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 2 

ABSTRACT 1 

 2 

GLMdenoise is a denoising technique for task-based fMRI. In GLMdenoise, estimates of spatially correlated noise 3 

(which may be physiological, instrumental, motion-related, or neural in origin) are derived from the data and 4 
incorporated as nuisance regressors in a general linear model (GLM) analysis. We previously showed that 5 

GLMdenoise outperforms a variety of other denoising techniques in terms of cross-validation accuracy of GLM 6 

estimates (Kay et al., 2013a). However, the practical impact of denoising for experimental studies remains unclear. 7 

Here we examine whether and to what extent GLMdenoise improves sensitivity in the context of multivariate 8 

pattern analysis of fMRI data. On a large number of participants (31 participants across 4 experiments; 3 T, 9 

gradient-echo, spatial resolution 2–3.75 mm, temporal resolution 1.3–2 s, number of conditions 32–75), we 10 

perform representational similarity analysis (Kriegeskorte et al., 2008a) as well as pattern classification (Haxby et 11 

al., 2001). We find that GLMdenoise substantially improves replicability of representational dissimilarity matrices 12 
(RDMs) across independent splits of each participant’s dataset (average RDM replicability increases from r = 0.46 13 

to r = 0.61). Additionally, we find that GLMdenoise substantially improves pairwise classification accuracy 14 

(average classification accuracy increases from 79% correct to 84% correct). We show that GLMdenoise often 15 

improves and never degrades performance for individual participants and that GLMdenoise also improves across-16 

participant consistency. We conclude that GLMdenoise is a useful tool that can be routinely used to maximize the 17 

amount of information extracted from fMRI activity patterns.   18 
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 3 

1. INTRODUCTION 1 

 2 

Noise is a critical concern when collecting and analyzing functional magnetic resonance imaging (fMRI) data. The 3 

blood oxygenation-level dependent (BOLD) signal measured with fMRI contains many sources of noise (e.g., 4 
physiological noise, instrumental noise) that are mixed with task-specific signals of interest. In order to draw valid 5 

conclusions regarding how a cognitive experiment affects the BOLD signal, it is necessary to extract meaningful 6 

signals from the data, limiting various noise contaminations. Classical analyses of fMRI data involve performing a 7 

general linear model analysis (Friston et al., 1994, 1995b; Worsley and Friston, 1995). This consists of modelling 8 

the time-series of each fMRI voxel using a design matrix that characterizes the onsets of an experiment’s 9 

conditions. These events are convolved with a hemodynamic response function (HRF; Boynton et al., 1996; 10 

Lindquist et al., 2009), and then a least-squares optimization is performed to minimize the distance between the 11 

data and the model. The result of this process is a set of beta weights that characterize fMRI voxel activities. 12 
 13 

A common approach to improve the sensitivity of the model is to incorporate nuisance regressors in the design 14 

matrix (Friston et al., 1995a; Lund et al., 2006). These nuisance regressors often include participant motion 15 

estimates and/or linear and non-linear drift terms, with the goal of improving parameter estimates by accounting 16 

for these potential sources of noise (see Ciric et al., 2017 for how nuisance regressors are applied the context of 17 

resting-state fMRI). The choice of these regressors is often arbitrary, dependent on the philosophy of the software 18 

package used to analyze the data, and may harm task-related estimates if they are inaccurate characterizations 19 

of the noise. To address these issues, we previously introduced GLMdenoise (Kay et al., 2013a). GLMdenoise is 20 
a denoising technique, inspired by previous work (Behzadi et al., 2007; Bianciardi et al., 2009; Fox et al., 2006), 21 

that improves signal-to-noise-ratio (SNR) by automatically deriving the noise regressors entered in the general 22 

linear model (GLM) through careful cross-validated analysis of the fMRI time-series. The noise regressors are 23 

derived by application of principal components analysis (PCA) on time-series of voxels unrelated to the 24 

experimental paradigm, and cross-validation is used to automatically select the appropriate number of regressors 25 

for each given dataset. The noise regressors derived in GLMdenoise are general and can encompass many 26 

different types of noise, including motion-related noise, physiological noise, and neural noise1.  A MATLAB 27 
toolbox that implements GLMdenoise is freely available at http://cvnlab.net/GLMdenoise/. 28 

 29 

In the initial study introducing the technique (Kay et al., 2013a), we showed that GLMdenoise outperforms a 30 

variety of other denoising methods on a number of datasets. Our metric of performance was univariate cross-31 

validation accuracy of GLM response-amplitude estimates (beta weights). This criterion quantifies how accurately 32 

estimates of beta weights match experimentally observed BOLD time-series data. GLMdenoise computes this 33 

metric on a voxel-by-voxel basis and does not make reference to any specific brain regions. Although this 34 

approach is rigorous and objective, it remains unclear to what extent GLMdenoise brings practical benefits to 35 
experimental studies.  36 

                                                   
1 Note that ‘noise’ is operationally defined as signal fluctuations that are not captured by the GLM design matrix, 
and so the noise regressors may include genuine, neurally-driven BOLD signals that are not of interest to the 
experimenter.  
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 1 

The use of multivariate pattern analysis (MVPA), including pattern classification (Haxby et al., 2001; Haynes and 2 

Rees, 2006; Kamitani and Tong, 2005; Kriegeskorte et al., 2006; for a review see Haxby, 2012) and 3 

representational similarity analysis (RSA) (Charest et al., 2014; Kriegeskorte et al., 2008b, 2008a; Kriegeskorte 4 
and Kievit, 2013; Nili et al., 2014) is growing in popularity in neuroimaging studies. These powerful methods 5 

enable the use of fMRI to investigate the information represented in patterns of activity within brain regions. In 6 

classical MVPA, a classification algorithm is used to determine whether fMRI response patterns contain 7 

information that discriminate different conditions. In RSA, fMRI response patterns are compared between all 8 

pairwise experimental conditions to reveal the representational geometry characteristic of a given brain region. 9 

These comparisons are assembled in a representational dissimilarity matrix (RDM). These RDMs are useful as 10 

they provide some insight into a brain region’s information and reveal the format in which it is represented. This 11 

approach is increasingly popular in cognitive neuroscience, as it provides a common ground to relate data from 12 
multiple measurement techniques (e.g., electrophysiology, behavior, fMRI, computational models, etc.; see 13 

