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Abstract:  
Our genomes encode a wealth of transcription initiation regions (TIRs) that can be identified by their 
distinctive patterns of transcription initiation. We previously introduced dREG to identify TIRs using PRO-
seq data. Here we introduce an efficient new implementation of dREG that uses PRO-seq data to 
identify both uni- and bidirectionally transcribed TIRs with 70% improvements in accuracy, 3-4-fold 
higher resolution, and >100-fold increases in computational efficiency. Using a novel strategy to identify 
TIRs based on their statistical confidence reveals extensive overlap with orthogonal assays, yet also 
reveals thousands of additional weakly-transcribed TIRs that were not identified by H3K27ac ChIP-seq or 
DNase-I-hypersensitivity. Novel TIRs discovered by dREG were often associated with RNA polymerase III 
initiation or bound by transcription factors that recognize DNA concurrently with a nucleosome. We 
provide a web interface to dREG that can be used by the scientific community 
(http://dREG.DNASequence.org).  
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Introduction 
 

Our genomes encode a wealth of distal and proximal control regions that are collectively known as 
transcriptional regulatory elements. These regulatory DNA sequence elements regulate gene expression 
by affecting the rates of a variety of necessary steps during the RNA polymerase II (Pol II) transcription 
cycle (Fuda et al. 2009), including chromatin accessibility, transcription initiation, and the release of Pol 
II from a paused state into productive elongation. 

Identifying regulatory elements at a genome scale has recently become a subject of intense 
interest. Regulatory elements are generally identified using genome-wide molecular assays that provide 
indirect evidence that a particular locus is associated with regulatory activity. For example, nucleosomes 
tagged with post-translational modifications can be identified by chromatin immunoprecipitation and 
sequencing (ChIP-seq) (Barski et al. 2007; Heintzman et al. 2007). Likewise, nucleosome-free DNA can be 
enriched using DNase-I or Tn5 transposase (Boyle et al. 2008; Hesselberth et al. 2009; Buenrostro et al. 
2013). However, each of these strategies has important limitations. Histone modification ChIP-seq has a 
poor resolution compared with the ~110 bp nucleosome free region that serves as the regulatory 
element core (Core et al. 2014; Scruggs et al. 2015; Chen et al. 2016). Likewise, nuclease accessibility 
assays are indirect measures of genome function, and mark a variety of nuclease accessible regions in 
our genomes, such as binding sites for the insulator protein CTCF or inactive regulatory elements (Danko 
et al. 2015; Xi et al. 2007). Each of these tools is also limited by a high background, which prevents the 
detection of weakly active regulatory elements which may nevertheless have important functional roles.  

Active transcription initiation by Pol II has recently emerged as an alternative mark for the 
location of active regulatory elements (Andersson et al. 2014a; Core et al. 2014; Danko et al. 2015). Both 
proximal and distal regulatory elements are associated with RNA polymerase initiation (Kim et al. 2010; 
Core et al. 2014; Andersson et al. 2015; Henriques et al. 2018; Mikhaylichenko et al. 2018). RNAs 
produced at these elements are often degraded rapidly by the nuclear exosome complex (Andersson et 
al. 2014b; Core et al. 2014), and as a result these patterns are most reliably detected by nascent RNA 
sequencing techniques that map the genome-wide location of RNA polymerase itself (Core et al. 2008; 
Kwak et al. 2013; Churchman and Weissman 2011; Scruggs et al. 2015). Transcription leaves a 
characteristic signature at these sites that can be extracted from nascent RNA sequencing data using 
appropriate computational tools (Melgar et al. 2011; Hah et al. 2013; Danko et al. 2015; Azofeifa and 
Dowell 2016).  

We recently introduced dREG (Danko et al. 2015), a sensitive machine learning tool for the 
detection of Regulatory Elements using maps of RNA polymerase derived from run-on and sequencing 
assays, including GRO-seq (Core et al. 2008), PRO-seq (Kwak et al. 2013), and ChRO-seq (Chu et al. 
2017). dREG was trained to recognize characteristic signatures of nascent RNAs to accurately discover 
the coordinates of regulatory elements genome-wide. However, our preliminary version of dREG was 
limited by a slow and cumbersome implementation that made it challenging to use in practice.  

