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Abstract 

The Gene Ontology (GO) is one of the most widely used resources in molecular and cellular biology, largely 
through the use of “enrichment analysis”. Despite the high importance of GO, there has been limited appreciation 
that it changes over time and limited evaluation of how these changes impact research. To help close this gap, we 
present GOTrack (https://gotrack.msl.ubc.ca), a web-based system and database that provides access to 
historical records and trends in the Gene Ontology and GO annotations (GOA). GOTrack gives users access to 
gene- and term-level information on annotations for nine model organisms (including human) as well as an 
interactive tool that measures the stability of enrichment results over time for user-provided “hit lists” of genes. To 
document the effects of GO/GOA evolution on enrichment analysis, we analyzed over 2500 previously published 
hit lists of human genes. We compared the results that would have been obtained around the time of publication 
to those obtained for a current edition of GO/GOA, calibrated using a null based on randomly paired hit lists. 
Overall, 53% of hit lists were considered to yield significantly stable enrichment results, despite 90% of them 
being more than 9.2 years old. Because stability is far from assured for any individual hit list, GOTrack can lead to 
more informed and cautious application of GO to genomics research. 
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Introduction 

The Gene Ontology (GO) has been widely adopted by computational and experimental biologists and Gene 
Ontology annotation (GOA) of genes is one of the most prominent descriptive features of major genome 
databases. The original paper describing GO (Ashburner et al., 2000) is among the most cited papers in the 
biomedical literature (over 14,000 citations, Clarviate Analytics Web of Science, accessed 1/2018). The popularity 
of GO is in large part due to the challenge of interpreting data generated from high-throughput technologies such 
as gene expression profiling.  

In a typical simple setting, researchers contrast a genome-wide feature (e.g., gene expression levels or genetic 
association) in two experimental conditions and generate a list of genes, either ranked across the whole genome, 
or in the form of a “hit list” of selected candidates. Another way such lists can be generated is by clustering, such 
as using protein interaction networks or coexpression; or by selecting genes harboring potentially pathogenic 
variants in cohort-based genome sequencing. To help extract biological meaning from those rankings and hit lists, 
it is now standard practice to use GO annotations in an “enrichment” framework. The widespread use of these 
methods motivates increasing the ability to understand their underpinnings. 

Despite the importance of GO, many users likely have little understanding of how it was developed and how it 
changes over time, despite some effort on the part of the GO Consortium (GOC) to disseminate such information 
(Blake, 2013; Gaudet and Dessimoz, 2017; Huntley et al., 2014a). This is in part because there is no resource 
available to directly assess changes. Our goal in this paper is to fill this gap and provide some insight into the 
actual impact of changes on data analysis. 

The structure, content and curation of GO/GOA is the essential backdrop for the work we present so we review it 
briefly. GO is organized into three sub-ontologies, representing Biological Processes, Molecular Functions and 
Cellular Components. Collectively these currently encompass over 47,000 concepts, arranged in a directed 
acyclic graph (like a tree, but with the potential for multiple paths from any leaf to the root). It is important to 
distinguish the GO itself from the annotations (GOA), which connect genes to terms in GO. Both GO and the 
annotations change over time as curation is performed.  

Curation is managed through the Gene Ontology Consortium, in which member organizations such as model 
organism database curation teams provide annotations to a central repository. Genes may be associated with 
terms in the ontology using either manual curation (associated with a specific reference to the literature or based 
on a computational analysis reviewed by a curator) or “automatic” annotations that are not reviewed by curators. 
The different types of associations are represented by evidence codes, for example the automatic annotations 
receive the code “IEA” (“Inferred from electronic annotation”). 

Annotations created by the curation process are referred to as “direct annotations” because they explicitly 
associate a GO term with a gene. Genes are also associated with terms indirectly via the graph structure of GO, 
referred to as inference. Thus, a gene that is directly annotated with the term “protein tyrosine kinase” is also 
implicitly annotated with the term “protein kinase” because that term is a parent term of “protein tyrosine kinase”. 
When the operation of propagating direct annotations through the GO hierarchies is completed (“transitive 
closure” in graph theory terminology), the number of annotations available greatly increases, albeit at a range of 
granularities. These “indirect annotations” (also referred to as “inferred” or “propagated”) are as valid as direct 
annotations because GO enforces a “true path” rule (Consortium, 2001). In most analyses, it is important to use 
propagated annotations (the combination of direct and inferred annotations) (Rhee et al., 2008).  

Assessments of GO/GOA have recently turned to considerations of changes over time. For example, we 
quantified the effect that annotation have on the apparent (annotated) function of genes, showing that on average 
changes over short periods (months) are minor, but changes over longer periods are much more substantial 
(Gillis and Pavlidis, 2013). This and other work has shown that GO enrichment results may not be stable over 
time. However, the effects of changes are not likely to be uniform across data sets nor easily predictable. Indeed, 
previous studies have been either anecdotal (considering a single or just a few examples (Hoque et al., 2008)), 
with the largest study analyzing around 100 (Tomczak et al., 2018), or yielded mixed findings. Groß et al. (2012) 
found that enrichment results were stable based on analysis of two hit lists. Alam-Faruqe et al. considered 
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changes in results to be improvements due to focused curation, based on analysis of two data sets. Others have 
emphasized instability (Tomczak et al., 2018; Wadi et al., 2016) or reported mixed impacts (Clarke et al., 2013). 
Given this variety of results and interpretations, there is clearly a need for researchers to assess the stability of 
their own specific enrichment results. 