Carlson et al., 2013; Cichy et al., 2016a, 2016b, 2014 for examples and Kriegeskorte and Kievit, 2013 for a 14 

review). 15 

 16 

In light of this paradigm shift in functional neuroimaging, a high priority for neuroscientists is to optimize data 17 

quality before attempting MVPA. A number of studies have combined GLMdenoise with multivariate analyses (for 18 

example, see Allen et al., 2018; Charest et al., 2014; Erez et al., 2016), but none have evaluated whether it 19 

improves such analyses. Thus, an important question is whether GLMdenoise brings benefits to MVPA and 20 
whether the benefits are sufficiently substantial and consistent across studies and participants to justify the 21 

complications associated with the integration of GLMdenoise into the analysis. Because GLMdenoise improves 22 

the ability of GLM beta weights to generalize to unseen data (Kay et al., 2013a), these beta weights have 23 

increased accuracy, and it is reasonable to expect that any subsequent analysis of those beta weights will 24 

produce higher quality results. But fMRI data and analyses are complex, and it remains a valuable empirical 25 

question whether GLMdenoise in fact improves multivariate analyses and how large the improvement might be 26 

(e.g., 1% or 10% increase in percent correct for classification performance). 27 
 28 

In this paper, we systematically assess the impact of GLMdenoise on multivariate analyses of a large number of 29 

participants compiled from four different experiments. Although these are all visual experiments, we believe the 30 

principles underlying the technique will likely generalize to other types of experiments (e.g. auditory, cognitive, 31 

motor). The stimuli in the experiments ranged from abstract patterns to images of bodies, faces, places and 32 

objects (see Materials and Methods). In addition to their condition-rich designs (the experiments range from 32 33 

conditions to 75 conditions), these experiments all had an ample number of repetitions to perform split-half 34 

analyses. Being able to perform split-half analyses is critical for evaluating data reliability and replicability. We 35 
analyzed these datasets using pattern classification and representational similarity analyses in regions of interest 36 

(ROIs) along the ventral visual stream, which included primary visual cortex, visual word form area, fusiform face 37 

area, and human inferior temporal cortex. We observed consistent and substantial improvements to results when 38 

using GLMdenoise in the analysis pipeline.  39 
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 5 

2. MATERIALS AND METHODS 1 

 2 

2.1 Participants and datasets 3 

 4 
We collected fMRI data from 31 distinct participants. Informed written consent was obtained from all participants. 5 

Experimental protocols were approved by the Stanford University Institutional Review Board, Washington 6 

University Human Research Protection Office, and the Cambridge Psychology Research Ethics Committee. Each 7 

participant’s dataset consisted of either one or two scan sessions, and each scan session consisted of multiple 8 

runs. All fMRI data were collected using a 3T MR scanner and a T2*-weighted, single-shot, gradient-echo pulse 9 

sequence with interleaved slice acquisition (see Table 1 for details). Regions-of-interest (ROIs) were defined 10 

based on independent localizer data. 11 

 12 
Experiment 1 (3 participants; Participants 1–3). These data are taken from a previously published study (Kay et 13 

al., 2013b) and correspond to datasets 1–3 from the original GLMdenoise paper (Kay et al., 2013a). In this 14 

experiment, participants viewed high-contrast black-and-white noise patterns while performing a task at central 15 

fixation. Each stimulus condition lasted 3 s, and conditions varied with respect to the visual field location of the 16 

noise patterns (we refer to these locations as apertures). There were 69 conditions: 31 vertical apertures (ordered 17 

from left to right), 31 horizontal apertures (ordered from bottom to top), and 7 circular apertures (ordered from 18 

center to periphery). The ROI for this experiment is primary visual cortex (V1). (Note: this experiment originally 19 

consisted of 5 sets of runs; in order to achieve even test-retest splits of the data, we include in this paper only the 20 
first 4 sets of runs.) 21 

 22 

Experiment 2 (3 participants; Participants 4–6). These data are taken from a previously published study (Kay et 23 

al., 2015). In this experiment, participants viewed grayscale faces while performing one of three tasks. Each 24 

stimulus condition lasted 3.5 s, and conditions varied with respect to the visual field location of the faces and the 25 

task performed. There were 75 conditions: 25 locations (taken from a 5 x 5 grid; ordered from left to right, then top 26 

to bottom) x 3 tasks (digit task: one-back task on centrally presented digits, dot task: detection of a dot 27 
superimposed on the faces, face task: one-back task on face identity). The ROI for this experiment is fusiform 28 

face area (FFA), combining both the posterior fusiform gyrus (pFus-faces/FFA-1) and middle fusiform gyrus 29 

(mFus-faces/FFA-2) subdivisions of FFA (Weiner et al., 2014). 30 

 31 

Experiment 3 (5 participants; Participants 7–11). In this experiment, participants viewed a variety of grayscale 32 

stimuli (e.g., faces, words, texture patterns) while performing a one-back task on the stimuli. Each stimulus 33 

condition lasted 4 s (e.g., four 100%-contrast faces presented for 800 ms each with a gap of 200 ms), and there 34 

were 32 conditions. The ROI for this experiment is visual word form area (VWFA), defined as word-selective 35 
cortex in and around the left occipitotemporal sulcus (Yeatman et al., 2013). 36 

 37 

Experiment 4 (20 participants; Participants 12–31). These data are taken from a previously published study 38 

(Charest et al., 2014). In this experiment, participants were paired and each participant viewed images that were 39 
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 6 

familiar to each participant in a pair (18 images per participant, consisting of bodies, faces, places, and man-made 1 

objects) as well as 36 object images (common to all participants). There were 72 conditions in total. Each stimulus 2 

condition lasted 1 s, and participants performed an anomaly-detection task indicating whether the stimulus had 3 

been subtly changed. The ROI for this experiment is human inferotemporal cortex (hIT), which is defined as a 4 
wide expanse of posterior and anterior temporal cortex, including fusiform face area, lateral occipital complex, and 5 

parahippocampal place area. 6 

 7 

In each experiment, conditions were presented in random or pseudorandom order within each run, and rest 8 

periods were included between conditions and at the beginning and end of each run. In some participants 9 

(Participants 7–31), every condition was presented at least once during each run. In other participants 10 

