained to differentiate
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among three classes (neutrality, hard sweeps, and soft sweeps). We next chose to test whether incorporating additional

(linked-hard and linked-soft) classes will increase Trendsetter ’s robustness to soft-shoulders. Under this five-class

model, the spatial distributions of regression coefficients for linked-sweep regions are modeled distinctly from sweep

regions (Figure S8). Although Trendsetter ’s ability to distinguish between hard sweeps and linked-hard regions is

limited, we show that our mis-classification of linked-hard regions as soft sweeps is not dramatically different from

that of S/HIC (Figures S9-S11). Because S/HIC and diploS/HIC were designed to include linked-sweep classes, we

test whether including these classes alters their classification rates under confounding factors in the Missing data

subsection of Results.

Influence of population history

Populations tend not to maintain constant sizes, with sizes instead fluctuating over time (Graciá et al., 2015; Osborne

et al., 2016; Sherry, 2018). For example, it is widely accepted that global human populations have undergone different

recent demographic events, such as more rapid expansions and more extreme bottlenecks in European and Asian

populations when compared to Africans (Gravel et al., 2011; Tennessen et al., 2012). However, population size

changes alter local genomic diversity, and can mimic signatures of selective sweeps (Galtier et al., 2000; Stajich and

Hahn, 2005). It is therefore important to assess the effects of population size change on method performance.

We trained and tested Trendsetter on data simulated under realistic demographic models with recent population

bottlenecks and expansions that are consistent with genetic variation observed in empirical human data. In particu-

lar, we generated simulation and training data from inferred human demographic parameters (Terhorst et al., 2017,

see Materials and Methods). In general, Trendsetter performs well when trained and tested on realistic demographic

histories (Figure 5). Simulations of African populations (LWK and YRI) showed the lowest rates of mis-classification

(Figure 5), likely due to their larger effective sizes and therefore greater neutral haplotypic diversity (Tenesa et al.,

2007). Overall, the classification rates of simulations using Trendsetter with constant (d = 1) trend filtering (Fig-

ure S12) are virtually identical to those under linear (d = 2) trend filtering (Figure 5). Additionally, classification

rates appear to be correlated with effective population size (Figure S13), with larger effective sizes such as in Africans

leading to a greater percentage of correctly classified simulations. This trend with effective size is expected, due to

the positive correlation of haplotypic diversity with effective population size.

Though all classifiers performed well under diverse models of population size change, demographic mis-

specification (i.e., testing on a population history that is different from the one that was used to train the classifier)

leads to high mis-classification rates if the training and test demographic histories are highly different (Figure S14).

We chose to compare classification rates with demographic mis-specifications for populations with similar (e.g., CHB

vs. GIH) and different (e.g., LWK vs. CEU) histories. For all methods tested, when demographic histories of pop-

ulations are similar, classification rates are not dramatically affected. However, when training on a history without

a bottleneck (LWK) and testing on one with a bottleneck (CEU), Trendsetter (as well as evolBoosting) classified

neutral regions as soft sweeps, whereas S/HIC and diploS/HIC classified soft sweeps as hard. Interestingly, by train-
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ing Trendsetter with a combination of simulations conducted under specifications for several diverse demographic

histories, we are able to improve classification rates for all test populations when demographic history is mis-specified

(Figure S15), and a similar performance rescue would be expected for evolBoosting, S/HIC, and diploS/HIC. As

illustrated in this experiment, increasing the range of simulation parameters to reflect a more general demographic

history may be desirable when training classifiers in populations for which the demographic history is not well studied.