Here we report the development and application of a database (GOTrack, gotrack.msl.ubc.ca) that contains 
historical information on GO going back to the early 2000s for human and major model organisms. The GOTrack 
web site enables quick exploration of GO and GO annotations over time, and evaluation of how changes impact 
interpretation of analyses derived from GOA. Using the data in GOTrack, we present several analyses of trends in 
GO annotations, complementing earlier work. We performed a large-scale analysis of enrichment analysis results 
over time, using a large corpus of over 2500 “hit lists”. We confirm that GO enrichment analysis results can 
change over time. However, many were stable by objective measures even over time spans of greater than 10 
years. It is our hope that GOTrack will enable more critical use of GO by biologists and computational 
researchers. 

Results 

Construction and overview of GOTrack 

We used data representing ontologies and annotations for nine organisms, dating as far back as 2001. Annotation 
data were not available for all organisms for all dates, with complete data for all nine organisms from November 
15 2011 onwards. In total the data encompasses 206 monthly versions of GO and 1545 species-specific monthly 
editions of GOA yielding a grand total of 206,894,446 GO annotations (as of January 2018). Our overall 
procedures are outlined in Figure 1 (see Methods and further information is available on the GOTrack web site). 

 

Figure 1: Overview of approach in constructing 
GOTrack. GO terms and GO annotations were 
obtained, matched by date, and harmonization of gene 
identifiers. Precomputed summary and aggregate 
statistics supplement the fine-grained information 
stored in the databases. 
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The resulting database is complex and rich, with extensive information available at the gene or GO term level. 
While the web interface is the most complete and detailed way to interact with the data, we also offer a RESTful 
API to enable programmatic access to the data. Via this API, users can download GO annotations for a taxon, as 
well as GO, for any selected point in time (https://gotrack.msl.ubc.ca/downloads.xhtml). GOTrack does not contain 
all information on GO/GOA and thus complements other resources such as QuickGO (Binns et al., 2009) and 
AmiGO (Carbon et al., 2009). 

The GOTrack web interface offers views of history at the gene level, and at the GO term level. A third view 
provides a “global overview” of trends according to a variety of statistics. Finally, we offer a web tool to track 
changes in GO enrichment results over time. In this paper we provide only a high-level overview of basic 
functionality and readers are invited to explore the web interface for more information. 

Figure 2A shows an example of one type of data offered in the gene view, for the human gene GRIN1 (glutamate 
ionotropic receptor NMDA type subunit 1; https://gotrack.msl.ubc.ca/genes.xhtml?accession=Q05586 and 
supplementary Figure 1A). The plot shows the number of GO terms directly annotated to the gene, with the mean 
of all genes from the same organism plotted for comparison. GRIN1 is consistently more highly annotated than 
the average, and its trajectory is typical in that annotations rise over time, interrupted by drops and recoveries. In 
general, such changes can be due to either annotation curation – addition or removal of terms annotated to the 
genes – or changes in the structure or content of the GO itself such as addition of terms or relations. The 
GOTrack interface also allows users to inspect changes in the use of evidence codes used to support an 
annotation, and directly compare annotations for a gene at up to four time points. 

To help users interpret the changes in number of terms over time, we provide additional plots of statistics derived 
from the annotations. The first of these is of multifunctionality (Ballouz et al., 2016; Gillis and Pavlidis, 2011), 
which is related to the number of terms annotated to a gene, with a weighting to account for term specificity 
(where specificity is defined by how many genes are annotated with the term; see Gillis and Pavlidis 2011 for 
details). This more precisely captures how heavily annotated the gene is relative to other genes. The second 
derived statistic is semantic similarity. As time passes, changes in annotations can cause a gene to change 

 

Figure 2: Examples of information provided by GOTrack for genes and terms. A. Number of terms 
directly annotated to the human gene GRIN1. Large drops and rises are observed superimposed over a 
general gradual increase in annotation since 2002 (black). In this example the large shifts are not 
accompanied by corresponding shifts in the species average (grey). B. Number of human genes directly 
annotated with the term “synaptic vesicle” (GO:0008021) over time, again showing transient drops and 
rises. Data from GOTrack was replotted for presentation. For corresponding screenshots, see 
Supplementary Figure 1. 
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“functional identity” (Gillis and Pavlidis, 2013). To quantify this effect, we plot the Jaccard index between the 
annotations in the current edition to each previous edition. These and other plots and tables are presented on the 
web page for each gene. 

The term-level view provides information on how a GO term has changed over time. This includes how many 
genes were annotated to it either in total (Figure 2B) or broken down by evidence type 
https://gotrack.msl.ubc.ca/terms.xhtml?query=GO%3A0008021 and Supplementary Figure 1B) as well as 
changes in the GO structure that impact the terms relationships. Finally, the Global Trends page 
(https://gotrack.msl.ubc.ca/trends.xhtml) shows species-level summaries of the numbers of annotated genes, 
genes annotated per term, annotations per gene, and the size of GO itself. 

Long-term trends in GOA 

In this section we present some analysis of the data in GOTrack, focusing on annotations (rather than GO itself). 
As noted, genes vary strongly in how highly annotated they are, due to varying degrees of experimental and 
curation attention paid to the gene as well as potentially true biological differences in multifunctionality (Gillis and 
Pavlidis, 2011). We previously reported that this bias tends to persist, that is, genes which are relatively highly 
annotated tend to stay that way (Gillis and Pavlidis, 2013). We confirmed this is still the case five years later. For 
example, if we rank genes by how many direct annotations they have, the ranking at the earliest time point is 
correlated with the ranking at the latest time point (human: Spearman rank correlation 0.52; mouse 0.43; 
Arabidopsis 0.53). Thus we confirm that genes are not just unequal in their annotation, but that this inequality is 
stable over long periods. 

