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Through the lens of evolution, climate change is an agent of directional selection that forces
populations to change and adapt, or face extinction. Current assessments of the risks associated
with climate changel'z, however, do not typically take into account that natural selection can
dramatically impact the genetic makeup of populations3. We made use of extensive genome
information in Arabidopsis thaliana and measured how rainfall-manipulation affected the fitness
of 517 natural lines grown in Spain and Germany. This allowed us to directly infer selection at the
genetic level*. Natural selection was particularly strong in the hot-dry Spanish location, killing 63%
of lines and significantly changing the frequency of ~5% of all genome-wide variants. A significant
proportion of this selection over variants could be predicted from climate (mis)match between
experimental sites and the geographic areas of where variants are found (R2=29-52%).
Field-validated predictions across the species range indicated that Mediterranean and Western
Siberia populations — at the edges of the species' environmental limits — currently experience the
strongest climate-driven selection, and Central Europeans the weakest. With rapidly increasing
droughts and rising temperatures in Europe5, we forecast a wave of directional selection moving

North, putting many native A. thaliana populations at evolutionary risk.

To predict the future impact of climate change on biodiversity, the typical starting point has been
climatic tolerances inferred from the current species distributions. These tolerances are usually
treated as static, and risks are assessed based on whether species’ environmental niches will

kL2 or shift faster than the species can migrate1'6. However, these approaches do not account

shrin
for within-species genetic variation, and for natural selection causing species to genetically change
and adapt over time3. To predict the “evolutionary impact” of climate change on a species, i.e. how
much genetic change is required for adaptation to climate change, we thus need to quantify and
model environment-driven natural selection at the genetic level. Thanks to species-wide genome

7-9 10-14

scans’ 7, as well as genome associations with climate of origin , we increasingly understand the

genomic basis of past selection and climate adaptation, which has been used to estimate future

adaptation debt or “genomic vulnerability” 10,11

Natural selection, however, is only indirectly inferred in the types of analyses discussed
above. The best way to directly quantify selection in a specific environment is provided by field
experiments in which multiple genotypes of a species are grown together in a common environment
15,16 with such experiments, relative fitness can be directly associated with genetic variation across

popula‘tions4'17_19

. Ideally, one would carry out such field experiments at many different sites
throughout the species range, but this is rarely practicalzo. Nevertheless, an emergent finding is that

individuals are normally locally adapted and that local genotypes are often positively selected over
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foreigners in their “home” environment, while negatively selected in their “away”
environments2122, An intuitive conclusion is that it should be possible to derive a metric of natural
selection from the extent of change in local climate at an individual’s home. Here we combine
high-throughput associations of genome and current climate variation with experimentally quantified
in situ natural selection in the plant Arabidopsis thaliana. We exploit these associations to forecast
natural selection driven by future climate change, and how it impacts the genomic variation of a
species across its geographic range — what we interpret as a new metric of evolutionary risk of

populations.

To study climate change-driven natural selection in the annual plant A. thaliana, we
performed two common garden experiments for one generation in two climatically distinct field

stations, at the warm edge of the species distribution in Madrid (Spain, 40.408052N -3.835352E), and

at the distribution center in Tiibingen (Germany, 48.5458092N 9.0424492E) (for details see ref. 20). At

each site, we simulated high precipitation typical of a wet year in Germany, and low precipitation
typical of a dry year in Spain (see Fig. 2 of ref. 20). In fall of 2015 we sowed over 300,000 seeds of 517
natural lines capturing species-wide genomic diversity23. For each line, we prepared seven pots in
which only a single plant was retained after germination, and five pots with exactly 30 seeds that
were allowed to germinate and grow without intervention. At the end of the experiment in June
2016, we had collected data from 23,154 pots, consisting of survival to the reproductive stage, the
number of seeds per surviving plant (fecundity), and lifetime fitness (the product of survival and
individual fecundity). Heritability of fitness traits was generally higher in the most stressful
environment, which was defined by reduced survival (0.00<H2<0.551; Table S3), i.e., in Spain under
low precipitation and at high density. In this environment, only 193 of the 517 accessions survived,

whereas in Germany at least a few plants of each accession reproduced.

In each experimental environment, we quantified genome-wide selection at the genetic level
based on the difference in relative fitness of lines with the minor and the major allele at each
genomic position (1,353,386 biallelic SNPs across 515 lines with high-quality genome information)
(Fig. 1). Our approach identifies both causal variants, as well as many more variants that are in

significant linkage disequilibrium (LD) with causal variants242°

— due to so-called background
selection or genetic hitchhiking. We use the term allelic selection differentials (s, called total
selection by Thurman and Barrett 4), to denote the realized selection affecting each SNP resulting
from the combination of selection acting directly on the focal variant, and the indirect effects due to
selection on causal SNPs that are in LD with the focal variant. Calculating allelic selection differentials

using Linear Models (LM-GEMMA, ref. 26, see Supplemental Methods V.3), we found a total of
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82 421,962 SNPs with allelic selection differentials below a 0.05 significance threshold (Benjamini &
83 Hochberg FDR correction) in at least one of the eight environments (see Table S2). Using more
84 stringent Bonferroni correction (<7x10’7), we still detected 6,538 SNPs distributed throughout the

85 genome, suggesting that the polygenic model of natural selection?’

prevails in this
86 climate-manipulation experiment. These high numbers are not surprising, given that we expect to
87 capture many SNPs that are only indirectly selected. Thinking about our experiment as studying a
88 population of plants with multiple genotypes, the change of allele frequencies in response to one
89 generation of selection would be up to 10% in Spain and low precipitation, while it would not exceed

90 2% in the benign high-precipitation environment in Germany (see Supplemental Methods V, Fig. S9).

91 While variants inferred to be under positive or negative selection after Bonferroni-correction were
92 overall more likely to be located in intergenic regions than in genes (Fisher’s Exact test Odds ratio
93 [Odds]=1.11, P=7x10'30), such variants were enriched for nonsynonymous mutations (Odds=1.05,

94 P:2x10'4). The large number of variants affected by selection implies a strong turnover of variation

28,29

95 across the entire genome as a response to the environment , and a potentially significant

96 demographic decimation — what Haldane called “the demographic cost of natural selection”30.