(Participants 1–6), conditions were split across multiple runs. For example, Participants 4–6 involved 75 11 

conditions which were split across three runs, each containing 25 conditions; together, the three runs comprise a 12 
run set and multiple run sets were collected over the course of the scan session. The specific characteristics of 13 

each participant’s dataset are detailed in Table 1. 14 

 15 

2.2 Data pre-processing 16 

 17 

The first five volumes (Experiments 1–2) or eight volumes (Experiment 4) of each run were discarded to allow 18 

longitudinal magnetization to reach steady-state. Differences in slice acquisition times were corrected using sinc 19 

interpolation (Experiments 1–4). Measurements of the static magnetic field (B0) were used to correct volumes for 20 
spatial distortion (Experiments 1–3). Motion correction was performed using SPM (Experiments 1–4). Final data 21 

interpolation occurred at the original voxel resolution (Experiments 1–2, 4) or the resolution of the cortical surface 22 

reconstruction generated by FreeSurfer based on T1-weighted anatomical data (Experiment 3). 23 

 24 

2.3 Summary of GLMdenoise procedure 25 

 26 

A summary of the major steps in GLMdenoise is provided here (for full details, please see Kay et al., 2013a). We 27 
start with a baseline GLM that includes task regressors capturing effects related to the experiment and polynomial 28 

regressors capturing low-frequency drift. A procedure to estimate the HRF is performed, and the accuracy of the 29 

GLM is quantified using leave-one-run-out cross-validation. Voxels whose cross-validated R2 values are less than 30 

0% are then considered for the noise pool. Note that this selection is not tailored to any specific contrast or effect 31 

that might exist in the data, but simply assesses whether any of the task regressors produce non-zero variance in 32 

the time series for a given voxel. Moreover, even if the noise pool contains voxels of interest, it is still possible to 33 

improve GLM estimates for such voxels (Kay et al., 2013a). The noise pool is further refined to brain voxels by 34 

discarding voxels whose mean signal intensity fall below one half of the 99th percentile of mean signal intensity 35 
values across all voxels. Next, we extract the time-series data observed for voxels in the noise pool, project out 36 

the polynomial regressors, and perform principal components analysis (PCA) on these time series. We add the 37 

PCs in decreasing order of variance explained to the GLM as nuisance regressors, and systematically evaluate 38 

cross-validation performance as a function of the number of PCs added. Finally, the optimal number of PCs is 39 
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 7 

selected (based on median cross-validated R2 performance across task-related voxels) and used to obtain the 1 

final response-amplitude estimates (beta weights). 2 

 3 

2.4 General linear model (GLM) analysis 4 
 5 

For each participant, runs were split into two groups using either an even/odd split (Experiments 1–3) or a by-6 

session split (Experiment 4). Each group of runs was analyzed using GLMdenoise 7 

(http://cvnlab.net/GLMdenoise/), with denoising enabled (optimal number of PCs added to the GLM) and 8 

denoising disabled (no PCs added to the GLM). A few notes on the application of GLMdenoise to our datasets: 9 

Although this paper describes results for specific regions of interest, the denoising itself was not tailored in any 10 

way to these regions but was applied to each dataset in its entirety (as is the default). Regarding the choice of 11 

HRF, we used the default ‘optimize’ option, indicating that the HRF is estimated from the data. Since the 12 
denoising procedure occurs after HRF estimation (see Section 2.3), the denoised and undenoised results reflect a 13 

common HRF. Finally, the entire GLMdenoise procedure (including the internal use of cross-validation) was 14 

applied independently to each split of the data; this strict splitting ensures that no improper “parameter sharing” or 15 

“data peeking” occurred. 16 

 17 

To prepare the data for multivariate pattern analysis, beta weights from the GLM analysis were converted to t 18 

units (Misaki et al., 2010) by dividing each voxel's beta weights by the square root of the average squared 19 

standard error. The final result of the GLM analysis is a set of four matrices containing multivoxel activity patterns. 20 
These matrices are denoted Pi,d where i = 1 (first data split, referred to as Test) or 2 (second data split, referred to 21 

as Re-test) and d = 1 (denoising disabled, referred to as Baseline) or 2 (denoising enabled, referred to as 22 

Denoised). Each Pi,d has dimensions v x c where v is the number of voxels in the region of interest and c is the 23 

number of experimental conditions. 24 

 25 

To test GLMdenoise against the common practice of including motion parameters in the GLM design matrix, we 26 

also fit two additional GLMs. The first GLM extends the baseline GLM by including the 6 rigid-body transformation 27 
parameters obtained from motion correction (x, y, z, pitch, roll, yaw). The second GLM includes not only the rigid-28 

body parameters but also their squares, their temporal derivatives, and the squares of the temporal derivatives 29 

(Friston et al., 1996), yielding a total of 24 additional parameters in the GLM design matrix. The beta weights 30 

produced by these two additional GLMs are compared to those produced by GLMdenoise using the multivariate 31 

analyses detailed below. 32 

 33 

2.5 Representational similarity analysis (RSA) 34 

 35 
For conceptual background and further details on RSA, we refer the reader to other papers (Charest et al., 2014; 36 

Kriegeskorte et al., 2008a; Kriegeskorte and Kievit, 2013; Nili et al., 2014). Each set of multivoxel activity patterns 37 

Pi,d was converted into a representational dissimilarity matrix (RDM) Ri,d using one minus Pearson's correlation (r) 38 

as the metric of dissimilarity. Specifically, the element in the mth row and nth column of Ri,d was computed as one 39 
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 8 

minus the correlation between the mth and nth columns of Pi,d. Each Ri,d has dimensions c x c where c is the 1 

number of experimental conditions. We then computed three metrics of RDM replicability. Baseline is Pearson’s 2 

correlation between the lower triangles of R1,1 and R2,1, and indicates RDM replicability when there is no denoising 3 

of either split of the data. Denoised is Pearson’s correlation between the lower triangles of R1,2 and R2,2, and 4 
indicates RDM replicability when there is denoising of both splits of the data. Baseline/Denoised is the average of 5 

Pearson’s correlation between the lower triangles of R1,1 and R2,2 and Pearson’s correlation between the lower 6 

triangles of R1,2 and R2,1, and indicates how well a denoised RDM from one split of the data correlates with an 7 

undenoised RDM from the other split of the data. Results are very similar when using Spearman’s correlation as 8 

the measure of RDM replicability (data not shown). 9 

 10 

To calculate error bars and statistical significance, a bootstrapping procedure was used. In this procedure, a 11 

bootstrap sample is constructed by resampling experimental conditions with replacement. The resulting activity 12 
patterns are used to compute RDMs, separately for each split of the data. These bootstrapped RDMs are then 13 

compared using Pearson’s correlation (as detailed above). The process is repeated 1,500 times to assess 14 

variability due to sampling of experimental conditions. P-values are calculated by quantifying the fraction of 15 

bootstrap samples where a given comparison of interest does not hold (for example, the fraction of cases where 16 