Effect of sample size

Though under ideal scenarios there will be sufficient resources for studies to produce large quantities of high-quality

sequence data, this is not always the case. Instead, studies may often have access only to datasets with relatively

small sample sizes. The sample sizes of simulated data used to train Trendsetter should match that of the empirical

dataset in a particular study. In our simulation examples, we evaluated the performance of Trendetter on a modest

sample size of 50 diploid individuals. Here, we explore whether an increase or decrease in the sample size would

substantially affect classification rates of Trendsetter, and find that the sample size does not have a great effect on

classification rates. In particular, for situations in which we have half the sample size of 25 diploids (Figure S16),

correct classification of hard sweep, soft sweep, and neutral scenarios was almost identical to samples of 50 diploids

(Figure 2), with a slight decrease in the correct classification of hard sweeps. When we instead use a small sample

of 10 diploid individuals, Trendsetter shows a slight decrease in correct classification rates for all classes, although it

is not a dramatic difference from a sample 10 times larger (Figure S16).

Differences in sample sizes may have more of an effect on classification rates when sampled populations have

gone through recent expansions or bottlenecks as experienced by human populations. For our original analyses, we

sampled 50 diploid individuals from each population. To test the effect of sample size on the classification rates for a

population known to have gone through a strong bottleneck (CEU) as well as no bottleneck (LWK), we trained and

tested models with 100 and 25 diploid individuals for LWK and CEU demographic histories (Terhorst et al., 2017).

We find that there is no appreciable difference in the classification rates between sample sizes (Figures 5 and S17).

Common confounding factors

Removal of low-quality genomic regions is necessary when scanning empirical genomic data for selective sweeps.

Depending on the stringency of filtering, this process can lead to large fractions of the genome as unclassifiable to

avoid biasing scans of selection (e.g., Kelley et al., 2006; Schrider and Kern, 2016b). However, it would instead

be ideal if such regions could still be robustly classified despite large percentages of missing sites. We therefore

chose to investigate the robustness of Trendsetter to excessive levels of missing segregating sites (see Materials and

Methods). Substantial missing data in the test datasets did not significantly alter the Trendsetter classification rates,

whereas evolBoosting, S/HIC, and diploS/HIC incorrectly classified a large percentage of simulations, including

neutral simulations as hard or soft sweeps (Figures 6 and S18). Though we observed that missing data increased the

mis-classification rate of soft sweeps with Trendsetter, these soft sweep simulations tend to be classified as neutral
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regions (Figure S18). Therefore, Trendsetter is more conservative than other comparable approaches under settings

with large amounts of missing data without explicitly accounting for the distribution of missing data. The inclusion

of linked-sweep classes in the model leads to most hard sweep, soft sweep, and neutral simulations with missing

data to be mis-classified as either linked hard or linked soft (Figures S19-S21). It should be noted that a linked-

sweep classification is regarded as neutral and inclusion of linked classes leads to an increase in the performance of

the method. Importantly, however, S/HIC and diploS/HIC trained with linked-sweep classes mis-classify neutral

simulations with missing data as soft sweeps 23.7% and 18.5% of the time, respectively (Figure S19).

The sensitivity of evolBoosting, S/HIC, and diploS/HIC is due to their reliance on summary statistics computed

over large physical distances, and certain summaries, such as Tajima’s D or the number of distinct haplotypes, may

be heavily affected by missing genomic regions. It should be noted that because we randomly removed chunks of data

from simulated replicates, it is possible that data was by chance not removed from the center of simulations under

neutral scenarios due to their large number of segregating sites relative to sweep settings. To address this potential

issue, we randomly removed 30% of the SNPs within the central 1010 SNPs for each neutral replicate simulation and

applied Trendsetter to the central 1010 SNPs after filtering, thereby mimicking the application of Trendsetter in a

genomic region with extensive missing data. We find that Trendsetter retains its high robustness even under this

scenario (Figure S22).

However, as indicated by Kern and Schrider (2018), it is also possible to train classifiers with simulations that

model the distribution of missing data to account for this confounding factor. To test this idea, we trained Trendsetter,

evolBoosting, S/HIC, and diploS/HIC on simulations with substantial missing data (i.e., 30% of segregating sites

missing as described in Materials and Methods). Accounting for the distribution of missing data when training

the classifiers rescued the accuracy of all methods under this scenario, and also led to a slight boost in the overall

classification rates for Trendsetter (Figures 6 and S23).