97 Changes in allele frequency are not only determined by the adaptive value of a variant but

98 also the alleles it is linked to. We therefore improved the detection of direct targets of selection by

25,31

99 correcting for LD-driven effects using Bayesian Sparse Linear Mixed Model associations with

100 relative fitness (BSLMM-GEMMA, ref. 31), see Supplemental Methods V). This analysis indicated that

101 the fraction of the genome likely to be a target of selection was only 8x10—5x10"®. This fraction

102 was much smaller than what we had identified with significant allelic selection differentials

103 (2x10'5—0.001), confirming that selection must be mostly indirect*32:33,
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104 Fig. 1 A genome map of allelic selection differentials. (A) Manhattan plots of SNPs significantly associated with

105 relative lifetime fitness in eight different environments. SNPs significant after FDR (black and grey) or

106 Bonferroni correction (red) are shown. For genome-wide scans of survival and fecundity fitness see Figures S4
107 and S5. (B) Distribution of absolute allelic selection differentials |5| per experiment. A denotes maximum
108 likelihood-inferred parameter of an exponential distribution, and m denotes the mean allelic selection

109 differential. (C, D) Environmental niche models for the most significant SNPs in each 0.5 Mb window of the
110 genome. (C) 424 windows had significant SNPs in high-precipitation experiments. (D) 279 windows had

11 significant SNPs in low-precipitation experiments.

112 We studied whether the direction and intensity of selection was dependent on the

113 experimental environment. Alleles that were positively selected under low precipitation tended to be
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114 negatively selected under high precipitation, and vice versa, so called antagonistic pleiotropy18 (Fig.
115 2, Fisher’s exact test Odds Ratios >1.31, P<4x10'24; Table S5) — an observation particularly clear
116 when comparing the two most "natural" conditions, low precipitation in Spain and high precipitation
117 in Germany (Odds Ratio=6.72). In contrast, when we compared the same precipitation condition
118 between the two locations, selection was either in the same direction (0.23<Pearson’s r<0.51), or
119 there was selection in one environment and neutrality in the other, displaying conditional neutrality
120 (All Odds ratio<1, P<10'16). Together, this indicates opposite selection across precipitation but not
121 temperature gradients. This is an important observation, because it tells us that nature cannot select

122 for generalist genotypes that are successful in wide range of precipitation environments.

123 To study whether short-term selection in our experiments aligns with genomic footprints of
124 past selection (see Supplemental Methods Ill and VlI), we searched for selective sweeps (ref. 34), for
125 outlier allele frequency differentiation (£’s7) between eleven previously defined A. thaliana genetic

10'23, and for climate-genome associations (GWA with 1960-1990 climate averages,

126 groups
127 worldclim.org  v.1, ref. 35). Comparing frequency-matched background SNPs with
128 Bonferroni-corrected significant SNPs for allelic selection differentials, we found that the latter had
129 higher average F'sT values (0.39 compared to 0.14, Wilcoxon test, P<10'16), but were not any more

130 likely to have experienced a selective sweep (P=0.2) (Fig. 2, Fig. S7-8). Absolute values of allelic

131 selection differentials were significantly higher for strongly climate-correlated SNPs (e.g. annual
132 precipitation [biol] and temperature [bio12]: Spearman’s r=0.12, p<16). The 1% top hits for climate
133 associations also had higher Fst values than frequency-matched background SNPs (e.g. biol and
134 biol2: P<1O'5), but no differences in sweep likelihood (P=0.9). Implementing genome-wide

135 environmental niche models® (see Supplemental Methods VII), we found that alleles selected in

136 Germany and high precipitation were more likely to come from higher latitudes (Fig. 1C), while the
137 opposite was true for alleles selected in Spain and low precipitation (Fig. 1D). In agreement, similarity
138 in precipitation regime was a good predictor for alleles selected in Spain (bio 12-19; Spearman’s
139 r=-0.18, P<1016; (Fig. 2D) (for other experiments, see Fig. S10). All in all, the signature that allelic
140 selection differentials coincide with allele frequency shifts across population lineages are most easily

141 reconciled with a polygenic model of natural selectionZ8.
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142 Fig. 2 Selection trade-offs and the signal of environmental local adaptation. (A) Empirical selection
143 coefficients across two contrasting environments; Spain with low precipitation and high population density, and
144 Germany with high precipitation and low population density. Grey dots indicate SNPs with significant
145 conditional neutrality, black dots indicate SNPs with antagonistic pleiotropy. SNPs that behave in the same
146 direction or that were non-significant in both environments are not plotted. (B) Correlation between field
147 selection differentials and climate distances between test site and the centroids of SNPs” geographic ranges (n=
148 54,146 FDR significant SNPs). (C) Relationship between field absolute allelic selection differentials and F'sT
149 values across 11 lineages, and (D) the likelihood ratio of selective sweeps. In all panels except (B), all 1,353,386

150 SNPs are plotted.

151 We finally aimed to build an environmental model that can predict allelic selection
152 differentials based on the climate and diversity patterns. We used as predictors the per-allele
153 associations with climate of origin from climatic GWA as well as the signatures of past selection at
154 each SNP, I'st, m, and sweep likelihood, and their genome annotations — all predictors were

155 derived from public databases (worldclim.org, 1001genomes.org, arabidopsis.org). We used a

156 regression with decision trees using Random Forests to build Genome-wide Environment Selection
157 (“GWES”) models. Conceptually, GWES models are similar to concepts related to Environmental
158 Niche Models (ENMs), but instead of training them with presence/absence data of a genetic

10,11

159 variant , we trained them with our measured allelic selection differentials. This provided a means

160 to predict whether alleles should increase/decrease in frequency in a certain climate, instead of

6
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161 merely an indication of whether alleles are likely to be present, which is the indirect ENMSs’ version.
162 By training models jointly with experimental data from Spain and Germany and using
163 cross-validation, we confirmed that inferred and measured selection differentials were correctly
164 predicted, with a high correlation accuracy (0.56 < Pearson’s r< 0.7) and explaining a large
165 proportion of variance (R2= 29-52%) (Fig. 3A, variable importance Table S5) (further details in

166 Supplemental Methods VIII). To further validate the predictive accuracy of our models, we made use

167 of published fitness data for different sets of natural lines that had been grown at different locations
168 in Spain, Germany and England3637. Using these data and GWES predictions, we confirmed
169 moderate predictability (7%<R2<36%)38. Predictability of GWES models increased when including
170 data from all six experiments (17%<R2<84%) (Fig. 3A, Fig. S12 Table S10) (for further details on

171 predictability analyses and null expectations, see Fig. $12-13, Supplemental Methods 1X.4-5).