Denoised does not lead to higher replicability than Baseline). Note that when calculating RDM metrics, artifactual 17 

zeros in RDMs are ignored (multiple instances of the same condition lead to zero distances). 18 

 19 

2.6 Cross-validated Mahalanobis distance 20 
 21 

Recently, multivariate noise-normalized cross-validated Mahalanobis distance (crossnobis) has been proposed as 22 

a novel method for computing RDMs (Walther et al., NeuroImage 2016; Diedrichsen et al. PloS Biol 2017). 23 

Crossnobis provides unbiased estimates of distances, and can be viewed as an alternative approach to denoising 24 

in the context of RSA. In brief, noise covariance between voxels is estimated from GLM residuals using a 25 

shrinkage-based estimator (Ledoit and Wolf, 2004) and used to whiten regression coefficients (beta weights), and 26 

distances are estimated on an independent partition of the data. 27 
 28 

To evaluate the crossnobis method, we performed two analyses. The first analysis involved computing cross-29 

validated Mahalanobis distances based on the design matrix of the baseline GLM (no PCs). This enables 30 

assessment of the replicability of RDMs when computed using crossnobis distances. The second analysis 31 

involved computing cross-validated Mahalanobis distances based on the design matrix of the final GLM identified 32 

by GLMdenoise (optimal number of PCs). This provides an assessment of whether the crossnobis method can 33 

benefit from the nuisance regressors identified by GLMdenoise. Note that in these analyses, strict data splitting is 34 

observed: the cross-validation used in the crossnobis procedure is fully confined within each data split. 35 
 36 

2.7 Classification analysis 37 

 38 
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 9 

We performed a simple correlation-based classification analysis, similar to that in (Haxby et al., 2001). Let m and 1 

n refer to indices of two distinct experimental conditions. For both d = 1 (Baseline) and d = 2 (Denoised), we 2 

computed the 2 x 2 matrix Cd consisting of Pearson’s correlations between activity patterns, where the rows 3 

correspond to activity patterns for conditions m and n from the first split of the data (the mth and nth columns of 4 
P1,d) and the columns correspond to activity patterns for conditions m and n from the second split of the data (the 5 

mth and nth columns of P2,d). If the diagonal elements of Cd are larger than the off-diagonal elements, this 6 

indicates that conditions m and n can be well discriminated. To convert Cd to a single number representing 7 

percent correct, we assess whether element (1,1) is greater than (2,1) and whether (2,2) is greater than (1,2) (this 8 

treats the first split as the training data and the second split as the testing data) as well as whether element (1,1) 9 

is greater than (1,2) and whether (2,2) is greater than (2,1) (this treats the second split as the training data and 10 

the first split as the testing data). Percent correct is calculated as the proportion of these four cases where a 11 

successful outcome is observed (i.e. diagonal element larger than off-diagonal element). We performed this 12 
procedure for every pair of experimental conditions, and then averaged performance across pairs. This yields a 13 

single number (pairwise decoding accuracy) that indicates how well conditions can be discriminated from one 14 

another. 15 

 16 

To assess the statistical significance of the difference in accuracy between Baseline and Denoised, we performed 17 

a permutation test in which undenoised and denoised activity patterns are randomly swapped. Specifically, each 18 

column of P1,1 is swapped with the corresponding column of P1,2 with probability 0.5, and this procedure is 19 

repeated for the columns of P2,1 and P2,2. After random swapping, differences in accuracy are computed just as in 20 
the original procedure. The p-value is taken to be the fraction of permutation iterations that exhibit a difference in 21 

accuracy that is equal to or larger than the observed difference. 22 

 23 

2.8 Simulations 24 

 25 

We conducted a set of simulations (code available at http://osf.io/bf736) in order to clarify the principles underlying 26 

the approach of modeling task-correlated noise (see Supplementary Figure 2). These simulations involved a 27 
simple regression model: y = Xh + Nk + e where y is time-series data (t × 1), X is a task regressor (t × 1), h is a 28 

task weight (1 × 1), N is a nuisance regressor (t × 1), k is a nuisance weight (1 × 1), and e is a set of residuals (t × 29 

1). Each simulation consisted of the following steps: (1) Generate task and nuisance regressors by randomly 30 

sampling numbers from the normal distribution (t = 50), low-pass filtering the resulting values (at a cutoff of 5 31 

cycles per time-series), and z-scoring each regressor. The rationale for low-pass filtering is to mimic the 32 

properties of fMRI data and to make it more likely that large correlation values between task and nuisance 33 

regressors are observed. Two sets of task and nuisance regressors are generated: one set is for training data and 34 

the other set is for testing data. (2) Compute the correlation (Pearson’s r) between the task and nuisance 35 
regressors in the training set. This correlation value is used to bin simulation results. (3) Generate time-series 36 

data. We set the true task weight h to 100. We control the strength of the nuisance effects by appropriate setting 37 

of k (e.g., a ‘nuisance level’ of 10 means to use k = 1,000 which is 10 times the size of the task weight). We 38 

generate residuals e by sampling numbers from the normal distribution and scaling the resulting values 39 
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 10 

appropriately (e.g., a ‘residual level’ of 10 means to scale the values by 1,000, which is 10 times the size of the 1 

task weight). (4) Fit the time-series data in the training set using two different models. One model consists of just 2 

the task regressor X. The other model consists of both the task regressor X and the nuisance regressor N. In both 3 

cases, we obtain an estimate of the task weight h. (5) For each model, we quantify the accuracy of the estimated 4 
h by computing the absolute deviation from the true task weight. Results are shown in Supplementary Figure 2A. 5 

We also compute cross-validated R2 as the percentage of variance in the testing data that is explained by the task 6 

estimate (task regressor X scaled by the estimated h). Results are shown in Supplementary Figure 2B. 7 

  8 
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3. RESULTS 1 

 2 

We examined to what extent GLMdenoise improves sensitivity in the context of multivariate pattern analysis of 3 

fMRI data. To this end, we collected and analysed datasets from 31 fMRI participants. Each dataset involved a 4 
large number of experimental conditions presented multiple times over the course of the experiment. We split 5 

each dataset into halves (test and re-test) and applied a GLM analysis to each half with and without the use of 6 