In addition to missing data, background selection is a ubiquitous factor (e.g., McVicker et al., 2009; Comeron,

2014) that can leave similar genomic signatures as selective sweeps (Charlesworth, 2013; Nicolaisen and Desai, 2013),

and which has been demonstrated to mislead sweep-detection approaches (e.g., Huber et al., 2016). We examined

two different scenarios of background selection—one in which a single centrally-located 11 kb protein-coding gene

with strongly-deleterious alleles arising continuously is flanked by non-coding genomic regions (denoted Central

gene BGS ), and another in which potentially functional genomic regions are scattered throughout a 1.1 Mb genomic

region, with the spatial distribution and distribution of fitness effects of deleterious alleles inspired by their respective

distributions in humans (denoted Empirical-based BGS ) as described in Materials and Methods.

Trendsetter, S/HIC, and diploS/HIC are relatively robust to both forms of background selection (Fig-

ures 7 and S24), with Trendsetter demonstrating slightly better performance than S/HIC and diploS/HIC as it

almost always classifies background selection as neutral. In contrast, S/HIC and diploS/HIC sometimes classify

regions of background selection as soft sweeps, and evolBoosting almost always classifies background selection as a

soft sweep. It is important to note that S/HIC and diploS/HIC likely classify some background selection simulations
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as soft sweeps because we have not included the two linked-sweep classes that they generally employ. The inclusion of

such classes would probably lead to such regions being classified as a linked sweep, which should be regarded as neu-

tral. Moreover, the poor performance of evolBoosting is due to Tajima’s D being the feature of greatest importance

for all windows in the trained classifier, which can be mislead by background selection as it can generate distortions

in the site frequency spectrum that are similar to sweeps (Charlesworth, 2013; Nicolaisen and Desai, 2013).

We also examined a modification to the Central gene BGS scenario, by decreasing the recombination rate in

the centrally-located 11 kb genic region by 100 fold (denoted Central gene BGS with low recombination), which is

meant to simulate a massive reduction in haplotypic diversity within the central genic region as strongly-deleterious

mutations arise in the region. We find that classification rates for all methods decrease by only a few percentage

points under this scenario (Figure S24). This set of background selection simulations demonstrates that Trendsetter,

S/HIC, and diploS/HIC are robust to typical as well as strong background selection, and robustness of all methods

could likely be improved by including an additional class for background selection (Schrider and Kern, 2016b).

Another potential confounding factor is the fluctuation of recombination rate across the genome, as recombination

rate changes can influence haplotypic diversity and therefore impact sweep detection. To examine the influence of

this factor on sweep detection and classification, we simulated genomic regions with lower (r = 5 × 10−9) and

higher (r = 5 × 10−8) recombination rates compared to the recombination rate (r = 10−8) used to simulate the

training data. We find that both increasing and decreasing recombination rates leads to high mis-classification rates

(Figure S25). In general, regions of lower recombination typically lead to an increase in the rate of mis-classifying

soft sweeps as hard sweeps across all compared methods. In contrast, higher recombination rate regions lead to

an increase in rates of mis-classifying hard sweeps as soft sweeps across all methods. Moreover, Trendsetter and

evolBoosting also have an elevated rate of mis-classifying soft sweeps as neutral regions. These results suggest that

accounting for recombination rate variation when training a classifier is highly important, as not considering a range

of recombination rates could lead to mis-classification of the types of identified sweeps.

Application to empirical data

Global human populations have encountered a number of diverse environments in their past, likely leading to various

adaptive pressures experienced across populations (Sabeti et al., 2006; Hancock et al., 2008). For this reason, we

sought to identify genomic regions that are likely candidates for recent selective sweeps in different populations.