 

Figure 3. Trends in taxon-wide annotation statistics. A: Number of annotated genes. B: 
Mean annotations per term (inferred + direct). C: Mean number of direct annotations per 
gene. D: Mean number of inferred (including direct) annotations per gene. Times of 
prominent discontinuities affecting multiple species in A and C are marked by dashed 
grey lines in all four panels. 
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The jumps seen in individual genes (e.g. Figure 2A) are not all independent events, as the course of the species-
wide averages also has discontinuities (Figure 2A, grey). This is also apparent in a principal components analysis 
of the direct count matrix (Supplementary results, Supplementary Figure 2) We investigated this more completely 
in all nine GOTrack organisms at the level of total gene coverage (Figure 3A), genes annotated per term (Figure 
3B), direct annotations per gene (Figure 3C) and inferred annotations per gene (Figure 3D). This reveals that 
large jumps and drops are sometimes simultaneously observed in multiple, or even all species. One such notable 
event was a rapid increase in the number of annotated genes starting March 2011 for Arabidopsis, mouse and 
zebrafish (Figure 3A). Inspection of update reports from GOA (https://www.ebi.ac.uk/GOA/news) leads us to 
speculate that the jump might be due to the Reference Genome Annotation Project (The Reference Genome 
Group of the Gene Ontology Consortium, 2009). Another dramatic event was a large drop in the mean number of 
direct annotations per gene in March 2012 for all species (Figure 3C). The jump is not visible in the plots for 
indirect annotations (Figure 3D). This would be consistent with a large-scale purging of redundant annotations 
(rejecting higher-level terms that are inferable from more specific terms). Other jumps are species-specific, such 
as the large increase in Arabidopsis genes annotated per term in early 2012, followed by a large drop in late 2015 
(Figure 3B). 

At the gene level, large shifts in the numbers of annotations can be due to removal and replacement of 
annotations for the same term – a phenomenon we call “annotation churn”. For example, for the human gene 
ACTC1 (https://gotrack.msl.ubc.ca/genes.xhtml?accession=P68032), there is a pronounced rise in annotations in 
mid-2007, with a one-month dip in May 2008 (see screenshots in Supplementary Figure 3). GOTrack makes it 
easy to drill down into details. By examining the tabular results (Supplementary Figure 3A), it is found that one of 
the terms that was deleted during the dip was “apoptosis” (GO:0006915). Viewing the annotation history for that 
term on the gene, we see that the term was repeatedly added and removed (in 2007-2008), with the evidence 
code “IEA”. In June 2008 the term was annotated to the gene with a higher-grade curator-reviewed evidence code 
(ISS), where it remained (the term was also renamed to “apoptotic process”) – until it was removed again in 
December 2017 (Supplementary Figure 3B). 

Tracking enrichment results 

In addition to the exploratory aspects described so far, the other major component of the GOTrack system is an 
analysis tool which performs enrichment analysis at multiple time points 
(https://gotrack.msl.ubc.ca/enrichment.xhtml; Supplementary Figure 4). The key idea is to observe whether an 
enrichment result is stable relative to a given point in time. The main input provided by the user is a “hit list” of 
genes. The output includes plots and detailed tables to help interpret the results and judge whether the results 
change over time. This includes direct comparisons of “before and after” sets of enriched terms. The measures 
we use for this comparison are discussed in the next section and in Methods. In addition to these statistics that 
summarize the overall stability of the results, the web interface provides term-level stability measures. This makes 
it easy to see whether a term has been consistently “significant” over past editions. 

The enrichment tool has some limitations: we use a simple over-representation method (as do many tools 
including the popular DAVID (Huang et al., 2009), and the “background” set of genes is not settable by the user: it 
is the set of all genes annotated at the particular time point. But because GOTrack provides downloads of GO and 
GOA for any date, users can confirm findings with software of their choice, provided it allows user-provided GO 
and GOA as inputs (such as ErmineJ, Ballouz et al., 2016), whose annotation input format is directly supported).  

Evaluating the stability of enrichment results 

We hypothesized that changes in GO/GOA over time could cause changes in enrichment results to such an 
extent that they would be effectively unrecognizable and lead to a different interpretation of the results; as 
described in the introduction, previous studies of this question yielded somewhat mixed results on small numbers 
of test hit lists. In our approach to this question we used a corpus of gene lists from the Molecular Signatures 
Database (MSigDB) (Subramanian et al., 2005). These are divided into two groups (after filtering, see Methods): 
1327 curated “canonical pathways” (CP) and 2573 “chemical and genetic perturbations” (CGP). The latter 
correspond to published hit lists of the type usually investigated with enrichment analysis. We took advantage of 
the fact that each CGP hit list is associated with a publication, allowing the opportunity to see if the enrichment 
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results obtained around the time of publication would have changed in the interim. We predicted the CP lists of 
established pathways would be more stable compared to the experimental CGP hit lists. The limitation of the 
MSigDB corpus is most of the publications are not very recent (median 11 years; range 0.4-16, 90% are >9.2 
years old) and we have done little investigation of short-term stability. 

For each hit list or pathway, we compute results of an enrichment analysis as it would have appeared at the 
GO/GOA edition nearest to the source publication date (see Methods for details). We then repeated the 
enrichment analysis using the most current GO/GOA edition (January 2018). This results in a range of timespans 
to have passed following publication. For the CP set, which do not all have an associated date, we computed 
results for the most recent GO/GOA edition and the earliest date available (January 2001). We used this extreme 
date for comparison because we expected the CP set to have greater stability, so comparing to the earliest date 
is the “worst case scenario” for comparing to the experimentally-derived CGP sets. 

Our first key observation is that on average for the CGP hit lists, the number of significant terms goes up 
dramatically (from 21±32 terms to 110±136 terms, mean ± standard deviation; p<10-15, Wilcoxon rank sum test). 
The values are highly correlated (Figure 4A): hit lists that had few significant terms at the time of publication 
(henceforth t0) had relatively few at the most recent timepoint (tnow) (rank correlation 0.54). These results also held 
for the Canonical Pathways (growing from 37±59 to 246±216 terms, correlation 0.57). It is likely that these 
increases are not just due to increased annotation, but the growth of GO to over 47,000 terms of increasing 
granularity. 