GLMdenoise. The beta weights returned by the GLM analyses were then assessed using representational 7 

similarity analysis (RSA) and pattern classification.  8 

 9 

3.1 Representational similarity analysis: GLMdenoise improves the replicability of representational 10 

dissimilarity matrices 11 

 12 
We obtained representational dissimilarity matrices by correlating the pattern of beta weights obtained for each 13 

experimental condition (Figure 1). For individual participants, the denoising appears to lead to clearer 14 

representational structure shared between test and re-test results (see Supplementary Figure 1 for results on all 15 

participants). To further visualize GLMdenoise’s impact on the similarity structure of the RDMs, we applied 16 

classical multi-dimensional scaling (MDS; metric stress) to the RDMs obtained from Participant 18 (Figure 2). 17 

MDS for the test and re-test RDMs after denoising (bottom row) shows clearer categorical structure (the 18 

categories are depicted with red, orange, blue, and cyan circles) than MDS of the test and re-test RDMs when no 19 

denoising was performed (top row). In addition, the right column shows that denoising reduces the displacement 20 
(or error) of each stimulus in the representational space.  21 

 22 

To further quantify these effects, we computed three performance metrics for all participants. We compared the 23 

replicability of the test and re-test RDMs constructed without denoising (Baseline), denoising both data-splits 24 

(Denoised), and denoising only one data-split (Baseline/Denoised). Plotting these metrics, we see that RDM 25 

replicability is substantially higher when using GLMdenoise (Denoised) compared to baseline (Baseline). In 26 

several cases, there are very sizable improvements (Figure 3A), increasing from correlations near 0 to modest 27 
correlation values. The high variability in the amount of improvement obtained by denoising is consistent with 28 

earlier observations (Kay et al., 2013a) and reflects the fact that the amount of overlap between noise effects and 29 

experimental effects depends on a variety of factors such as the number of conditions, their temporal ordering, 30 

and incidental differences across participants (such as the amount of head motion). 31 

 32 

It is possible that improved replicability reflects biased RDMs. For example, one can imagine a procedure that 33 

artificially creates RDM values that are all biased towards 0. Such a procedure would yield enhanced replicability 34 

values, but would yield inaccurate RDMs. The Baseline/Denoised metric indicates how well a denoised RDM 35 
matches an undenoised RDM from a separate split of the data. Across participants, this metric is higher than 36 

Baseline (Figure 3B). This establishes an important control: a raw (undenoised) RDM is better predicted by a 37 

denoised RDM compared to another raw RDM. This provides evidence that denoising does not induce bias to 38 

RDM structure, but rather, denoises the RDM structure, pushing it closer to the true RDM structure. 39 
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 1 

3.2 Representational similarity analysis: Comparing GLMdenoise to other popular methods 2 

 3 

We compared improvements in RDM replicability provided by GLMdenoise to that provided by other denoising 4 
methods. One popular method is to include motion parameters in the GLM design matrix; we evaluated a version 5 

of this method that involves 6 regressors (rigid-body motion parameters) and a version that involves 24 6 

regressors (rigid-body parameters plus squares and temporal derivatives). We observe an increase in RDM 7 

replicability compared to Baseline when including motion parameters (Figure 4A, second and third columns), but 8 

the improvements are not as large as those observed under GLMdenoise (Figure 4A, first column). 9 

 10 

We also assessed RDM replicability for RDMs constructed using cross-validated Mahalanobis distance 11 

(Diedrichsen and Kriegeskorte, 2017; Walther et al., 2016). This approach provides unbiased distance estimates 12 
and accounts for fMRI noise structure (see Methods). RDM replicability using cross-validated Mahalanobis 13 

distance does not show improvements compared to Baseline (Figure 4A, fourth column). The lack of improvement 14 

might be because estimation of noise covariance and calculation of distance on independent data require large 15 

amounts of data to achieve robust results. Alternatively, Euclidean distance might be a less stable metric than 16 

correlation-based distance. We explored an analysis in which the noise regressors identified by GLMdenoise are 17 

incorporated into the procedure for computing cross-validated Mahalanobis distance. We find that this 18 

combination strategy works well: introducing GLMdenoise yields improvements to RDM replicability (Figure 4B). 19 

 20 
3.3 Representational similarity analysis: GLMdenoise improves consistency across participants 21 

 22 

Thus far, we have only shown that GLMdenoise improves RDM replicability within participants. Do these benefits 23 

extend to improved replicability across participants? For each participant, we calculated a single RDM that reflects 24 

all data collected for that participant and then calculated Pearson’s correlation between all pairs of participants 25 

within each experiment. We find that the majority of pairwise participant comparisons are improved when using 26 

GLMdenoise (Figure 5A) and that these improvements are greater than those observed using the motion-27 
parameter approach (Figure 5B). This indicates that not only does GLMdenoise improve the quality of results for 28 

individual participants, but these improvements also translate to reduced variability at the group level, thereby 29 

enhancing the ability to make inferences about generalization of representational geometries across participants. 30 

 31 

3.4 Pattern classification analysis: GLMdenoise improves decoding accuracy 32 

 33 

We have established, using RSA, that multivariate similarity structure has better replicability when using 34 

GLMdenoise. If GLMdenoise improves replicability of representational structure, does this also translate into 35 
better decoding accuracies between experimental conditions? We performed a complementary analysis that 36 

quantifies how well conditions can be discriminated from one another based on fMRI activity patterns, in line with 37 

classical MVPA approaches.  38 

 39 
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We compared the average pairwise decoding accuracy before and after the use of GLMdenoise (see Methods for 1 

details). All participants exhibit an increase in decoding accuracy, and in 24 of 31 participants, this increase is 2 

statistically significant at p < 0.05 (Figure 3C). Since discriminability may be dependent on the specific conditions 3 

used in each of our four experiments, we computed the average increase in decoding accuracy independently for 4 
each experiment (Figure 3D). We find that in all four experiments, GLMdenoise provides substantial 5 

improvements in decoding accuracy, increasing percent correct by 4–6% on average across participants. 6 

 7 

3.5 GLMdenoise improves brain-representational predictions of perceived object dissimilarity 8 

 9 

To further assess whether GLMdenoise provides better estimates of task-related BOLD signals, we exploited 10 

behavioral measurements available in one of our experiments. Such measurements are independent of the 11 

physiological measurements provided by fMRI, and thus could provide independent validation of the fMRI results. 12 
In Experiment 4, participants engaged in a behavioral experiment in which they were asked to arrange the stimuli 13 

used in the fMRI experiment according to their similarity using an interactive display (Charest et al., 2014; 14 