https://doi.org/10.1101/321133
http://creativecommons.org/licenses/by/4.0/

172
173
174
175
176

bioRxiv preprint doi: https://doi.org/10.1101/321133; this version posted June 8, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Exposito-Alonso et al. A map of climate change-driven natural selection
A N Predictive correlation (r)  Predictive variance (R?) B
. Q x 0" —_ == —1 (63
A O :  0.09 Fonp="0.85 P=107%
' a — : £
—— ~—
[ | —. — 2 .
! i @ 0.06 ,6
—— | I ——
—— | | £ 3 e
| —— —.— c © DI, o~ e ﬁ.-
! - ! e o - g L
| - ! . % 0.03 Beds R B B0 g
| g ' S g i o |
| - | — 7} D FHR" . o
.. | s — a - mm -t ..
EXpDSfl'D-A'DnSO elal 2018 Manzano-Piedras et al. 2014 Fournier-Level et al. 2011 2P
M Germany high precipitation Andalucia North Germany 30 40 50 60
MSpain low precipitation East Spain Latitude (°N)
UnitedKingdom
C Present

- —n
actual evapotranspiration

0.01 m— s 0.11
selection intensity

D Change present-2050 & - — +
.. o o ot precipitation change
Yoy e o é - T—
C 7 2 change in selection intensity

(o]

‘—“

E Nonsynonymous — F =073 P=<10" G 7
= . Synonymous — ‘ o
2 . 0.100 s
g 8 01
E 0.075 *#
=
£ 0.050 S 1K+
§ 57
° c
@ <]
© 0.025 B
3 S 8
@ r T T T
0.20 0.25 0.30 0.35 0.40 0.10 0.15 020 025 0.30 @ 30 40 50 60
Fraction of mutations Interannual variation in precipitation (CV) Latitude (°N)

Fig. 3 A geographic map of climate-driven selection and its predictability. (A) Genome-wide Environment
Selection (GWES) models trained with a combination of environments, to infer allelic selection differentials
throughout the species range. Mean predicted allelic selection differentials (“selection intensity”; n= 10,752
SNPs, one random SNP per 10 kb windows) in known locations of A. thaliana populations in relationship to (B)

latitude, and (C) evapotranspiration in summer (C) (ref. 35). (D) Predicted changes in selection intensity by 2050
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177 (2050 MP rcp 8.5, ref. 35). (E) Relationship between selection intensity and synonymous and nonsynonymous
178 polymorphisms. (F) Relationship between selection intensity and interannual variation in precipitation from

179 1958-2017 (ref. 39). (G) Number of local alleles whose selection predicted to positively or negative change (>5%

180 in relative fitness) in 2050 across the latitudinal range.
181 Using the trained GWES models, we then predicted genetic natural selection at hundreds of
182 locations, simulating field experiments in which the same set of diverse natural lines is challenged by

183 different local climates (Fig. 3). The intensity of selection, i.e. genome-wide average allelic selection
184 differentials, was strongest towards the environmental limits of the species, i.e. in hot (annual
185 temperature, r=0.62, P<10'16), dry (annual precipitation, r=-0.457, P:10'27), and high
186 evapotranspiration locations (actual evapotranspiration in August, r=0.86, P<10'16) (Fig. 3B-C). High
187 selection intensity coincided with locations where natural lines have a lower-than-average ratio of
188 nonsynonymous to synonymous polymorphisms (Fig. 3E, r=-0.276, 3x10'10). This depletion of
189 nonsynonymous substitutions, which are expected to be on average more deleterious than
190 synonymous substitutions, provides independent evidence for natural selection having acted more
191 efficiently in these local populations. High selection intensity also correlated with high local genetic
192 diversity 7 (r=-0.01, P=0.85) and elevated Tajima’s D (r=0.161, P:3x10'4). This could be explained by

10,40 and/or by the direction of selection having fluctuated over

193 the differential age of populations
194 time, with alternative polymorphisms having been selected in each period41. Inspection of
195 precipitation data from 1958 to 2017 (ref. 39) revealed that locations where we had inferred strong
196 selection and high diversity often suffered high year-to-year climatic variation (r=-0.73, P<10'16; Fig.
197 3F). This finding not only highlights how important temporal resolution in climate databases is for
198 predictions, but also that climate stochasticity is a source of evolutionary constraints over species.

199 Increased drift due to small population sizes is often thought to be the major force in shaping genetic

200 diversity at range edges42. The patterns in A. thaliana are more consistent with proposals that a

201 species’ environmental niche?® and its populations’ genetic diversity44'45 are primarily shaped by
202 increasing natural selection towards the range edges.
203 A sudden change in climate or increased climate variability46'47 will obviously increase the

204 magnitude of natural selection. Using climate projections of 2050 as a proxy for potentially abrupt
205 changes in local climate (Intergovernmental Panel on Climate Change, www.ipcc.ch, ref. 5,35), we
206 predict that selection intensity will likely increase in much of Southern-Central Europe, with an
207 expected decrease in annual precipitation and increase in annual temperatures (Fig. 3D, Fig. S3; Fig.
208 S11). To enable comparability across locations, our metric of selection intensity is standardized based
209 on the same set of diverse accessions (Fig. 3C-D). Local populations typically consist of more closely

210 related lines that harbor only a subset of genetic variants, which may put these populations either in

9
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211 a better or worse position to respond to future climate than our global set of more diverse lines. We
212 therefore looked for SNPs predicted to change most strongly in selection by 2050 (fitness advantage
213 or disadvantage changed over 5%), and evaluated whether the allele positively changing in selection

214 is locally present (Fig. 3G, Fig. S14). We found that most local alleles will become more negatively

215 selected; we therefore predict that the degree of local adaptation will decrease for many native

216 populations (Fig. 3G), leading to an adaptation deficit.

217 Conclusion

15t century will threaten the survival of many species.

218 The expected changes in climate during the 2
219 Because the distribution of genetic diversity is so well characterized in A. thaliana, we have used it to
220 address the challenge of predicting the effects of climate-driven natural selection genomic variation
221 across a species’ range. Integration of genome-climate associations with direct fitness observations
222 allowed us to build models that directly predict selection at the genetic level rather than mere
223 probability of presence/absence of variants. This information enabled us to infer range-wide
224 evolutionary vulnerability in the face of rapid climate change. The first two steps in our project,
225 assembling a range-wide collection and genome sequencing of a number of diverse lines, are in
226 reach for many species of plants. A greater challenge is the generation of fitness data, but this can be
227 partially solved by identifying particularly informative field sites — as we have done in our study —
228 and by exploiting the immense progress in field phenotyping at different scales?849. Combining such

229 observations with our new genome-wide environment modeling approach will help us to fully

230 incorporate evolution into predicting the impacts of climate change on biodiversity.