The explosion in the number of significant terms is an obvious form of instability, but of course what matters more 
is whether the enriched terms resemble each other at tnow compared to t0. To evaluate this, we did direct 
comparisons of the enriched terms associated with each hit list (at t0 and tnow), using the Jaccard index (see 
Methods and Supplement). The Jaccard index was calibrated using a null distribution created by comparing pairs 
of unrelated hit lists (see Methods). To simplify the analysis, we binned the CGP hit lists by age into three groups 
of similar numbers of hit lists: up to 10 years, 10-12 years, and 12-16 years. 

The results are shown in Figure 4B. Overall, 53% of the CGP hit lists had results which were more similar than 
95% of the null trials. This fraction is much higher for relatively recent lists (71%, N=640) and lower for the older 
lists (55% for the middle tranche, N=960; and 38% for the oldest, N=973; Figure 4B). In comparison 75% of the 

 

Figure 4. Stability analysis of 2573 published hit lists A. Change in number of significant GO terms. 
Each point is one CGP hit list. Points are jittered to reduce overplotting. B. Similarity of enrichment 
results, using the complete Jaccard index. The CGP hit lists are binned into most recent (orange), old 
(green) and oldest (blue). The distribution for the canonical pathways is in black. The blue vertical line 
indicates the 95%ile of the null. 
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Canonical Pathways remained above this threshold, despite most of the comparisons being done to the earliest 
possible time point. The overall rank correlation (unbinned) between stability and age is -0.34 (CGP; -0.39 for 
Canonical Pathways). This demonstrates that it is possible for results to maintain a substantial degree of similarity 
over periods of greater than 15 years, but that in general, drift in the semantic content of enrichment results is 
very substantial after 12-16 years and is substantial but less striking at shorter time spans (<10 years). In the 
Supplement we present examples of hit lists yielding high or low stability (Supplementary Results and 
Supplementary files). 

A notable feature of the data shown in Figure 4B is that very low values of the complete Jaccard index were 
statistically significant. This shows the importance of using a null distribution to calibrate the scores, but clearly 
leaves something to be desired as a Jaccard index of 0.01 seems negligible. However, this effect is due in large 
part to the increase in the number of terms over time (Figure 4A), guaranteeing that the Jaccard index will drop. In 
attempts to explore this further, we tested six variants on the Jaccard index (see Supplement). While some of the 
alternatives have scales that are more intuitively matching expectations of what “stable” would represent on a 
scale of 0-1 (e.g., with 95%ile of the null equal to 0.41), the findings are qualitatively similar to the complete 
Jaccard (data for two additional measures are shown in Supplementary figure 5). Several of these alternative 
measures are implemented on the GOTrack web site. These measures are discussed further in the Supplement 
in the context of examples, along with discussion of the subjective nature of comparing enrichment results in an 
exploratory analysis. 

We looked for factors that might contribute to stability. For the CGP hitlists, the number of genes in a hit list was 
not strongly predictive of Jaccard stability (rank correlation 0.18). It was only modestly correlated with the mean 
number of directly annotated terms (-0.12) or mean multifunctionality of the genes in the hit list (-0.09). There 
were more obvious trends for the canonical pathways lists, which have higher stability than the CGP lists on 
average, despite the (artificially) long time passed between t0 and tnow (Figure 4B). The number of direct 
annotations per CP is higher (36 vs. 25.4 for CGP). However, this does not appear to explain the overall higher 
stability of the CP lists, because the we get the same result for the subset of CP that has <35 mean direct 
annotations (mean of 22.9; correlation is -0.48; overall correlation -0.46). Thus hit lists that have more highly 
annotated genes have a tendency to be less stable. But given these low correlations (-0.12 for the CGP set) and 
without further insight, it appears to be difficult to predict (even in hindsight) which hit lists will yield stable results. 

Discussion 

In this work we present GOTrack, which to our knowledge is the only resource available that allows easy access 
to historical data on GO/GOA, and the only that allows inspection of the effects of changes over time on 
enrichment result stability. Our analyses further highlight the necessity for users of GO/GOA to be cautious in 
their interpretation of any GO annotation, and to temper whatever trust they have in GO enrichment results.  

Our evaluation of the stability of enrichment results differs in several important ways from earlier efforts. First, we 
matched GO and GOA for each time point (rather than fixing either GO or GOA while varying the other), which we 
feel is more realistic. We also analyzed a much larger number of hit lists (>2500 vs. a maximum of ~100 
(Tomczak et al., 2018)) and considered time of publication to ensure comparisons were also realistic. But perhaps 
most importantly, we used a null distribution to calibrate the similarity measures, providing improved objective 
measures of what qualifies as stability. Overall our results are more optimistic about stability than Tomczak et al. 
(2018). Regardless, we concur with previous reports that changes in GO/GOA can make a substantial difference 
in results, but because of the high degree of variability and difficulty in finding fully satisfying quantitative 
measures that are often interpreted subjectively (see Supplement for discussion), our recommendation is that 
users of GO should judge for themselves by using GOTrack. Researchers who are reporting enrichment analyses 
can check which terms have been stable (for example, over the last five years). This provides a principled way to 
help narrow down complex enrichment results, a problem that many users of enrichment analyses struggle with. 

An obvious limitation is GOTrack cannot see into the future. While the stability of any particular GO enrichment 
result might be high or low when looking backwards in time, it is generally impossible to know whether it will 
remain to be stable because knowledge of biology as represented in GO/GOA is a work in progress. Indeed, we 
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found it is difficult to predict which hit list will give stable results. The strongest clue we could identify is how well 
annotated the genes in the hit list are: hit lists with highly annotated genes (mean direct annotation count) tend to 
be less stable. We speculate that this is because highly annotated genes have more changes to their annotations, 
which can drive shifts in enrichment results, but we have yet to explore this further and in any case the 
relationship is not strong enough to be usefully predictive. In addition we did not assess other possible factors 
influencing stability such as evidence codes (Yu et al., 2017), a topic we leave for future research. 