Because our results on recombination rate changes on simulated data indicated that Trendsetter is not robust to

recombination rate variation when it is not directly accounted for in the training step, we simulated training replicates

in which recombination rates were drawn from an exponential distribution with mean 10−8 and truncated at three

times the mean as in Schrider and Kern (2017). We also show that classifiers are reasonably-well calibrated for

demographic histories of all populations that we consider in our empirical analysis after training with recombination

rate variation (Figure S26).

Classification of populations from the 1000 Genomes Project (The 1000 Genomes Project Consortium, 2015)
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showed in general that recent hard sweeps are relatively rare, as has been previously demonstrated in humans and

other species (e.g., Garud et al., 2015; Schrider and Kern, 2017). For our empirical scan we classify every fifth

autosomal SNP, beginning from the center SNP in the 101st window (505th SNP) as described in the Application

to emprical data subsection of Materials and Methods. We compute the fraction of autosomes classified as a certain

class as the fraction of classified SNPs belonging to that class. Between 0.00 and 1.83% of each chromosome was

classified as a hard sweep, and between 4.61 and 12.95% was classified as soft when we trained Trendsetter using

demographic parameters inferred by Terhorst et al. (2017) (Tables S1-S3). Trendsetter also detected genes previously

identified as hard sweeps, such as EDAR in CHB (Bryk et al., 2008). Figure S27 shows the probability of a hard

sweep under Trendsetter across the region on chromosome 2 surrounding EDAR in the seven global populations

considered, and displays a clear peak under the selected gene EDAR in the East Asian (CHB and JPT) populations.

By examining the values of the summary statistics calculated in the region containing EDAR for the Han Chinese

(CHB) population (Figure S27), we see that there are clear decreases in the values of π̂, number of haplotypes

Nhaps, and H2/H1, as well as increases in the values of H1 and H12, providing support for the strong hard-sweep

classification in this region (Figure S27). We also find that the LCT gene, which is classified as a soft sweep in the

CEU population, shows similar patterns of summary statistics in the region of selection (Figure S28). Although the

region surrounding LCT has been previously classified as a hard sweep (Peter et al., 2012), a more recent study by

Schrider and Kern (2016b) also classifies the region surrounding LCT as soft. Moreover, we identify as soft sweeps

many genes previously hypothesized to be under positive selection, such as TRPV6 (Figure S29), PPARG, and

EPHB6 (Akey et al., 2004). TRPV6 was also discovered by Peter et al. (2012), but was not classified as either hard

or soft.

We also uncover a number of novel candidate sweeps. For many genes classified as positively selected in a

population, these genes are also classified as under positive selection in other human populations. Among these are

cancer-related genes, such as BRCA1 and FBXW7. BRCA1 was classified as a soft sweep in East Asian (CHB and

JPT), South Asian (GIH), and European (CEU and TSI) populations (Figure S30). The distribution of summary

statistic values used to classify this region also display expected sweep patterns (Figure S30). Moreover, FBXW7, a

tumor suppressor gene in which mutations are associated with colorectal, ovarian, and liver cancers (Jardim et al.,

2014), was classified as a soft sweep in six (LWK, GIH, TSI, CEU, CHB, and JPT) out of the seven populations that

we evaluated (Figure S31). Interestingly, Schrider and Kern (2017) also reported that a large number of genes they

determined to be influenced by a sweep have been associated with cancer. Furthermore, there exists prior evidence

of positive selection acting on cancer-related genes, such as BRCA1 (Lou et al., 2014), which may help explain the

high percentage of cancer-related genes flagged as candidate sweep targets by Trendsetter.