Here, we present an efficient new implementation of dREG that leverages a general purpose 
graphical processing unit to accelerate computation. Combined with new innovations to identify regions 
enriched for transcription initiation (called dREG “transcription initiation regions”) and an extremely 
accurate new dREG model, we show that this strategy is useful approach for detecting regulatory 
elements genome-wide in a number of applications. Importantly, we show that our new strategy is more 
sensitive in certain types of regulatory regions, for instance Pol III promoters or transcription start sites 
in heterochromatin domains, than DNase-I hypersensitivity or other genomic tools. Our new version of 
dREG is available to the community by a public web server at https://dreg.dnasequence.org/.  
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Results 
 
A new machine learning tool for the discovery of TIRs 

We recently introduced a machine learning tool for the detection of regulatory elements using 
GRO-seq and other run-on and sequencing assays (dREG) (Danko et al. 2015). Here we introduce a new 
implementation of dREG which makes several important optimizations to identify regulatory elements 
with improved sensitivity and specificity using the multiscale feature vector introduced in dREG. We 
implemented dREG on a general purpose graphical processing unit (GPU) using Rgtsvm (Wang et al. 
2017). Our GPU implementation decreased run-times by >100-fold, allowing analysis of datasets which 
took 30-40 hours using 32 threads in the CPU-based version of dREG to be run in under an hour.  

We used the speed of our GPU-based implementation to train a new support vector regression 
(SVR) model that improved dREG accuracy. We trained dREG using 3.3 million sites obtained from five 
independent PRO-seq or GRO-seq experiments in K562 cells (Supplemental Fig. S1 and Supplemental 
Table S1). To improve the accuracy of dREG predictions in the unbalanced setting typical for genomic 
data, where negative examples greatly outnumber positive examples, dREG was trained on a dataset 
where bona-fide positive TREs represent just 3% of the training data. Together these improvements in 
the composition and size of the training set increased the area under the precision-recall curve by 70% 
compared with the original dREG model when evaluated on two datasets that were held-out during 
training (Supplemental Fig. S2).  

We developed a novel strategy to identify regions enriched for dREG signal, which we call 
transcription initiation regions (TIRs), and filter these based on statistical confidence (see Methods; Fig. 
1A and Supplemental Fig. S3). We estimate the probability that dREG scores were drawn from the 
negative class of sites (i.e., non-TREs) by modelling dREG scores using the Laplace distribution. The 
Laplace distribution was used to model SVR scores previously (Lin and Weng 2004), and fits dREG scores 
in negative sites reasonably well (Supplemental Fig. S4). To improve our statistical power to identify 
bona-fide regulatory elements, we merge nearby candidate sites into non-overlapping genomic 
intervals, or candidate TIRs, each of which contains approximately one divergently oriented pair of 
paused RNA polymerases (Core et al. 2014; Scruggs et al. 2015). We compute the joint probability that 
five positions within each TIR are all drawn from the negative (non-regulatory element) training set 
using the covariance between adjacently positioned dREG scores (see Methods). This novel peak calling 
strategy provides a principled way to filter the location of TIRs based on SVR scores estimated using 
dREG. 