231 ADDITIONAL INFORMATION
232 Accession codes. Phenotypic datasets are available as supplemental material of ref. 20 at [update
233 link to journal] with doi: [update]. Genomes are available at

234 http://1001genomes.org/data/GMI-MPI/releases/v3.1/. The seed collection can be obtained from

235 the Arabidopsis Biological Resource Center (ABRC) under accession CS78942. The GWA scans for

236 fitness and climate variables will be deposited at aragwas.1001genomes.org.

237 Author contribution MEA, HAB and DW conceived the project outline. MEA designed, implemented
238 and coordinated the project. MEA carried out the experiment in Tibingen and in Madrid with
239 technical support. MEA carried out statistical analyses. HAB, OB, RN, and DW supervised the project
240 and discussed analyses interpretation. MEA prepared the first draft and the final manuscript was

241 written by MEA, HAB, OB, RN, and DW.
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419 SUPPLEMENTAL METHODS

420 |, Fitness data from: “A rainfall-manipulation experiment with 517 Arabidopsis

421 thaliana accessions”

422 The field experiment is described in detail in Exposito-Alonso et al. “A rainfall-manipulation
423 experiment with 517 Arabidopsis thaliana accessions” (ref. 20). Data and processing code are

424 available at https://github.com/MoisesExpositoAlonso/dryAR update doi: xxx. Information of the 517

425 accessions can be found in Table S1. The experiment resulted in observations from 23,154 pots.
426 Three measurements of fitness were produced: survival from seed to reproductive adult (proportion
427 0-1) and the average fecundity per reproductive adult (inflorescence skeleton lengths ranged from
428 18,400 to 1,622,000 pixels, which approximately corresponds to 1 to 6,127 seeds per plant).
429 Fecundity was only measured for plants with at least one fruit. We finally calculated an integrated
430 lifetime fitness value by multiplying the survival proportion to adulthood with the total offspring
431 produced. Data from only 515 accessions were used for subsequent analyses, because 2 accessions

432 had insufficient genome information.

433 1l. 1001 Genomes Project data

434 We used VCFtools v.0.1.12b (ref. 50) to subset and filter the 1001 Genomes VCFv4.1 (available at:
435 http://1001genomes.org/data/GMI-MPI/releases/v3.1/). We used vcftools with the flags: --maf 0.01

436 --max-alleles 2 --min-alleles 2 --max-missing 0.95. The resulting high-quality dataset was a genome
437 matrix of 515 individuals by 1,353,386 variants for which we did not impute the small number of

438 missing data points.

439 We annotated the 1001 Genomes VCF using the package SnpEff 4.3p (ref. 51). We then
440 manually curated a set of eight categories of variants: intergenic, intron, UTR3, UTR5, exon,

441 synonymous, nonsynonymous, exon noncoding.

442 Il Fg and selective sweep signatures from polymorphism data

10 3nd computed Fs7 using

443 We used the genetic groups previously defined for the same accessions
444 PLINK version 1.9 (ref. 52). We also used PLINK to calculate 7 and Tajima’s D using PLINK in windows

445 of 100 SNPs across the genome.
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446 We used SweepFinder2 (ref. 34) to scan the genome for deviations of the Site Frequency
447 Spectrum (SFS) that might be caused by selective sweeps. We used all 11,769,920 biallelic SNPs from
448 the 1001 Genomes Project (without the filters of 1% MAF and maximum missing data of 5%, which

449 were applied to generate the variants used in the GWA [see section V]).

450
lll.1 Geographic proxies of diversity metrics

451 In order to estimate 7w and a proxy of Tajima’s D at a regional scale, we used the 4 closest
452 neighbouring accessions in our set (same patterns were observed with three neighbours within a
453 geographic area of 5° latitude-longitude radius), and computed the total number of polymorphisms P

454 in the subset and the sum of all pairwise Hamming differences, H. Then we calculated f, 7 and D as:

S H Npa
6 x G Nall

0 — P Nyun
1.8666 x G N,y

D=n—-90
455 Where G is the genome size, Nyuu are all SNPs with full information that were used to count
456 polymorphisms and distances, and Nai are all SNPs of the genome matrix. In the denominators, 6 is
457 the number of pairwise comparisons of four genomes, and 1.8666 is the harmonic number of 4.
458 Although D is normally divided by the standard error, we only wanted to rank our natural lines so we

459 used the difference between 7 and 6 as a proxy of D.

460 V. Heritability of fitness

461 To estimate how much variance in fitness is related to the genotypes of the lines, we used
462 generalized linear mixed models using the R package MCMCglmm (ref. 53). We used fithess estimates
463 per replicate and, appart from including the natural line ID, we controlled for block (growing tray)
464 and position within the block (longitudinal, latitudinal, and the interaction). As this is a Bayesian
465 approach, we used flat priors, we used 10,000 MCMC steps, a burnin of 10%, and confirmed that this
466 was sufficient for convergence of the chain. For survival proportion we used a Binomial link, for
467 number of seeds we used a Poisson link, and for the combined lifetime relative fitness we used a
468 Gaussian link. The mode and 95% Highest Posterior Density of the posterior distribution of each

469 random effect were extracted (Table S3).
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470 V. Genome-Wide Association, selection differentials, and direct selection estimates

471 We used GEMMA (ref. 31) to run regular linear models (LM) of the form:

472 y=p+ Bix; +e€;

473 which was repeated for every SNP in the genome. This provided us with allele effects on
474 relative fitness per SNP. This is the selection differential s from populations genetics and evolutionary
475 biology 4, which estimates the difference in fitness between the genotypes carrying the alternative
476 (1) or reference allele (0) in a haploid model: wl — w0 = s. The correspondence with allele

477 frequency change AP is dependent on the variance in allele frequency in addition to s:

478 Ap =p(1—p)s, Low frequency variants are “less often seen” by selection.

479 We also run in GEMMA a Bayesian Sparse Linear Mixed model (BSLMM), to more accurately
480 pinpoint casual positions. This model accommodates both poly- and oligogenic architectures and by
481 jointly fitting all SNPs (n=1,353,386), it statistically corrects for LD arising from population structure
482 and/or low recombination. It models two effect hyperparameters, a basal effect, o, that captures the
483 fact that many SNPs contribute to the phenotype, and an extra effect, 3, that captures the stronger
484 effect of only a subset of SNPs. An internal parameter measuring the probability of having another

485 extra effect, 7, can be used to prioritize SNPs. In BSLMM the total effect of an allele is = & + V8.