GOTrack has some limitations that may be addressed in the future. The enrichment tool uses a simple method 
and does not implement algorithms to asses multifunctionality biases (Ballouz et al., 2016). Our data on GO/GOA 
is not complete: we did not import all of the fields from GO annotations files, the most useful of which for our 
purposes might be the annotation source. However, the granularity of source annotation is limited. Notably, 
annotations coming from the Reference Genome Project (The Reference Genome Group of the Gene Ontology 
Consortium, 2009) are not identified so we were unable to establish any specific impact this may have had on the 
events of early 2012 (Figure 2C). Finally, the recently added concept of annotation extensions (Huntley et al., 
2014b), which provide context for an annotation (for example, a cell type) are not handled by GOTrack. 

The evolving and incomplete nature of GO/GOA has always been inherent and is well understood by the GO 
community. But it is seemingly less appreciated more broadly. For example, the extremely popular enrichment 
tool DAVID (over 32000 citations as of May 2018, https://david.ncifcrf.gov/) did not update its GO annotations for 
nearly seven years, an eon in GO history (and at this writing DAVID has not been updated for nearly two years 
[https://david.ncifcrf.gov/content.jsp?file=release.html]). We find it interesting that there wasn’t a massive outcry in 
response to the use of such out-of-date GO annotations, suggesting either ignorance or apathy. While it might 
seem obvious that one would always want to use the latest GO annotations, this can be questioned. GO/GOA can 
change dramatically in a see-saw fashion over a period of months, suggesting that not all changes are 
improvements. Furthermore, we report a strong tendency for hit lists to yield ever more significant terms over time 
(Figure 4A), and it is not clear this comes with any increase in useful information. It could be that using GO/GOA 
from an earlier, simpler era might be beneficial for enrichment analyses (using a GO slim 
[http://www.geneontology.org/page/go-slim-and-subset-guide] may approximate this concept). While we may not 
be able to settle that question here, it is clear that whatever version of GO/GOA is used, it cannot be treated as a 
gold standard. Enrichment analysis should be considered exploratory, and never used as a primary finding 
(Sedeño-Cortés and Pavlidis, 2014). Computational researchers should also be cautious in using GO/GOA as an 
optimization target when developing and evaluating algorithms, especially since changes over time are not the 
only concern (Gillis and Pavlidis, 2011, 2013). 

GOTrack should be a valuable resource for biologists to gain a greater understanding of where GO annotations 
come from and how they change over time, as well as their impact on the major use case for GO/GOA, 
enrichment analysis. Our analysis of the data in GOTrack also revealed a number of interesting features, and it is 
likely that deeper analyses can be used to gain more insight into patterns of curation that might influence future 
efforts. 
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Materials and Methods 

Gene Ontology: Historical Gene Ontology files were retrieved from ftp://ftp.geneontology.org/go/ontology-
archive/, specifically: Dates between 2001-01-01 - 2004-03-01 were obtained from separate 
process.ontology.<date>.gz, function.ontology.<date>.gz, and component.ontology.<date>.gz files and 
subsequently combined. Dates between 2004-04-01 and 2006-10-01 were obtained from 
gene_ontology.obo.<date>.gz. Dates after 2006-10-01 were obtained from gene_ontology_edit.obo.<date>.gz. 
These files exclude relationships that cross the three GO aspects and we restrict our analysis to IS_A and 
PART_OF relationships only. 

Gene Ontology annotations: Historical species-specific annotation files were retrieved from 
ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/old/<species>/, specifically: Dates between 2001-11-02 and 2016-05-
09 were obtained from gene_association.goa_<species>.<edition>.gz. Dates after 2016-05-09 were obtained 
from a combination of goa_<species>.gpi.<edition>.gz and goa_<species>.gpa.<edition>.gz files. Mapping of 
historical annotations to a release of the Gene Ontology was done by selecting the ontology with the closest 
release date before that of the annotation file. Annotations were propagated up the GO graph as per the "true 
path rule" (Consortium, 2001). To convert release editions to dates, prior to edition 135 (July 2014) the release 
number of the file is compared to the dates given on the GOA news site (https://www.ebi.ac.uk/GOA/news). For 
edition 135 onwards we use the date provided in the files. We note that there are some gaps in the available data, 
especially at early time points. For example, we lack data for human for September and October 2002. In 
addition, the spacing of dates is not uniform; while the median inter-edition gap is 28 days, there are a few gaps 
that are smaller (minimum 13 days) or correspondingly larger (e.g. 40 days). 

Mapping of gene identifiers over time: Gene product annotations are tracked historically using their associated 
UniProt accession number(s) (Bateman et al., 2017). Each gene product in UniProt has a unique primary 
accession, called the 'Primary (citable) accession number'. In addition to this, a gene product may also have 
secondary accession numbers which could have been created historically from merges and/or splits. During a 
merge, the first accession is retained as the primary while all others become secondary. During a split, a new 
primary accession is created for all products involved while their original accessions are retained as secondary. 
An accession is only deleted when its corresponding entry has been removed from UniProt. The mapping of 
primary to secondary accessions is retrieved from 
ftp://ftp.uniprot.org/pub/databases/uniprot/knowledgebase/docs/sec_ac.txt. This mapping allows us to find the 
current primary accession of a historical annotation. 