 
Comparison to orthogonal genomic data 

To evaluate the performance of dREG in real-world examples we analyzed two datasets, PRO-
seq in K562 and GRO-seq in GM12878, that were held out during model training. Holdouts were 
selected because they cover a range of library sequencing depths and a new cell type that together 
allowed us to determine whether the dREG model generalized to additional datasets. dREG predicted 
34,677 and 71,131 TIRs in K562 and GM12878, respectively. dREG recovered the location of the majority 
of regulatory elements defined using orthogonal strategies at an estimated 5% false discovery rate: 
81.3% or 96.1% of DNase-I hypersensitive sites (DHSs) marked by transcription (using PRO-cap pairs) and 
58.4% or 71.8% of DHSs marked by the acetylation of histone 3 lysine 27 (H3K27ac) (Fig. 1B). Sensitivity 
for both PRO-cap and H3K27ac-DHSs was >2-fold higher for dREG than for the elegant model-based Tfit 
program (Azofeifa and Dowell 2016) when run on the same data. Transcription initiation regions display 
a range in the efficiency of initiation on the two strands (Scruggs et al. 2015; Duttke et al. 2015), and 
dREG was able to identify the location of both uni- and bi-directional transcription initiation sites 
(Supplemental Fig. S5).  
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Figure 1. dREG identifies regions of transcription initiation. (A) WashU Epigenome Browser visualization of
dREG signal, PRO-seq data, GRO-cap, DNase-I hypersensitivity, and H3K27ac ChIP-seq near the PRR14L and
DEPDC5 genes. Inserts show an expanded view of gene-proximal promoter elements (left) and a distal enhanc-
er (right), each encoding multiple transcription initiation sites. (B) Barplots show the fraction of transcribed DHSs
(left) and H3K27ac+ DHSs (right) in two holdout datasets that were discovered by dREG (red) and Tfit (blue). (C)
Scatterplot shows the fraction of sites recovered (Y-axis) as a function of sequencing depth (X-axis) for seven
datasets shown in Supplementary Table 1. The best fit lines are shown. The color represents whether the
dataset was used for training (green) or is a holdout dataset (K562, red) or cell type (GM12878, blue).
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The sensitivity of dREG varied systematically by the library sequencing depth (Fig. 1C). After 
accounting for sequencing depth, we did not observe any systematic difference between datasets that 
were held out or used during training, suggesting that dREG was not noticeably overfitting to the 
training data. dREG achieved a reasonable sensitivity on a K562 holdout dataset with 27M uniquely 
mapped reads (81.3% of DHSs overlapping GRO-cap pairs were recovered), and saturated the discovery 
of enhancers supported by ENCODE data at between 60-100M uniquely mapped reads. Despite a high 
degree of overlap with histone modification ChIP-seq assays, dREG had a higher resolution for the 
regulatory element core region, consisting of divergently opposing RNA polymerase initiation sites (Core 
et al. 2014). Regions identified by dREG were on average 6.4-fold shorter (460 bp for dREG sites) than 
H3K27ac ChIP-seq peaks (2,924 bp on average), closer in size to high-resolution DNase-I-seq data (322 
bp on average). Histone modification ChIP-seq or DNase-I-seq data aligned to the center of human dREG 
sites revealed good agreement with the center of the nucleosome free region (Fig. 2A). Thus our new 
dREG implementation substantially improved both resolution and accuracy compared with alternative 
genomic tools.  

 
Discovery of novel regulatory elements using dREG 

Despite a high degree of overlap, up to 10% of TIRs did not overlap other marks expected at 
active enhancers. The number of TIRs found uniquely by dREG depended on sequencing depth (400-
8,000 TIRs, depending on the dataset), and intriguingly did not saturate even in datasets sequenced to a 
depth of 350M uniquely mapped reads (Fig. 2B). As expected, TIRs had lower dREG scores and lower 
polymerase abundance when they were found uniquely by dREG (Fig. 2A), suggesting that these sites 
were often either weaker regulatory elements that were more difficult for all assays to distinguish from 
background, or false positives.  

We asked whether TIRs that were not supported by DNase-I hypersensitivity or H3K27ac ChIP-
seq peak calls reflect bona-fide novel regulatory elements or false positives by dREG. TIRs detected 
uniquely by dREG frequently (>50% depending on the dataset) overlapped ChIP-seq peak calls for 
sequence specific transcription factors (Fig. 3A, Supplemental Fig. S6). A small number of TIRs were 
enriched for H3K4me1, a mark associated with both active and inactive enhancers. Examining examples 
on the WashU Epigenome Browser (Zhou et al. 2011) revealed clearly defined transcription units that 
initiate long intergenic non-coding RNAs (Fig. 2C). Often the promoter of these transcription units lacked 
sufficiently robust enrichment of histone modifications or DNase-I hypersensitivity to make confident 
peak calls, and many lacked sufficient paused Pol II to be represented in GRO-cap data. Nevertheless, 
examination of these TIRs genome-wide revealed a local increase in the abundance of reads in the 
average profiles of DNase-I-seq and active histone modification ChIP-seq data (Fig. 2A and 
Supplemental Fig. S7), suggesting that at least some were false negatives by other assays. Finally, sites 
detected only by dREG in K562 cells were often DHSs in a related cell type (Supplemental Fig. S8). Taken 
together, these findings suggest that TIRs uniquely identified by dREG were frequently novel regulatory 
elements, but were enriched below the level of detection of other molecular assays in K562 cells. 
 