486 y=1lpyp+ X8+ Xa+e,

487 Bi ~ N0, 0277) + (1 — 7)o :

488 QG ~ N(Oﬂfg/(]”’));

489 €~ MVN,(0,77',) .

490 The BSLMM model is also useful also used to calculate the proportion of variance explained

491 (‘chip heritability’). To do this, we used the last 1,000 samples of the MCMC chain and calculated the
492 95% Highest Posterior Density Interval (95% HPD), for which we report the median and the 2.5% and
493 97.5% percentiles.

494 To illustrate the differences between a univariate (LM) and multivariate regressions (similar
495 to BSLMM), we show an example of two SNP predictors, 1 and 2. For mathematical convenience
496 we assume that the response variable fitness, ¥, as well as the predictors, are mean centered and
497 variance scaled. From the univariate approach, where the effect of a SNP is estimated marginally or
498  independently, 5would be:

cov(xy,y)
var(xy)

/811 =
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This would be estimated separately for SNP one and two. In a multivariate regression
framework, the regression coefficient, called conditional or partial coefficient, B* is corrected by the
correlation between the two predictors, 7=1z2, which in the case of genotypes is called linkage
disequilibrium, as in the form of:

ﬁl‘] - 7"1112 X ﬁmz

V=520 -82)

Ba =
1

Thus we find an analogy between 5 and 5" and s and s* from population genetics (eq. 4 from >4

simplified as conceptual model),where a selection differential is dependent on the true selection and

an indirect term dependent on all other nn SNPs in the genome.

V.1 Trade-offs of selection

V.1.1 Across field experiments

We looked for genetic variants with a positive selection differential in one experimental environment
that had a negative differential in another (antagonistic pleiotropy). We also asked how often a
selected variant in one environment was neutral in another environment (conditional neutrality).
Only for the purpose of two-environment comparisons, to calculate the odds ratio, we considered
SNPs whose selection differential P-value was lower than 0.01 in one environment as conditionally
neutral, while antagonistic pleiotropy SNPs were ones whose P-values in both environments were <
0.02 (because antagonistic pleiotropy requires two tests, one in each environment, the significance

threshold should be 2 x P-value in each test) (see Fig. 2).

V.1.1 Across life history stages

Calculating allelic selection differentials for survival and fecundity separately, we found no correlation
between survival-only and fecundity-only estimates (r<0.07, Fig. S4-6), consistent with different

stages of a plant being differentially affected by environmentally imposed selection®.

V.2 Intensity of selection

The distribution of absolute allelic selection differentials, |3|, has a shape resembling that of an
exponential. We calculated the expected rate using Maximum Likelihood optimization in R, which can

also can be approximated as the inverse of the mean:
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525 For this, we use ) or the mean of |5] as a metric of the overall intensity of selection (Fig. 1B,
526  Fig.3D).

527
V.3 Important notes on population structure correction in a wild species

528 The goal of genome-wide association studies in humans is the identification of individual SNPs that
529 are causal for traits such as disease susceptibility. It is therefore imperative to penalize SNPs that are
530 correlated with population structure, as the lack of controlled experiments can generate spurious
531 associations between genetic variants more common in some human ancestry groups with regional
532 measurement errors or different cultural and nutritional environments®®. When a population
533 includes multiple ancestries with different disease susceptibilities, population structure correction
534 can obscure real signals, which has in turn led to the development of admixture mapping57. Similarly,
535 in animal or plant breeding, SNPs conferring an advantageous trait but that are highly associated
536 with a particular group of breeds or varieties (the equivalent of geographic populations) are also
537 avoided, as selection of these SNPs can drag along undesirable traits from such parents 58

538 The situation is very different in a wild species such as A. thaliana. Deliberately ignoring
539 selection over SNPs linked to natural population history would be inappropriate, as it is known that
540 populations may have adapted to different climates as they migrated and became isolated, with
541 causal SNPs therefore showing strong geographic patterns of distribution (see refs. 10'40). This is of
542 particular importance when mapping relative fitness, where the goal is to quantify the total selection
543 over a genetic variant, as this includes both direct selection as well as experienced indirect selection

544 from other causal variants that are in linkage disequilibrium.

545 V1. Climate Genome-Wide Association

546 Similarly to our GWA with relative fitness, we used each climate variable m (see Section VII.1) as
547 response variable ¥m in a LM model using GEMMA (ref. 31, see Section V):

548 Ym = p+ Bizi + €

549 This 5 coefficient for SNP 7, which reflects the correlation of the alternative allele’s presence
550 and a climate variable, was used later on in our predictive models (Section VIIl). As this is a raw
551 correlation between allele presence and climate variables, it will capture both past signatures of

552 climate adaptation and historic population migration and differentiation.
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553 VII. Climate and modeling

554
VII.1. Climate layers

555 We used the classic bioclim variables (n=19), plus monthly data of minimum and maximum
556 temperature, and precipitation (n=12 x 3) (worldclim.org). From these we estimated monthly
557 evapotranspiration rates using the R package EcoHydRology v. 0.4.12 (ref. 59) and actual monthly
558 evapotranspiration using a bucket model 60 (n=12 x 2). Based on ref. 14 we calculated whether A.
559 thaliana can grow in a given month based on temperature and precipitation (n=12), and derived from
560 this the length of the potential growing season (n=1). Over the potential growing season, we
561 calculated minimum and maximum temperature, and total precipitation (n=3). Finally, using the
562 mean and variance flowering time (=lifespan) across all our field experiments per accession, and
563 based on their climate of origin using the above variables, we used an environmental niche model to
564 generate a map surface of the most likely plant lifespan (n=2). This provides an estimate of the actual
565 growing season, which we subtracted from the potential growing season to generate one more
566 composite variable (n=1). Each variable is further described in Table S6. A total of 98 raster layers are
567 available as .gri/.grd files (native R format) from: github.com/MoisesExpositoAlonso/araenv, with

568 doi: update.