Kriegeskorte and Mur, 2012). The purpose of this experiment was to characterize each participant’s unique 15 

subjective experience of the stimuli and to potentially link these perceptual effects to the participant’s brain 16 

representations (Charest et al., 2014). We computed Pearson’s correlation between RDMs computed from a 17 

region of interest drawn around the inferior temporal cortex of the participants (brain RDM) and RDMs computed 18 

from the behavioral experiment (behavior RDM). This was done for the subset of stimuli that were common 19 

across all participants. For nearly every participant (19/20), we observed an increase in correlation between the 20 
brain RDM and the behavior RDM when using GLMdenoise to construct the brain RDM (Figure 6). This is an 21 

important observation because the denoising performed on the fMRI data has no access to the behavioral 22 

similarity structure in any way. The improvement in brain-behavior correlation demonstrates that GLMdenoise 23 

improves the accuracy of information extracted from the brain data. 24 

  25 
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4. DISCUSSION 1 

 2 

4.1. GLMdenoise yields more reliable estimates of task-related activity patterns 3 

 4 
In this study, we have shown that our earlier observation of improved cross-validation accuracy of beta weights 5 

after application of GLMdenoise (Kay et al., 2013a) translates into practical benefits for studies using multivariate 6 

analyses. First, representational dissimilarity matrices estimated from independent splits of the data from each 7 

participant are more replicable after application of GLMdenoise. This indicates that GLMdenoise improves the 8 

reliability of activity pattern estimates and representational geometries. This improved reliability of pattern 9 

estimates also translates to greater pattern classification accuracies, stronger correlations between perceptual 10 

judgments and brain representations, and improved consistency of representational geometries at the group level. 11 

 12 
4.2 GLMdenoise estimates and removes a wide variety of sources of nuisance variation 13 

 14 

The philosophy behind GLMdenoise is similar to existing strategies for removing noise from neuroimaging data. 15 

Several denoising practices exist in which nuisance regressors are considered and removed from the data. 16 

Perhaps the most common denoising practice is the inclusion of motion parameters as additional regressors in 17 

the general linear model (Bright and Murphy, 2015; Monti, 2011; Pernet, 2014). Other sources of noise that are 18 

often included involve auxiliary physiological measurements, such as cardiac and respiratory measurements to 19 

predict some of the physiological noise components in the BOLD signal (Birn et al., 2006; Chang et al., 2009; 20 
Glover et al., 2000; Hagberg et al., 2012; Shmueli et al., 2007). There are two key advantages offered by 21 

GLMdenoise over these existing methods. One is that GLMdenoise captures all of these types of nuisance effects. 22 

Another is that GLMdenoise removes nuisance effects in a way that is specifically designed to not overfit the data. 23 

For example, as we showed previously (Kay et al., 2013a) and as shown in the present study (see Figure 4A), 24 

including motion parameters in the linear model often does help, but also has the capacity to hurt. As a matter of 25 

design, GLMdenoise optimizes the number of noise regressors used on each dataset. This is important because 26 

whether modeling out nuisance effects is effective depends on the magnitude of the nuisance effects, the 27 
magnitude of the task-related signals, and the amount of correlation between the nuisance effects and task-28 

related signals, all of which may depend on the participant and the experiment (Kay et al., 2013a). We clarify the 29 

nature of these contingencies using a set of simple simulations (Supplementary Figure 2). These simulations 30 

demonstrate that modeling task-correlated nuisance effects improves model accuracy when nuisance effects are 31 

strong and highly correlated with the task, but can degrade model accuracy when nuisance effects are weak. The 32 

latter scenario might occur if one blindly includes nuisance regressors into an fMRI design matrix (due to 33 

overfitting); GLMdenoise guards against this possibility by assessing model accuracy through cross-validation. 34 

 35 
One possible concern with using GLMdenoise is that it somehow leads to fMRI beta weights that do not reflect the 36 

‘true’ activity patterns elicited by the experimental conditions. For example, if a denoising method altered beta 37 

weights by biasing them towards the mean beta weight, this would improve replicability at the expense of pulling 38 

condition-specific activity patterns away from the true underlying activity patterns. Such bias could potentially 39 
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underlie the observation that denoised RDMs are smoother than baseline RDMs (see Figure 1). There are three 1 

considerations that argue against this possibility. First, considering the nature of the technique, we see that there 2 

is no explicit mixing of signals across voxels (aside from the fact that the nuisance regressors are derived from a 3 

common noise pool): each voxel is independently modeled by the GLM and there is no restriction on the weights 4 
associated with the nuisance regressors for each voxel. Thus, it is difficult to see how some sort of smoothing 5 

bias could result from the GLMdenoise procedure. Second, in our RDM analysis, we found that undenoised 6 

RDMs are better predicted, using an independent split of the data, by denoised RDMs than by undenoised RDMs. 7 

This suggests that denoising does not induce bias but instead reduces variance. Third, we exploit the similarity 8 

judgments collected in Experiment 4 as an external validation of brain RDM estimates. We were able to confirm, 9 

using this different measurement modality, that denoising brain measurements improves the correspondence 10 

between perceived similarity and the brain’s similarity structure. Given these considerations, we suggest that 11 

GLMdenoise provides substantially better estimates of task-related activity patterns without inducing appreciable 12 
bias. 13 

 14 

4.3 What preconditions and complications are associated with the application of GLMdenoise? 15 

 16 

The GLMdenoise technique is general (it requires only a design matrix and fMRI time-series) and fully automated 17 

(it requires no hand-tuning of parameters, although it can be customized if desired). Furthermore, because no 18 

physiological recordings nor additional fMRI data are required, the technique can be retrospectively applied to 19 

existing fMRI datasets. Despite these appealing features, it is important to recognize some caveats and 20 
limitations: 21 

• Since GLMdenoise relies on cross-validation of task-related BOLD signals, GLMdenoise is not applicable 22 

to resting-state fMRI. 23 

• GLMdenoise requires multiple fMRI runs, with presentation of each condition more than once. This is 24 
necessary because GLMdenoise involves cross-validation across runs. Conventional denoising 25 

techniques are recommended for experiments with only one repetition per condition. 26 