Pol II and Pol III transcription initiation without chromatin accessibility  

An alternative, but not mutually exclusive, explanation for TIRs identified uniquely by dREG is 
that some regulatory elements tolerate differences in the core marks reported to correlate with 
regulatory function. We hypothesized that certain transcription factors tolerate sites that lack specific 
aspects of the core regulatory architecture better than others. We focused on DNase-I hypersensitivity 
as a general marker for the nucleosome depleted region in the center of regulatory elements. As a 
control we performed ATAC-seq to confirm low levels of chromatin accessibility in K562 clones that 
were closely related to those used to generate PRO-seq data (Supplemental Fig. S9). To determine 
whether specific transcription factors may be more permissive to binding in sites having low levels of 
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Figure 2. dREG identifies new regions that were not found using other molecular assays. (A) Heatmaps
show the log-signal intensity of PRO-seq, DNase-I-seq, or ChIP-seq for H3K27ac, H3K4me1, and H3K4me3.
The fraction of sites intersecting ENCODE peak calls is shown in the white-black color map beside each plot.
Color scales for signal and the fraction in peak calls are shown below the plot. Each row represents TIRs found
overlapping an annotated transcription start site (n= 15,652) or >5kb to a start site (n= 43,127) (B) Scatterplot
shows the number of new TIRs that were not discovered in DNase-I-seq or H3K27ac ChIP-seq data (Y-axis) as a
function of sequencing depth (X-axis) for seven datasets shown in Supplementary Table 1. The best fit line is
shown. The color represents whether the dataset was used for training (green) or is a holdout dataset (K562,
red) or cell type (GM12878, blue). (C) Three separate genome-browser regions that denote TIRs discovered
using dREG, but were not found in DNase-I-seq or H3K27ac ChIP-seq data. Tracks show dREG signal, PRO-
seq data, GRO-cap, DNase-I hypersensitivity, H3K27ac ChIP-seq, and annotated genes.
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chromatin accessibility, we trained a logistic regression model to predict whether TIRs discovered using 
dREG intersect a DHS. Transcription factor binding alone predicted the presence of DHSs better than 
using the dREG score in a matched set of holdout sites (ROC= 0.88 [TF binding], ROC= 0.75 [dREG score], 
Supplemental Fig. S10). Thus specific transcription factors were predictive of which TIRs lacked nuclease 
hypersensitivity.   

To identify transcription factors that contribute to this signal, we computed the ratio of binding 
sites that were found using dREG but not DNase-I-seq, to those that were found using both assays 
(referred to as dREG+DHS-/dREG+DHS+). As expected, only a small fraction of most transcription factors 
were bound without creating a DHS (Fig. 3B). However, different transcription factors exhibited a broad 
range of binding in dREG+DHS- sites. The highest scoring transcription factors were RPC1155 and BRF2 
(ratio of dREG+DHS-/dREG+DHS+ = 0.37 and 0.29, respectively), which encode the catalytic core of RNA 
Polymerase (Pol) III and a Pol III initiation factor. Thus, Pol III promoters were often not sufficiently 
exposed to the DNase-I enzyme to be detected in DNase-I-seq data. Members of the core Pol II 
transcriptional machinery were also represented as outliers (CHD1, POLR2A, and TAF7) consistent with 
some Pol II promoters being inaccessible as well. Many of the other transcription factors enriched in the 
dREG only class were associated with heterochromatin (KAP1, ZNF274, and EZH2), consistent with the 
lower amount of transcription that distinguishes sites without DHSs (Fig. 2A).  