In addition to signals over specific genes, we observe in general that regions classified as a sweep tend to be

shared across populations. Specifically, we find that genomic regions classified as either hard or soft sweeps tend to

be classified as the same sweep class in other populations. To quantify this observation, we measure the extent to

which sweeps signals in one population are also found in other populations. In particular, we computed the fraction of
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non-overlapping 10 kb genomic segments classified as a soft (hard) sweep in a given population that are also classified

as a soft (hard) sweep in another population. We find that populations share more soft sweeps with populations

from the same geographic region than with populations from other regions (Figure 8), most likely resulting from

shared ancestry rather than convergent evolution. The African populations (LWK and YRI) form a cluster of shared

sweeps as do the East Asian (CHB and JPT) and separately, European (TSI and CEU) populations. European

populations also form a sharing cluster with the South Asian population GIH. Although the proportions are much

higher when quantifying shared hard sweeps (Figure S32), the patterns of sweep sharing are similar to that of soft

sweeps (Figure 8) and mimic the sharing of haplotypes across globally-distributed human populations observed by

Conrad et al. (2006).

Discussion

In this article we demonstrated the ability of Trendsetter to localize and classify selective sweeps from the spatial

distribution of summary statistics in the genome. In its current form, Trendsetter uses information from six dif-

ferent summary statistics to differentiate among three classes—neutrality, hard sweeps, and soft sweeps. Based on

this formulation of Trendsetter, we found that it is resistant to common issues such as missing genomic segments

(Figures 6 and S18) and background selection (Figures 7 and S24). This robustness to such confounding factors

is likely due to its reliance on haplotype-based statistics such as H1, H12, and H2/H1 (Garud et al., 2015), to its

use of SNP-based windows for calculating summary statistics, and to the use of the spatial distribution of each

summary statistic. Other approaches that rely on statistics that emphasize the number of segregating sites or the

site frequency spectrum, such as Watterson’s θ̂W or Tajima’s D, in a window may have higher power to detect

sweeps, but also exhibit higher mis-classification error rates, leading to regions harboring extensive missing data or

undergoing background selection to be mistaken as candidate sweep regions (Figures 6, 7, and S18). However, as

we demonstrated in Figure S23, this lack of robustness to, for example, missing data may be remedied by training

models with simulations including missing data.

Flexibility in the choice of summary statistics allows Trendsetter as well as other complementary approaches (Lin

et al., 2011; Schrider and Kern, 2016b; Kern and Schrider, 2018) to be easily applied to a number of settings, and

for this reason, particular choices of summary statistics for other approaches may also lead to greater robustness to

confounding factors but with likely power trade-offs. Trendsetter ’s ability to correctly classify sweeps and distinguish

sweeps from neutrality increases when we trained a model with S/HIC and diploS/HIC-specific statistics calculated

in 110 contiguous windows each of length 10 kb (Figure S33). We chose this large number of windows so that we

could learn the spatial distribution of each summary statistic. However, if we normalize each statistic across the

set of windows it is calculated (as in S/HIC and diploS/HIC; Schrider and Kern, 2016b; Kern and Schrider, 2018),

mis-classification between hard and soft sweeps increases (Figure S33, right column).

The types of summary statistics employed by Trendsetter contribute to the reason for its robustness to miss-

ing data. We tested whether training Trendsetter with the complementary sets of summary statistics as used by
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S/HIC or diploS/HIC would affect Trendsetter ’s classification rates under missing data. In contrast to the patterns

displayed by S/HIC (Figure S18), we observed a larger percentage of mis-classifications toward soft sweeps rather

than toward hard sweeps, when we use non-normalized versions of S/HIC-specific statistics (Figure S34). If we chose

to instead normalize statistics, then mis-classification to hard sweep increases (Figure S34). Moreover, these latter

results mirror those observed for S/HIC (Figure S18), which uses the identical normalization procedure for summary

statistics computed across a genomic region. Similarly, we observe that simulations with missing data tend to be

mis-classified as hard when Trendsetter employs normalized versions of diploS/HIC statistics (Figure S34), computed

in an analogous manner with 110 contiguous windows each of length 10 kb.