Enrichment analysis: GOTrack implements over-representation analysis using the hypergeometric distribution 
(Ballouz et al., 2016). The background is the set of all annotated genes (for the time point being analyzed). For 
analyses presented in the paper, terms with between 20 and 200 genes were included, and only Biological 
Process terms were considered. The false discovery rate was controlled at 5% using the method of Benjamini and 
Hochberg (Benjamini and Hochberg, 1995). The GOTrack enrichment tool allows these parameters to be varied 
by the user. 

Data analysis: Most of the analyses described are based on files available via  
https://gotrack.msl.ubc.ca/downloads.xhtml including the “summary” files by edition, terms and genes. Analyses 
were conducted with custom scripts written in R and python. Code to reproduce the analyses are provided as a 
supplement. Correlations are Spearman Rank correlations except where indicated otherwise.  

Analysis of MSigDB hit lists: The MSigDB C2 collection (Subramanian et al., 2005) was downloaded from 
http://www.broadinstitute.org/gsea/msigdb/genesets.jsp. This corpus is divided into a set of “canonical pathways” 
(CP) and “chemical and genetic perturbations” (CGP). For the CGP hit lists, the publication associated with each 
hit list was extracted, and the date of publication (t0) was used to identify the nearest matching version of 
GO/GOA in GOTrack. Each hit list was analyzed for enrichment as described above, for t0 and a recent 
comparison time point (January 2018, tnow). We analyzed 2573 CGP hit lists that yielded at least five significant 
terms at either (or both) t0 and the comparison time point. CP lists (n=1327 after filtering) were treated the same 
way, except t0 was fixed at the earliest GOA edition (January 2001) for the 1121 CP lists lacking dates (the 
balance were 10 at April 2012 and 196 at January 2009). 
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To compare two sets of enrichment results, we explored several measures (see Supplement) but focus on a 
standard Jaccard index: |𝐸0 ∩ 𝐸1|/|𝐸0 ∪ 𝐸1|, where E0 and E1 are the sets of all significantly enriched GO terms 
for the same input hit list at two time points (“complete Jaccard”). The primary alternative measure we examined 
was a modified Jaccard that examines only the top five terms plus their inferred parent terms (“top-term-parents 
Jaccard”), similar to the measure proposed by (Mistry and Pavlidis, 2008). See the supplement for details and 
discussion. 

To generate a null distribution, we compare enrichment results from pairs of randomly-selected hits lists (i.e., 
coming from different publications). Instead of comparing a hit list’s results for t0 to tnow, the data are permuted so 
t0 of one hit list is compared to tnow for a randomly-selected hit list (with the same constraint that at least one of 
them must have 5 or more significant GO terms). We analyzed 1000 such permutations of the data and pooled 
them to generate the null distribution. This is an appropriate null because if two enrichment results from the same 
experiment (at two different time points) are less similar than what would be expected for two randomly picked 
independent experiments, we can say that the enrichment results are no longer similar according to the measure. 
This null also inherently addresses the tendency of some GO terms to recur more frequently than others in 
independent enrichment analyses (Ballouz et al., 2016).  

Implementation and availability: GOTrack is implemented in Java and JavaScript, and uses the PrimeFaces 
framework, with a MySQL database. The open source Highcharts (highcharts.com) visualization library is used for 
plotting. GOTrack is open source software (https://github.com/PavlidisLab/gotrack) released under the Apache 
2.0 license. The data in GOTrack are automatically updated monthly. Because of the lag in when data are 
available from GOC, data for a given date appears in GOTrack approximately 2 months after the stamped date.  
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Supplementary results and discussion for “Monitoring changes in the 
Gene Ontology and their impact on genomic data analysis” 

Principal components analysis (PCA) of the direct annotation counts 

We performed a PCA on the direct annotation count matrix for the three species with the longest records 
in GOTrack (Arabidopsis, mouse and human). This matrix contains, for each gene at each time point (at 
monthly resolution), the number of directly annotated terms. Prior to PCA the data were scaled to force 
each gene to have the same mean (0) and variance (1), which eliminates the effect of different amounts 
of annotations overall per gene. 

As expected the first PC (50-60% of the variance in the scaled PCA; >90% if data are unscaled) captures 
a general upward trend with some notable discontinuities (discussed in the main paper). Unexpectedly, 
other components in all three organisms had an oscillatory character with periods ranging from ~10 years 
(PC2) to ~2 years (e.g. PC 7 and higher) (Supplementary Figure 2, top). While we have not found a 
specific explanation for these patterns, our interpretation is that there is a subtle periodic character to 
curation efforts, including some short-term relative stability on the span of ~1 year interrupted by relatively 
large changes. This is also readily visualized in the direct annotation count correlation matrices 
(Supplementary Figure 2, bottom). 

Evaluating measures of stability 

One challenge we encountered was finding a satisfactory metric for similarity of enrichment results that 
captures the way enrichment results are often interpreted, which is to say, loosely. Earlier work 
considered tended to focus on the exact terms which were “significant”. However, we found that it was 
common for results to have low similarities at the exact term level (e.g. Jaccard similarity of significant 
terms) while yielding a similar “biology impression”, especially for the top terms. To give a hypothetical 
example, it is unlikely a user would (or should) care whether the top enriched term is “BMP signaling 
pathway” or “cellular response to BMP stimulus” – the subjective impression is the same (we use the term 
“impression” in this manner throughout). For this reason, expecting that all significant terms match exactly 
might give an overly pessimistic view of the stability of the results, especially in light of our results 
showing that the number of enriched terms tends to increase over time. This phenomenon effectively 
guarantees that the Jaccard index will tend to drop, as novel terms are called significant in addition to 
previously significant terms. Relatedly, users often focus on top-ranked terms. Another factor is it is 
possible in theory for a term to be enriched at two time points, but the support for the enrichment comes 
from different genes. These considerations motivated us to implement seven similarity measures and to 
evaluate their properties in our analysis of the MSigDB gene lists. Because there is no gold standard, our 
evaluation is largely descriptive and somewhat subjective. 