569
VII.2. Environmental Niche Models

570 Genome Environmental Niche Models (GEMs) were fit using decision trees with presence/absence of
571 SNPs as response variable and the climate variables described in the previous section and latitude
572 and longitude a predictors; as described 10 1o fit the models we used an Stochastic Gradient
573 Boosting approach with the R package caret (ref. 61). The parameters used to fit the model were: 50
574 decision trees, an interaction depth of 2, a shrinkage of 0.1, and a minimum of observations at end
575 nodes of 10. This set of parameters was determined after running our GEMs for some exemplary
576 SNPs and confirming that this set of parameters was typically optimal for reducing residual-mean
577 squared error in a Repeated Cross-Validation approach.

578 We used these models to predict from raster maps of the climate layers a probability
579 between 0 and 1 that the alternative allele was in a map cell. We judge this as a more appropriate
580 output than a discrete 0/1 outcomes, as sometimes alleles were widespread or at intermediate

581 frequencies in many regions and thus their environment niche was not strictly defined.
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582  VIIL.3. Climate variability

583 To study spatial climate variability, for each Arabidopsis natural line, we extracted climate variables
584 (Table S8) in a 50 Km buffer where they were originally collected from and calculated the coefficient
585 of variation (CV) across grid cells.

739

586 To study temporal variability, we used climate data from 1958-201 to calculate annual

587 precipitation values for each population, from which we in turn derived the inter-annual CV..

588 VIII. Predictions of selection differentials with summary statistics

589
VIIl.1 The model

590 We used a decision tree approach with Random Forest using the R package randomForest (ref. 62,63)
591 to predict the vector (n=1,353,386) of GWA results with relative fitness in one environment, which
592 we call allelic selection differentials s, from a 1,353,386 x 98 matrix of GWA associations with climate

593 variables, Beim (Table S8, see section VII). We also included as predictors a 1,353,386 x 5 matrix # of

594 genetic diversity and frequency metrics: minimum allele frequency, 7 diversity, Tajima’s D, selective
595 sweep likelihood ratio, and selective sweep alpha value (see section Ill). In addition, we included as
596 predictors a 1,353,386 x 8 matrix f of non mutually exclusive variables taking values of 0 or 1
597 indicating genomic annotations: intergenic, intron, UTR3, UTR5, exon, synonymous, nonsynonymous,

598 exon noncoding (see section Il). A total of 112 variables were thus used as predictors:
599 8 = f(Betim: 1:9). In the cases where we trained models with two environments, we also included

600 the 2 x 98 Zaim climate variables at our field stations: 5 = f(Zctim Betim. 1, 0)

601 Because training a Random Forest with the full dataset would be computationally expensive,
602 we only trained with 10,000 observations (with smaller and larger SNP sets, we had determined that
603 training with more than 10,000 observations did not improve predictions). To test accuracy and bias
604 we used a different set of 10,000 SNPs, divided into 100 bootstrap samples, and we report the
605 intervals of the 95% bootstrap distribution. The results presented in Fig. 3 were produced with
606 10,000 randomly drawn SNPs across the genome. To confirm that there was no confounding from
607 non-independent samples in the training and testing SNPs, we repeated all analyses, training with
608 10,000 random SNPs from chromosome 1 and testing with 10,000 random SNPs from the four other
609 chromosomes. There were no substantial changes in predictability.

610 Several combinations of training and testing were performed to validate the predictions of
611 “unobserved” environments. We did four model fittings, each time using training observations from
612 three environments only, and then used observations from a fourth environment for testing. The
613 final model, used for production maps, was trained with observations of four experiments and tested

614 with the same four environments, but different observations.
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615
VIII.2 A simple visualization of environmental distance

616 To visualize more directly the relationship between allelic selection differentials at a location and the
617 overall environment where the alleles are found, we calculated the distances between the field
618 station’s climate and the allele’s home environment (as defined below). We started using the
619 locations of the 515 data points and the genome matrix (515 individuals, 1,353,386 SNPs). This
620 matrix is called X and the Zji represent the genotype, 0 for reference and 1 for alternative, for the
621 J individual and i SNP. For all 515 locations we extract 19 climate variables available from raster

622 databases (worldclim.org), resulting in a 515 x 19 matrix E. Then we computed the mean of
623 environments at locations where there are alternative SNPs: (ETX)/XTX; this would reflect the

624 alleles’ “home environment”. Instead of calculating the distance dj in a single dimension between

625 the field station and the natural population J, we computed the Euclidean distance of the 19 bioclim

626 19
> d

1=1

means (variance and mean scaled) or a subset of them as: . The same approach can be used
627 to calculate the distance to the optimal environment of the species. One could assume that the
628 density of geographic locations where A. thaliana has been sampled would be the “realized

629 optimum”.

630
VIIl.3 Note on limitations and interpretations

631 As in any predictive exercise, our projections have limitations (discussed below). We nevertheless
632 firmly believe that they are indispensable to move forward in the field of forecasting climate impacts.
633 Models such as ours are tremendously useful for subsequent experimental validation (as we are
634 currently doing through an experimental evolution network: GrENE-net.org) or with in situ

635 observations collected as we move into the future (e.g. iNaturalist.org, iSpot.org). This iterative

636 prediction <> validation process will be key to advancing the complex field of predicting the effects

637 of climate change on biodiversity.

638 The limitations, enumerated and discussed:

639 A. Selection is a “relative force”. The selection of a genetic variant depends on what other
640 alternative genetic variants are in the population and at what frequency they are. Thus, the
641 exact allelic selection differentials we observed are contingent on the accessions studied. For
642 example, if in another GWA panel, a specific site is not variable, one could not calculate an
643 allelic selection differential for that site. It is therefore important to carefully select a set of
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644 accessions that represents geographic and genetic diversity of the specieszo. This is what we
645 have done, and our selection estimates should thus be informative of relative trends of the
646 species.
647 B. Even with an equally diverse GWA panel, if outcrossing and recombination was more
648 common, the co-occurrence of two mutations would be different. This would then change
649 allelic selection differentials, as a large amount of selection is driven by linkage
650 disequilibrium in A. thaliana where outcrossing is rare (species selfing rate average=97% 64).
651 C. Short-term selection differentials (over ecological times) do not necessarily reflect long-term
652 selection coefficients (i.e. over evolutionary times).
653 D. Demographic dynamics are ultimately determined both by natural selection and stochastic
654 demographic forces. Therefore, the knowledge of selection coefficients is necessary but not
655 sufficient to determine the fate of a population.
656 E. Bet-hedging strategies such as seedbank demographic dynamics buffer allele frequency
657 changes over time.