As in Figure S23, using the set of S/HIC and diploS/HIC statistics combined with training under missing data

would likely lead to a powerful classifier that is also robust to missing data. Interestingly, when we also trained and

tested Trendsetter using diploS/HIC-specific summary statistics with demographic mis-specifications as described in

Influence of population history, we found that when Trendsetter is trained and tested with normalized diploS/HIC-

specific statistics (Figure S35) we recapitulate the classification patterns of diploS/HIC trained and tested under

demographic mis-specification (Figure S14). Therefore, the choice of the set of summary statistics may have a large

influence on the behavior of a sweep classifier, regardless of the diverse set of approaches (e.g., random forests, neural

networks, or regularized regression) employed to model the data.

We also tested the classification rates of Trendsetter when operating on S/HIC- and diploS/HIC-specific statistics

for K = 5 classes, representing neutral, hard sweep, soft sweep, linked to hard sweep, and linked to soft sweep scenar-

ios, used by those methods, calculated in 110 contiguous 10 kb-long windows. Trendsetter using Trendsetter -specific

statistics (Figure S9-S11) exhibited comparable performance to Trendsetter using diploS/HIC- and S/HIC-specific

statistics (Figure S36). Testing the classification of simulations with missing data we find that most neutral simula-

tions missing data are classified as linked to a soft sweep (Figure S37), though there is also a large mis-classification

rate toward soft sweeps. We also examined the magnitude and spatial distribution of regression coefficients for Trend-

setter using diploS/HIC-specific statistics to evaluate feature importance (Figures S38). Based on the magnitudes

of the regression coefficients, we find that Fay and Wu’s H and Watterson’s θ̂W are the most informative, whereas

Tajima’s D is among the least informative. Moreover, the peaks of the curves modeling each summary statistic

tend to be narrow, and identify the location of the polymorphism closest to the selected site from the sweep classes.

Importantly, we computed these summary statistics across data encompassing entire 1.1 Mb genomic regions when

compared to the SNP-based summary statistics that we employed earlier where we used information across only 1010

SNPs. The SNP-based method of calculating statistics often used information from less than one-third of the 1.1

Mb genomic region.

Unphased multilocus genotype data are more widely available than phased haplotype data, as it can be difficult

to phase genotypes for a number of study systems (Browning and Browning, 2011). Although it is possible and

common to infer haplotypes from genotype data, this process is not error free (Browning and Browning, 2011),

and these errors may have deleterious effects on downstream efforts to localize selective sweeps. However, it should
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still be possible to uncover and classify sweep regions without phased haplotypes (e.g., Harris et al., 2018; Kern and

Schrider, 2018). Substituting haplotype-based summary statistics with their unphased multilocus genotype analogues

(see Materials and Methods), we find that Trendsetter can still differentiate well among hard sweeps, soft sweeps,

and neutrality (Figure S39, six summary statistics). By examining the spatial distributions of regression coefficients

for each summary statistic (Figure S40), we find that the inferred model relied heavily on the number of multilocus

genotypes to make predictions, with the other summary statistics providing marginal information conditional on the

number of multilocus genotypes. For settings in which phased haplotypes cannot be obtained, a hybrid approach of

incorporating some additional summary statistics computed by diploS/HIC (e.g., measures of the distribution, such

as variance, skewness, and kurtosis of differences between pairs of individuals) in SNP-based rather than physical

distance-based windows may aid classification. Incorporating these statistics slightly increases the overall accuracy

(Figure S39; nine summary statistics) and shows similar feature importance patterns as when Trendsetter is trained

without these statistics (Figure S41).

In some scenarios (e.g., for H1 in Figure S4), the distribution of regression coefficients for particular summary

statistics exhibited sudden increases or decreases in magnitude near edges of their genomic range. This phenomena

may be due to the fact that the coefficients at the ends of this range are only constrained from one side by Trendsetter,

whereas coefficients near the center are constrained on both sides. To verify that these changes in magnitude at the

edges do not affect the classification rates of Trendsetter, we discarded five coefficients (and associated summary

statistic values) at each end to make predictions after the model was trained, thereby removing these potential

artifacts. We tested the model whose coefficients are depicted in Figure S4 without the first five and last five

predictors for all summary statistics, and find that there is virtually no difference in classification rates from when

they are included in the model (compare Figures 2 and S42).