Our evaluations of stability are based on comparing two sets of GO terms, each of which is selected from 
an enrichment analysis, either by mere ranking (e.g. top five terms) or at an applied false discovery rate 
threshold (“significant terms”). All of the measures range from 0 to 1, with 1 meaning highest similarity. 
The baseline measure for comparing two sets is the Jaccard index, computed as |𝐸0 ∩ 𝐸1|/|𝐸0 ∪ 𝐸1|, 
where E0 and E1 are the sets of all significantly enriched GO terms for the same input hit list at two time 
points (“complete Jaccard”). This corresponds to the approach taken in (Tomczak et al., 2018). The other 
measures we considered are variations where we change the sets that are being compared. The variants 
are “Top terms Jaccard”, which is the Jaccard index of the top 5 terms of each ranking (or fewer, if there 
were less than 5 significant terms). “top term parents Jaccard” (“top parents” for short) is the same as 
“Top 5 terms” but expanded to include the ancestor terms in the GO hierarchy, similar to the measure 
proposed by (Mistry and Pavlidis, 2008). “Top gene Jaccard” compares the genes from the hit list 
annotated with the top 5 terms, rather than comparing the terms. This allows for the possibility that two 
editions could both have the same term called significant, but due to different annotated genes. The 
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gene-based measure was intended as an adjunct to the others, rather than as a likely primary measure of 
stability. In addition, for each of the three methods we computed an asymmetric Jaccard (Tversky index): 
|𝐸0 ∩ 𝐸1|/(|𝐸0 ∩ 𝐸1| + |𝐸0 − 𝐸1|), where E0 represents the earlier time point. If all the terms in E0 are in 
E1 (|𝐸0 − 𝐸1| = 0) the denominator is maximized. The Tversky index focuses on how well the original set 
E0 was preserved in E1, so new terms that appear in E1 do not detract from the score (Tversky, 1977), 
which is potentially appropriate for the task of considering how well preserved results from a past date are 
now. In total we had seven measures, of which the four Jaccard-based are currently shown on the 
GOTrack web site. The web site also allows users to pick the time point to be used as a reference. 

All of the measures we selected were at least moderately correlated (rank correlations for the CGP hit 
lists between 0.43 and 0.92, Supplementary Figure 6). We generated a null distribution as described in 
Methods for the complete Jaccard” index as well as for the “top-parents Jaccard” and the asymmetric 
“top-parents Tversky” and examined them in more detail. All three measures yield comparable results in 
the CGP hit lists (Figure 4B and Supplementary Figure 5). As reported in the main text for the complete 
Jaccard index, 53% of CGP hit lists exceeded the of 95% of the null trials. The value was 36% for top-
parents Jaccard and 33% for top-parents Tversky. 

We found the “top gene” methods (genes supporting the enriched terms) is useful as an adjunct to the 
other measures as a way to inspect stability at the level of genes after establishing stability of a term, as 
illustrated with the cases described above. But we do not recommend it as a primary measure of stability. 
Finally, the top-terms (without parents) methods were most highly correlated with the complete Jaccard 
(all significant terms), but also noisy in terms of variance over short time spans (low autocorrelation).  

Examples of stable and unstable enrichment results 

In this section we describe some examples that illustrate our findings and highlight some of the limitations 
of the semantic similarity measures. 

To give an example of a stable hit list, the CGP list “APPEL_IMATINIB_RESPONSE” (Appel et al., 2005), 
which dates to 2005 (33 genes), had results with a complete Jaccard similarity between t0 and tnow of 
0.046, which appears negligible and gives a strong impression that the results have completely changed. 
However, this is well above the 95%ile of the null (0.011). For the top-parents Jaccard, the similarity is 
much higher (0.33, also well above the 95%ile of the null). Thus, objectively this hit list yields very 
significantly similar results in 2018 compared to those it would have yielded in 2005, but it is concerning 
that the values are low in an absolute sense. In situations like this where there is “statistically significant” 
stability relative to the null, the low absolute scores raise the question of whether the results are 
meaningfully stable for practical application. This brings us back to the point about whether results give 
the same overall impression, regardless of what the numeric scores reveal. By definition this is a 
subjective discussion and we have only done informal investigation. 

Continuing with the example of APPEL_IMATINIB_RESPONSE, we find that 2 of the 9 terms which 
would be considered significant in 2005 were still ranked in the top 9 terms in 2018 (GO:0006664, 
GO:0006665), and altogether 5/9 are still significant. Of the other four terms, one was ranked 140 and no 
longer significant. Three (GO:0006869, GO:0044275, GO:0006643) dropped out of the analysis before 
the present, of which two would have been considered significant at the date of their last inclusion 
(dropouts occur if the gene set size goes outside the limit of 20-200 we set for the analysis). The reason 
the complete Jaccard similarity is so low (0.046) is there are now 104 significant terms rather than just 9. 
The reader should judge for themselves if the results are similar (Supplementary File 1), but this example 
is a good illustration of what we mean by “impression” – the similarity of the top of the ranking is very 
high, and many of the added terms are simply more specific variations on the themes captured by the top 
terms. Instead of just “membrane lipid metabolism” and “lipid transport”, the new list includes “sphingolipid 
catabolic process”, “phospholipid transport”, “fatty acid transport”, “positive regulation of lipid localization”, 
“lipid homeostasis” and so on. There is still a balance of completely novel-sounding terms such as “viral 
life cycle”, “lung morphogenesis”, “locomotory behavior”, “animal organ regeneration”, “negative 
regulation of MAP kinase activity” and “acute-phase response”, but these have no obvious coherence (in 
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terms of overall impressions, and bearing in mind all these terms are picked up by the same 33-gene hit 
list from a study of monocytes). In agreement with these observations, the “top genes” Jaccard measure 
for this hit list is 0.73: in large part the same specific genes within the hit list are driving the enrichment 
observed. We made similar observations of many hit lists that have low numeric stability but give results 
that give a subjective impression of reasonably high stability. 