658 |X. Re-analysis of published data from common garden experiments

659 For a conceptual diagram of predictability validation with external common garden datasets, see Fig.
660 S12

661
IX.1 Manzano-Piedras et al. 2014

662 Manzano-Piedras and colleagues 37 planted exactly 60 seeds per line in pots. They monitored how
663 many plants established at the rosette stage and later on became reproductive adults (survival
664 proportion). From these, they counted the number of fruits per pot and divided them by the number
665 of reproductive adults (reproduction, seed set). We computed lifetime fitness as the product of

666 survival and reproduction.

667
IX.2 Fournier-Level et al. 2011

668 Fournier-Level and colleagues 36 germinated seeds in greenhouses, and two weeks after germination
669 (established seedling stage), they transplanted seedlings to outdoor field stations where one plant
670 was transplanted in one pot. They counted how many transplanted seedlings survived to
671 reproduction (partial survival proportion), and the number of fruits per plant (reproduction, seed

672 set). We again computed lifetime fitness as the product of partial survival and reproduction.
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673 We excluded the experiment in Finland in downstream analyses because only 58 natural

3

674 lines were planted there in the original publication 6 and because later we verified the imputation

675 accuracy was very low (Pearson’s r<0.008).

676
IX.3 1001 Genomes x RegMap panel phenotype imputation

677 The 1001 Genomes panel (http://1001genomes.org/, ref. 23) includes 1,135 natural lines with

678 11,769,222 biallelic SNPs from Illumina sequencing. The RegMap panel with 250

679 (http://arabidopsis.gmi.oeaw.ac.at:5000/DisplayResults, ref. 8) included 1,307 natural lines with

680 214,051 biallelic SNPs from array hybridization. The two populations shared 413 lines. Of these, 185
681 were shared with the 515 lines used in the field experiments.

682 Of the 157 accessions of Fournier-Level et al., all were part of the RegMap panel, 89 were
683 part of the 1001 Genomes, and 50 overlapped with our lines. Of the 279 accessions of
684 Manzano-Piedras et al., 150 were part of the 1001 Genomes, and 131 overlapped with our field lines.
685 Because fitness is heritable, we tried to impute missing data based on the overall genomic
686 relationships among all of the 2,029 natural lines belonging to 1001 Genomes and RegMap panels.
687 After downloading and transforming the RegMap dataset to PLINK format, we overlapped
688 genome-wide SNPs and filtered them for a genotyping rate of 95%, which yielded 154,090 biallelic
689 SNPs. Given the linkage disequilibrium and genome size of A. thaliana, this easily suffices for
690 generating a relationship matrix A, which we computed using the R package rrBLUP (ref. 65). The
691 data of survival, reproduction, and lifetime fitness was an average per genotype, so we fit a classic
692 GBLUP: ¥ = Zg + €; where ¥ is the fitness trait of interest, Z is a design matrix of genotypes and 9

2
693 is a random effect factor with covariance matrix equal to the relationship matrix 9 MV N(0, Aag)

694 . Heritability of traits and imputation accuracy from the Manzano et al. and Fournier-Level

695 experiments is given in Table S9.

696
IX.4 Sanity checks for imputation and geographic predictions

697 We carried out sanity checks to ensure that the imputed fitness from other experiments was not just
698 an artifactual phenotype with the same structure as the relationship matrix. This would mislead us to
699 think there is predictability, as we would expect that allele selection differentials calculated in such
700 artifactual phenotype would depend on population structure and thus would likely be predictable
701 from climate structure alone.

702 We shuffled the genotype identities from Fournier-Level et al. and Manzano-Piedras et al.
703 with their fitness values. Then we repeated the GBLUP analysis with 50 rounds of shuffling and

704 computed heritabilities and prediction accuracies. We confirmed that heritability with shuffled data
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705 was negligible (1x10'9 <h? <1.6'3) and so was the accuracy of imputation (-0.047310 < r < 0.070380).
706 This indicated that in the absence of true heritable variation, imputation of fitness would be random
707 and not dependent on the relationship matrix.

708 We also were concerned that geographic predictions could be driven by some underlying
709 bias in our analyses, i.e. bias inherent to geographic sampling, population history of genotypes
710 chosen, etc. In other words, we were concerned that the null expectation of predictability would be
711 non-zero. As before, we randomized fitness values with genotypes for all six datasets. Then, we
712 repeated the GWA to estimate allelic selection differentials (as Fig. 1), and trained different
713 combinations of GWES models to re-predict allelic selection differentials at teach location based on
714 climate (as Fig. 3). We confirmed that, differently from the analyses of real data presented in Fig. 3,

715 there was no significant predictability (Fig. S15).

716
IX.5 An explanation for “inverse predictability”

717 We noticed that using only our two experiments for model training, there was “inverse
718 predictability” for the three experiments from ref. 36. While the sign of inferred selection
719 differentials was the opposite of the observed values (-0.33<r<-0.51, P<0.001), the magnitude of
720 selection was correctly inferred (15%<R2<25%, Fig. 3A). Such a phenomenon could arise for several
721 reasons. First, the worldclim.org climate averages (1960-1990) at 2.5 arc-minutes resolution might
722 strongly deviate from the truly experienced environmental conditions in the years the experiments
723 were conducted. Such climate variability can exert opposite selection in different year566. Second,
724 differences in experimental design could lead to different lifetime fitness estimates. In ref. 36, early
725 survival of seedlings was not measured at all, as only seedlings that had survived for two weeks in
726 the greenhouse were transplanted into the field. In the Southern Spain experiment37, seeds were
727 sown directly in the field, as in our own experiments, and accordingly, we had “positive
728 predictability” (r=0.24, Bootstrap Cl=0.09—0.41). In further support of this experimental design
729 confounder, when we trained GWES models with only reproduction-based allele selection
730 differentials in our experiment in Southern Germany, i.e., excluding early survival from lifetime
731 fitness, we correctly predicted the sign of selection differentials in Fournier’s Northern Germany

732 experiment (r= 0.392, Bootstrap Cl= 0.20—0.57) (for null expectations see Supplemental Methods

733 1X.4). The differences in predictions between two- and six-environment-trained models did not yield
734 differences in downstream analyses and conclusions (correlation between predictions, r=0.56,
735 P<10'16), but predictability increased with the number of experiments included in the training set (r=

736 0.761, Bootstrap Cl= 0.55—0.90, R2= 0.517, Fig. 3A).
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737 SUPPLEMENTAL FIGURES