Our experiments show no extensive difference in classification rates when we apply a constant (d = 1) ver-

sus linear (d = 2) trend filter penalty for differentiating among hard sweeps, soft sweeps, and neutrality (Fig-

ures S38, S43, S44, and S45). However, it is possible that for differentiating between other selection settings, such

as in scenarios of adaptive introgression (Racimo et al., 2017) or in distinguishing between partial sweeps and recent

balancing selection, the application of a linear rather than constant trend filter penalty will create a meaningful

difference between classification rates. Regardless of the form of the trend filter penalty, we have shown that Trend-

setter is flexible and has comparably high power to a number of previously-published statistical learning approaches

for single populations. Moreover, the model learned by Trendsetter is a set of curves modeling summaries of genetic

variation, and it is therefore easy to visualize the broad spatial distribution of summary statistic importance by

construction.

Implementing Trendsetter as we have generally considered in this article with the six summary statistics r2, π̂,

Nhaps, H1, H12, and H2/H1 calculated in 201 overlapping windows is unable to identify the beneficial polymorphism.

Scans across simulations of hard sweeps under a constant-size demographic history with the beneficial mutation arising

in the center of a 1.1 Mb region pinpoint the mean physical distance of the classified polymorphism with highest
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sweep probability to be 2093 bases away from the center, with the largest physical distance of 331 kb. The ability to

localize adaptive regions in empirical data would also likely be affected by additional factors, such as non-equilibrium

demographic history, recombination rate fluctuation, and missing data. However, incorporation of summary statistics

such as iHS (Voight et al., 2006) and nSL (Ferrer-Admetlla et al., 2014) may more precisely localize the SNP

under selection. These statistics, although haplotype based, provide a value at every SNP and are by construction

not window based, in contrast to the haplotype-based statistics employed in this article. Moreover, incorporating

information from an additional population (e.g., Sugden et al., 2018) would also allow us to apply powerful cross-

population haplotype-based statistics such as XP-EHH (Sabeti et al., 2007) that are also based on population

differentiation, and that compute a single value at each SNP. We note that large numbers of summary statistics

may be provided to the model with our incorporation of a lasso penalty to help alleviate issues with over-fitting

(Tibshirani, 1996). Finally, we show how Trendsetter can easily use any summary statistics specified by the user,

which allows Trendsetter to be adaptable to a variety of selection scenarios users may be interested in. A Python script

implementing Trendsetter as well as probabilities of neutral, hard sweep, and soft sweep classes for polymorphisms