The other side of this situation is whether objectively low scores (compared to the null) match subjective 
impressions of “instability”, as well. The answer is yes, but arguably less convincingly. For example, the 
hit list BENPORATH_ES_2  (Ben-Porath et al., 2008, 40 genes) has a complete Jaccard similarity 
between t0 and tnow of 0.0. At t0, the enriched terms included “DNA replication”, “mitosis”, “methylation”, 
and “epigenetic regulation of gene expression”. While none of these terms are enriched at tnow, highly 
related terms such as “DNA replication initiation”, “mitotic nuclear division” and “gene silencing” are 
enriched (Supplementary File 2). In our hands, the top-parents Jaccard measure was more in line with 
subjective impressions of a fair degree of similarity, with a significantly high value of 0.27 in this case. 
Guided by these admittedly anecdotal findings, we were able to find more convincing cases of instability. 
For example, the hit list “ONDER_CDH1_SIGNALING_VIA_CTNNB1” (Onder et al., 2008, 83 genes) has 
t0 vs tnow results with complete Jaccard similarity of 0.0, top-parents Jaccard of 0.024, and top-gene 
Jaccard of 0.056 – at the low extremes of all three. While the results are subjectively more dissimilar than 
the above examples (see Supplementary File 3), there are still prominent thematic similarities: the top 
terms at t0 include “angiogenesis”, “chemotaxis”, “locomotory behavior” and “skeletal development”, with 
replacements for some of these apparent at tnow including “blood vessel remodeling” and “cell 
chemotaxis”.  

To summarize, as described in the main results section, by our objective measures many hit lists yield 
unstable enrichment results. But we find that on absolute scales, none of the measures adequately 
capture the subjective biological impression. Using a null was essential to calibrate the scores but was 
still not sufficient to address this disconnect. The “top term parents” measures had absolute scales that 
were more in line with the subjective impression hits lists give. But we feel there is room for improvement 
in developing semantic similarity measures and/or nulls that better capture the exploratory way in which 
GO enrichment is used, to the extent that the terms that are found are less important than the overall 
subjective impression. Because no measure seemed ideal for all possible applications, and some users 
may be more sensitive to differences in “impression” than us, we offer four measures on the GOTrack 
web site that can be plotted, and additional ways of plotting and exploring the data (see web site for 
details). 

Supplementary Figure legends 

Supplementary Figure 1: Screen shots of the gene and term tracking views of GOTrack. A. The main 
view of the Gene Tracker. At left are plots of annotation metrics over time. Clicking on a chart brings the 
focus to the selected time point. The table at right lists annotated GO terms. In this example, we are 
comparing three different time points, which are indicated as vertical lines on the plots, and colored tags 
in the table (1). The table indicates which annotations are direct and which are inferred (2). Expanding a 
row of the table (3) reveals details including evidence codes and annotation sources. B. The Term 
Tracker. The plots at the top of the page show number of genes annotated to the term (left) and number 
of annotations stratified by evidence type (right). The History timeline (centre) shows when the term was 
created in GO, and when changes were made. Clicking on a change point (Arrow 1) brings up the GO 
graph for the term with changes indicated in red or green. 

Supplementary Figure 2: Correlation structure of direct annotation counts. Data are shown for three 
taxa. The top panel shows the profiles of the first twelve principal components of the direct annotation 
count matrix. PC1 reflects the general increase in annotations, while other components show more subtle 
periodic and transient changes. The heatmaps at the bottom are of the matrix of correlations of the direct 
annotation count vectors for each time point. 
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Supplementary Figure 3: Exploring annotation volatility with GOTrack. A. The Gene tracker view for 
ACTC1, showing the comparison of multiple time points (vertical lines indicated by arrow 1). The term 
“apoptosis” was present in only two of the time points (Arrow 2), with the term missing from the middle 
time point. Clicking on the “View Annotation History” button (Arrow 3) brings up the history pane shown in 
B. B. The annotation history of “apoptosis” to ACTC1. The term was annotated to the gene but removed 
several times before the most recent removal in late 2017 (Arrow 1). 

Supplementary Figure 4: Screen shot of the GOTrack Enrichment Tracker. Users enter their genes and 
set parameters in the panel at left, including which date to use as a reference (1). Results appear at the 
right, with charts showing the number of significant terms (2) and similarity scores (upper right). Term-
level information is available in the table (arrow 3). 

Supplementary Figure 5: Stability analysis of the MSigDB hit lists using two additional measures of 
stability. Compare to Figure 4. A: The top-term parents Jaccard measure. B. The top-term parents 
Tversky measure. Vertical blue line indicates 95%ile of the null.  

Supplementary Figure 6: Summary of correlations among measures investigated, for the CGP hit lists. 

Supplementary File descriptions 

Supplementary Files 1-3 (APPEL_IMATINIB_RESPONSE.enrichment.xlsx, 
BENPORATH_ES_2.enrichment.xlsx, ONDER_CDH1_SIGNALING_VIA_CTNNB1.enrichment.xlsx): 
Examples of CGP enrichment results discussed in the supplement. These files were downloaded from the 
GOTrack enrichment tracking tool, with highlighting added. Results for t0 and tnow are on separate tabs. 
Descriptions of the fields: 

• ID, Aspect, Name: basic descriptors of the GO term.
• Term size: Number of genes annotated to the term in the analyzed edition.
• Hits annotated: Number of genes on the hit list annotated to the term in the analyzed edition.
• P-value: Enrichment p-value (uncorrected).
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