738 Figure S1. Accession locations
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739 Points indicate the locations where the 517 A. thaliana accessions were collected. The color gradient
740 is the density of samples from our study in squares of approximately 200 km x 200 km. The limits of
741 the colored area were determined using a combined density grid from gbif.org and 1001 Genomes
742 records. The density was generated in a grid of 125 min resolution and by applying a bilinear and
743 then Gaussian smoothing. The threshold was chosen to be the 50% of the upper distribution, which
744 roughly corresponds to 10 records per 200 km x 200 km square. Regions outside the colored were
745 excluded from future climate change predictions, as we prefer to make predictions only in regions
746 where the presence of A. thaliana is rather likely and continuous (Fig. 1).
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Figure S2. Environment ranges
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(A) Classic biplot of precipitation vs. temperature of origin of accessions (black dots) and field
experiment of Spain (sepia) and Germany (green). Grey box indicates locations where precipitation
was at least 70% of Spain and no more than 130% of Germany, and where temperature was no less

than 70% of Germany and no more than 130% of Spain. (B) Areas that would be within the grey box
in (A). Compare to Fig. S1.
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753 Figure S3. Map of predicted environmental change

170

: - - K170

754 Precipitation during the warmest quarter (biol8, left), and its change predicted for 2070 (rcp 8.5)
755 (right). Black areas indicate regions where precipitation will be lower than any area where A. thaliana

756 has been currently sampled (black dots, left).
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757 Figure S4. Genome maps of survival
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758 Same as Fig. 1, but only using the survival component of fitness.
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759  Figure S5. Genome maps of fecundity
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760 Same as Fig. 1, but only using the fecundity component of fitness.
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761 Figure S6. Trade-offs in survival and fecundity
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762 (Fig. S6 continued)
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763 Comparisons of allele selection differentials computed only with the survival component, only with
764 the fecundity component, and with both.
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765  Figure S7. Fg and empirical selection
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766 (Fig. S7 continued)
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767 As Fig. 2C, for all environments.
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768  Figure S8. Sweeps and empirical selection
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769  (Fig. S8 continued)
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770 As Fig. 2D, for all environments.
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771 Figure S9. MAF and relative fitness
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(Fig. S9 continued)
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Relationships between relative fitness effect, relative fitness effect size, and P-values (calculated from

GWA with relative fitness) and minor allele frequency of alleles in each environment.

39


https://doi.org/10.1101/321133
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/321133; this version posted June 8, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Exposito-Alonso et al.

A map of climate change-driven natural selection

775  Figure S10. Environmental distance and selection differentials
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776 As Fig. 2B, but for allele selection differentials in Germany under high precipitation.
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777 Figure S11. Future change in selection for different climate change scenarios
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778 Same as Fig. 3G, but for different climate change scenarios. The higher the predicted CO, emissions,

779 the stronger the predicted increase in selection intensity.

41


https://doi.org/10.1101/321133
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/321133; this version posted June 8, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Exposito-Alonso et al. A map of climate change-driven natural selection

780  Figure S12. Field validation conceptual chart
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781 Conceptual workflow on field validation procedure with data from published experimens.
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782 Figure S13. Null expectation of predictability
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783 Same as Fig. 3, but with randomized fitness values associated to genotypes. We could not find any
784 model combination that had non-zero predictability (95% bootstrap confidence overlaps with zero).
785 This proof of concept indicates that the predictability we find must have a biological basis, in which
786 the combination of climate of origin for a genetic variant and the local climate allows to infer

787 selection over such a variant.
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788  Figure S14. Change in selection relative to local diversity
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789 Same as Fig. 3D, but counting the number of local alleles increasing or decreasing in selection (total
790 n=10,752 SNPs). Only changes with more than 5% advantage/disadvantage were considered (defined

791 a posteriori from Bonferroni-significant alleles, which generated at least 5% effect in fitness).
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792 SUPPLEMENTAL TABLES & DATASETS

793 Supplemental tables are available in the online version of the paper with doi: xyz.

794 Table S1. List of accessions

795 The 1001 Genomes Project identifier, country of origin, and latitude and longitude are reported.

796  Table S2. Summary of fitness data

797 Average survival, fecundity, and lifetime fitness. Total number of genotypes with at least one
798 surviving replicate per experiment. (Abbreviations: The three characters of the codes: MLI, MLP, MHI,
799 MHP, TLI, TLP, THI, TLP; indicate M=Madrid (Spain), T=Tiibingen (Germany), L=Low precipitation,
800 H=High precipitation, I=Individual replicates (one plant per pot), P=Population replicates (up to 30
801 plants per pot).

802  Table S3. Heritability of traits

803 Broad sense heritability per trait (variance explained by line genotype), as calculated from a

804 generalized linear mixed model, is reported as: 0g/0Total, The proportion of variance explained by
805 nuisance factors such as block (tray), position of the tray within a treatment block, and position of
806 plant within a tray are reported in the same way. (Abbreviations: The three characters of the codes:
807 MLI, MLP, MHI, MHP, TLI, TLP, THI, TLP; indicate M=Madrid (Spain), T=Tubingen (Germany), L=Low
808 precipitation, H=High precipitation, I=Individual replicates (one plant per pot), P=Population

809 replicates (up to 30 plants per pot).

810  Table S4. Number of SNPs with significant selection differentials
811 All significant variants from marginal GWA after FDR and Bonferroni correction and all variants with
812 non-zero probability of inclusion from conditional GWA, and sharing of significant variants across

813 experiments.

814 Table S5. Expected allele frequency changes in response to selection

815 Summaries of allele frequency changes per experiment.

816 Table S6. Variable importance of predictive models

817 Sharing of significant variants across experiments.
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818 Table S7. Predictability of environmental models

819 After training GWES models with a set of experiments, we inferred allelic selection differentials on
820 another set of experiments and compared those with the real allelic selection differentials. We
821 calculated Pearson’s product-moment correlation r and % of variance explained R2 using a

822 regression. 95% confidence intervals were calculated with 100 bootstrap replicates.

823 Table S8. Description of climate variables

824 Climate variables used for environmental models are described and their sources reported.

825 Table S9. GBLUP heritability and imputation accuracy of data from published field experiments
826 We used GBLUP to impute fitness from Fournier-Level et al. (2011) and Manzano-Piedras et al. (2014)
827 into our 517 global accessions. We report heritability, Pearson’s r between GBLUP predicted fitness

828 and real fitness, and the significance of the correlation test.

829 Table S10. Correlation between inferred natural selection intensity and other variables

830 Spearman’s r between selection intensity and diversity metrics or climate metrics is given.
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