classified in our empirical scans can be downloaded at http://www.personal.psu.edu/mxd60/trendsetter.html.
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Figure 1: Schematic illustrating steps taken by Trendsetter to learn a multinomial regression model. For a
given summary statistic (e.g., expected haplotype homozygosity H1), we compute its value spatially across
a genomic region for a set of neutral, hard sweep, and soft sweep simulations used as training data. For H1,
we expect elevated values near the site under selection (target SNP; indicated by a gray vertical dashed
line) in sweep simulations, and a greater magnitude of elevation in hard sweep compared to soft sweep
settings. This summary statistic is then standardized (mean centered and normalized by the standard
deviation) at each position it is computed, so that different summary statistics are comparable. For H1,
this standardization will yield strong negative values for neutral simulations and positive values for hard
sweep simulations near a target SNP, and soft sweep simulations will exhibit values intermediate between
the neutral and hard sweep scenarios. The model then performs trend filtering on the spatial distribution
of each summary statistic (here H1) for each class (here neutral, soft sweep, and hard sweep), leading to
a curve describing the spatial distribution of summary statistics around a target SNP. For H1, the curve
dramatically reduces for the neutral class near the center of the sequence, and is elevated near this position
for the hard sweep class.
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Figure 2: Confusion matrices comparing classification rates of Trendsetter with constant (d = 1) and
linear (d = 2) trend penalties, evolBoosting, S/HIC, and diploS/HIC for simulations under a constant-size
demographic history and selection coefficients for sweep scenarios drawn uniformly at random on a log
scale of [0.005, 0.5]. All methods were trained with three classes: neutral, hard sweep, and soft sweep.
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Figure 3: Receiver operating characteristic curves comparing the powers of various methods to distinguish
sweeps from neutrality. (Left) Powers to differentiate sweeps from neutrality, by comparing the combined
probability of any sweep (hard or soft) under equally-mixed hard and soft sweep simulations with the
same probability under neutral simulations. (Middle) Powers to differentiate hard sweeps from neutrality,
by comparing the probability of a hard sweep under hard sweep simulations with the same probability
under neutral simulations. (Right) Powers to differentiate soft sweeps from neutrality, by comparing
the probability of a soft sweep under soft sweep simulations with the same probability under neutral
simulations. All simulations were performed under a constant-size demographic history with selection
coefficients for sweep scenarios drawn uniformly at random on a log scale of [0.005, 0.5]. All methods were
trained with three classes: neutral, hard sweep, and soft sweep.
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Figure 4: Spatial distributions of regression coefficients (βs) in neutral, hard sweep, and soft sweep scenarios
for summary statistics H12 and number of distinct haplotypes Nhaps, for Trendsetter applied with constant
(d = 1) and linear (d = 2) trend penalties. Trendsetter was trained on simulations with selection strength
s ∈ [0.005, 0.5] sampled uniformly at random on a log scale. Note that the distributions of regression
coefficients for both summary statistics are plotted on the same scale, thereby making the distribution of
Nhaps difficult to decipher as its magnitude is small relative to H12.
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Figure 5: Confusion matrices comparing classification rates of Trendsetter with a linear (d = 2) trend
penalty under demographic parameters estimated (Terhorst et al., 2017) from African (LWK and YRI),
South Asian (GIH), European (TSI and CEU), and East Asian (CHB and JPT) populations. Selection
coefficients for sweep scenarios were drawn uniformly at random on a log scale of [0.005, 0.5].
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Figure 6: Probability of mis-classifying neutral regions with extensive missing data as a sweep for various
methods, under a constant-size demographic history. Each panel compares the combined probability of
any sweep (hard or soft) under simulations with missing data (probability of false signal) to the same
probability under neutral simulations (false positive rate) for scenarios in which missing data is (right)
or is not (left) accounted for when training a classifier to compute the probability of a false signal. All
methods were trained with three classes: neutral, hard sweep, and soft sweep.
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Figure 7: Robustness of mis-classifying genomic regions undergoing background selection for various meth-
ods, under a constant-size demographic history and background selection parameters (number, lengths,
and distribution of functional sites as well as distribution of fitness effects) drawn from a distribution
based on human data (see Materials and methods). (Left) Classification rates for regions evolving under
background selection. (Right) Probability of mis-classifying regions evolving under background selection,
by comparing the combined probability of any sweep (hard or soft) under simulations with background
selection (probability of false signal) to the same probability under neutral simulations (false positive rate).
All methods were trained with three classes: neutral, hard sweep, and soft sweep, with selection coefficients
for sweep scenarios drawn uniformly at random on a log scale of [0.005, 0.5].
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Figure 8: Heatmap representing the sharing of soft sweep classifications across worldwide human popula-
tions. The cell at row j and column k represents the proportion of non-overlapping 10 kb genomic segments
classified as a soft sweep in the population at row j that are also classified as a soft sweep in the population
at column k. By definition, this heatmap is asymmetric.
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