• Because GLMdenoise is fully data-driven, the nature of the noise removed is unclear without further 27 

analyses. Moreover, the amount of noise removed and its properties may vary across experiments and 28 

participants. 29 

• A central assumption of GLMdenoise is that the fMRI measurements (including both task-related signals 30 
and noise sources) are relatively stationary across runs. In other words, evoked BOLD signals should be 31 

replicable across runs and general trial distributions should be relatively balanced throughout the 32 

experiment. 33 

• The number of noise regressors in GLMdenoise is, by default, optimized with respect to all voxels 34 

exhibiting task-related signals. It is possible that specific brain regions might degrade in accuracy while 35 
the rest of the dataset improves. If one desires, one can restrict the optimization to specific voxels of 36 

interest. This and other customizations are implemented in the GLMdenoise toolbox. 37 

Bearing in mind these caveats and limitations, we believe that the substantial improvements in the quality of 38 

MVPA results we have demonstrated make GLMdenoise a valuable analysis tool. 39 
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FIGURES 1 

 2 

 3 
Figure 1. GLMdenoise improves the quality of representational dissimilarity matrices (RDMs). Each 4 

participant’s fMRI dataset was split into two halves (Test, Re-test), and each half was analyzed with a standard 5 

GLM (Baseline) or with GLMdenoise (Denoised). The results of each analysis are used to construct an RDM, 6 

which indicates the dissimilarity between the multivoxel activity patterns associated with each pair of experimental 7 
conditions. (A) Results for a participant from Experiment 1 (Participant 3). The yellow circle highlights a section of 8 

the RDMs for which denoising yields clearer structure and improves replicability across splits of the data. (B) 9 

Results for a participant from Experiment 2 (Participant 4). Same format as A. (C) Results for a participant from 10 

Experiment 4 (Participant 26). Same format as A. (D) Metrics of RDM quality. We computed three metrics 11 

quantifying the replicability of the lower triangles of the RDMs. Baseline is the test-retest correlation of the 12 

undenoised RDMs. Denoised is the test-retest correlation of the denoised RDMs. Baseline/Denoised is the 13 

correlation between an undenoised RDM and a denoised RDM (correlation values for the two possible cases are 14 

averaged). See Supplementary Figure 1 for RDM results for all participants.  15 
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 1 
Figure 2. Multidimensional scaling (MDS) illustrates the benefit of denoising RDMs. We apply classical 2 

MDS to visualize the similarity structure of the RDMs obtained for Participant 18. Each point is color-coded with 3 

regards to stimulus category (red: places, orange: objects, blue: bodies, cyan: faces) and shows the actual 4 
stimulus presented to the participant. To quantify the replicability of MDS results across Test and Re-test, we co-5 

registered the two sets of results by first normalizing the scale of each MDS result and then rotating the Re-test 6 

MDS result to minimize the error with respect to the Test MDS result. The colored lines depict the distance 7 

between Test and Re-test results. Short lines indicate that an item’s position in the representational space is 8 

stable across data halves. Long lines suggest that the underlying activity patterns contain noise that is corrupting 9 

the RDM results. Denoising substantially improves test-retest replicability of MDS results and increases clustering 10 

of similar points. Note that this is just an illustrative example suggesting the potential impact of denoising on 11 
neuroscientific results; systematic evaluation of denoising performance for all participants and experiments is 12 

provided in later figures. 13 

 14 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2018. ; https://doi.org/10.1101/320838doi: bioRxiv preprint 

https://doi.org/10.1101/320838
http://creativecommons.org/licenses/by/4.0/


 

 22 

 1 
Figure 3. GLMdenoise consistently improves RDM quality and classification performance. (A) RDM metrics 2 

for each participant. Error bars (68% confidence intervals) and statistical significance levels were calculated by 3 

bootstrapping experimental conditions. The top row of asterisks indicates p-values for Baseline/Denoised > 4 

Baseline, while the bottom row of asterisks indicates p-values for Denoised > Baseline. Many participants exhibit 5 

a statistically significant increase in performance relative to Baseline. Importantly, no participant exhibits a 6 

statistically significant decrease in performance relative to Baseline. (B) Summary of RDM metrics. For each 7 

participant, we compute the increase in correlation relative to Baseline. The median increase across participants 8 
is shown (error bars and statistical significance were computed by bootstrapping participants). (C) Classification 9 

performance for each participant. The asterisks indicate p-values for Denoised > Baseline (permutation test; see 10 

Methods). Many participants exhibit a statistically significant increase in performance, and no participant exhibits 11 

a decrease in performance. (D) Summary of classification performance. For each participant, we compute the 12 

increase in performance relative to Baseline. The mean increase across participants (separated by experiment) is 13 

shown. Error bars (standard errors) and statistical significance (t-test) were computed parametrically due to the 14 

small number of participants in Experiments 1–3. 15 
  16 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2018. ; https://doi.org/10.1101/320838doi: bioRxiv preprint 

https://doi.org/10.1101/320838
http://creativecommons.org/licenses/by/4.0/


 

 23 

 1 
Figure 4. Comparison of GLMdenoise to other approaches. We evaluated the potential benefits of using 2 

GLMs augmented with motion parameter estimates and of constructing RDMs using cross-validated Mahalanobis 3 

distances (Diedrichsen and Kriegeskorte, 2017; Walther et al., 2016). (A) Summary of results. Each ‘x’ indicates 4 
for one participant the increase in RDM replicability (correlation between split-half RDMs) observed relative to 5 

Baseline. The black dot indicates the median increase across participants (error bars indicate 68% confidence 6 

intervals obtained by bootstrapping participants). In terms of statistical significance (two-tailed bootstrap test), we 7 

find that GLMdenoise yields significant improvements compared to Motion regressors (6 regressors) and Cross-8 

validated Mahalanobis RDM (p < 0.01) and marginally significant improvements compared to Motion regressors 9 

(24 regressors) (p = 0.08). For Cross-validated Mahalanobis RDM, the decrease in performance relative to 10 

Baseline is statistically significant (p < 0.01). (B) GLMdenoise can be combined with cross-validated Mahalanobis 11 
distances. We calculated the replicability of RDMs constructed with the cross-validated Mahalanobis distance 12 

method, either using the GLM design matrix in the Baseline model (x-axis) or using the GLM design matrix 13 

provided by GLMdenoise (y-axis). Each dot corresponds to one participant. The results show that GLMdenoise is 14 

compatible with cross-validated Mahalanobis distance and yields improvements in RDM replicability (two-tailed 15 

sign test, p < 0.01). 16 
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 1 
Figure 5. GLMdenoise improves across-participant consistency of representational geometries. For each 2 

participant, we averaged the split-half activity patterns to obtain a single set of activity patterns, computed RDMs 3 

from these activity patterns, and then computed RDM-to-RDM correlations between all pairs of participants. (For 4 

Experiment 4, we restricted this analysis to the 36 of the 72 conditions that were common across participants.) (A) 5 
Improvements observed using GLMdenoise. Results with no denoising (x-axis) are compared against results with 6 

GLMdenoise (y-axis). Each light dot indicates one pairwise correlation, and each dark dot indicates the centroid of 7 

all pairwise correlations observed for a given experiment. (B) Improvement observed using Motion regressors (24 8 

regressors). Same format as panel A. Overall, GLMdenoise and, to a lesser degree, motion regressors improve 9 

across-participant consistency. The black arrow highlights cases in which improvements are especially large. This 10 

is consistent with earlier observations that denoising appears to be especially helpful for datasets where signal 11 

quality is initially low (see Figure 3). 12 
  13 
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  1 
Figure 6. Denoising of brain-based RDMs improves correspondence with behavior-based RDMs. In 2 

Experiment 4, participants were asked to make behavioral judgments about the stimuli used in the fMRI 3 

experiment, and an RDM was constructed from these behavioral judgments. We averaged the Test and Re-test 4 

RDMs derived from the fMRI data and then correlated the lower triangle of this brain-based RDM to the lower 5 

triangle of the behavior-based RDM. (A) Results using GLMdenoise. This panel shows the correlation observed 6 

for each participant, before and after denoising. Black dots indicate the median across participants. Nearly all 7 

(19/20) participants show an increase in correlation and this increase in correlation is statistically significant (two-8 
tailed sign test). (B) Comparison to other approaches. Each ‘x’ indicates for one participant the increase in brain-9 

behavior correlation that is observed compared to Baseline (no denoising). The black dot indicates the median 10 

increase across participants (error bars indicate 68% confidence intervals obtained by bootstrapping participants). 11 

Although differences in performance across the three approaches are not statistically significant, notice that 12 

GLMdenoise consistently improves performance, whereas the Motion regressors approaches yield more mixed 13 

results (some datasets improve, some datasets worsen). 14 
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Table 1. Summary of datasets. 1 

 2 
Experiment Participa

nts 

 

Number of 

conditions 

Condition 

duration 

(seconds

) 

Number of 

repetitions per 

run (or run 

set) 

Number of 

runs (or 

run sets) 

Scanner Voxel size 

(mm) 

TR 

(seconds

) 

TE 

(ms) 

Flip angle 

(deg) 

Volume 

dimensions 

Number of 

volumes per 

run 

Total 

number of 

runs 

Data split 

1 1–3 69 3 1 4 3T1 2.5 1.323751 29.7 71 64 x 64 x 21 270 8 even/odd 

2 4–6 75 3.5 1 4 CNI 2 2.006553 31 77 80 x 80 x 26 136 12 even/odd 

3 7–11 32 4 2 10 NIL 2.5 2 30 77 80 x 80 x 28 156 10 even/odd 

4 12–31 72 1 1 18 (9 per 

session) 

CBU 3 x 3 x 

3.75 

2 30 78 64 x 64 x 32 216 18 by session 

 3 

3T1 = Lucas Center at Stanford University, 3T GE Signa HDX scanner, Nova quadrature or 8-channel RF coil; 4 
CNI = Stanford Center for Neurobiological Imaging, 3T GE Signa MR750 scanner, Nova 16-channel RF coil; NIL 5 

= Neuroimaging Laboratory at Washington University, 3T Siemens Skyra scanner, Siemens 32-channel RF coil; 6 

CBU = Medical Research Council–Cognition and Brain Sciences Unit, 3T Siemens Trio scanner, Siemens 12-7 

channel RF coil. Additional notes: All experiments used a T2*-weighted, single-shot, gradient-echo pulse 8 

sequence, either spiral-trajectory (3T1) or echo-planar imaging (CNI, NIL, CBU). 9 

 10 
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Supplementary Figure 1. RDM results for all participants. Same format as Figure 1. 
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Supplementary Figure 2. Modeling task-correlated nuisance effects can improve model accuracy. An assumption 
of GLMdenoise is that task-related fluctuations and nuisance fluctuations are uncorrelated in the sense that the expected 
value of the correlation between the two types of fluctuations is zero. However, in any given limited sample of data, the 
correlation between task-related and nuisance fluctuations may be non-zero, and this phenomenon is what GLMdenoise 
exploits to improve the accuracy of task estimates. To illustrate, we perform simulations (see Methods for details; 
simulation code available at http://osf.io/bf736) in which we randomly generate task and nuisance regressors, simulate 
time-series data that reflect a mixture of task, nuisance effects, and residuals, and then fit models to the time-series data 
in an attempt to estimate the task-related component of the data. We evaluate two models: one model consists of only the 
task regressor (red line) and the other model consists of both the task regressor and the nuisance regressor (blue line). 
Here we show simulation results in which we systematically vary the nuisance level, as depicted by the columns, and the 
residual level, as depicted by the rows. In each plot, the y-axis indicates the absolute value of the difference between the 
estimated and true task weight (panel A) or the cross-validated R2 of the task estimate (panel B). Results are binned 
according to the correlation observed between the task regressor and the nuisance regressor, as depicted by the x-axis. 
For each bin, the median across 10,000 simulations and the 68% confidence interval on the median (bootstrap procedure) 
is shown. The results indicate that when the nuisance effects are strong, inclusion of the nuisance regressor improves 
performance when the task and nuisance regressors are correlated (red arrows) but does not affect performance when 
the task and nuisance regressors are uncorrelated (green arrows). In contrast, when the nuisance effects are weak, 
inclusion of the nuisance regressor degrades performance when the task and nuisance regressors are correlated (blue 
arrows) but does not affect performance when the task and nuisance regressors are uncorrelated (magenta arrows). Thus, 
these results demonstrate that modeling task-correlated nuisance effects can improve task estimates, but this is 
contingent on the strength of the nuisance effects and the level of correlation that exists between the task and nuisance 
regressors. GLMdenoise uses cross-validation to determine on a case-by-case basis whether including nuisance 
regressors improves or degrades task estimates. 
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