Several sequence specific transcription factors were also observed to have a high fraction of 
sites that were dREG+DHS-. For example, CEBPB, NFYB, GATA2, and SPI1 had a relatively high fraction of 
binding sites outside of DHSs. Intriguingly, the subset of DHS+ and DHS- binding sites for these four 
transcription factors had distinct profiles in the flanking chromatin. All four transcription factors were 
enriched for increased MNase-seq read density centered on the binding site and spanning a region 
approximately 300 bp in DHS- sites (Fig. 3C), suggesting systematic differences in the chromatin 
environment in these regions. By contrast, binding sites for MAZ and ZNF143, which exhibited a low 
fraction of binding sites outside of DHSs, did not show as promanant of an increase in MNase-seq signal 
in DHS- binding sites (Fig 3C). Transcription factors also showed differences in their enrichment of 
histone post-translational modifications. NFYB exhibited no enrichment of active histone modifications 
in DHS- binding sites, but was flanked on both sides by high levels of H3K27me3 (Fig. 3C). GATA2, SPI1, 
and CEBPB binding sites were enriched for marks of both active and repressive chromatin, with a narrow 
enrichment of H3K27me3 signal localized at the putative binding site (Fig. 3C). Likewise, histone 
modification ChIP-seq in DHS- regions notably lacked the dip in the center of TIRs characteristic of a 
nucleosome depleted region. Thus, in some cases regulatory elements discovered by dREG, but not by 
DNase-I-seq, appear to reflect binding of strong transcriptional activators that do not meet the current 
description of a regulatory element.  

Taken together, these results suggest that dREG identified thousands of TIRs that were not 
discovered using DNase-I-seq data, but which were reproducibly associated with specific transcription 
factors. These observations may reflect transcription factor binding events that tolerate deviations from 
the core TRE architecture, preventing their discovery using more widely applied molecular tools. 
Collectively these observations suggest that no molecular assay has fully saturated the repertoire of 
active regulatory elements, even in well studied cell types like K562.  

 

Web server provides access to dREG  
We developed a web interface for users to run dREG on their own PRO-seq, GRO-seq, or ChRO-

seq data. Users upload PRO-seq data as two bigWig files representing raw counts mapped to the plus 
and minus strand. A typical run takes ~4-12 hours depending on server usage. Users are required to 
register for an account, which keeps track of previous jobs. Once dREG completes successfully, users can 
download dREG peak calls and raw signal. Additionally the dREG web interface provides a link to 
visualize input PRO-seq data, dREG signal, and dREG peak calls as a private track hub on the WashU 
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Epigenome Browser. dREG is available on the Extreme Science and Engineering Discovery Environment 
(XSEDE) as a science gateway (Gesing and Lawrence; Knepper et al. 2017) and is implemented using the 
Airavata middleware (Marru et al. 2011; Pierce et al. 2015). The dREG science gateway is available at 
https://dreg.dnasequence.org/.  
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Figure 3. dREG TIRs were reproducibly associated with specific transcription factor binding. (A) Plot
shows the number of elements discovered using dREG, but not found in DNase-I hypersensitivity or H3K27ac
ChIP-seq (Y-axis) for PRO-seq datasets in K562 and GM12878 cells. The color denotes other functional marks
intersecting sites discovered only using dREG. (B) Histogram representing the fraction of binding sites for 100
transcription factors supported by a dREG TIR that was not also discovered in DNase-I hypersensitivity data (i.e.,
dREG+ DHS- / dREG+ DHS+). Several of the outliers are shown. The color denotes whether the factor is a
member of the Pol III pre initiation complex (green), Pol II preinitiation complex (red), associated with H3K9me3
or H3K27me3 heterochromatin (purple), or is a sequence specific transcription factor (blue). (C) Metaplots show
the raw signal of DNase-I hypersensitivity, MNase-seq, and ChIP-seq for H3K4me1, H3K4me3, H3K27ac, and
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Discussion 
 

In this article we introduced a fully optimized version our dREG software package, a sensitive 
machine learning method that identifies the location of regulatory elements using data from run-on and 
sequencing assays, including PRO-seq, GRO-seq, and ChRO-seq (Chu et al. 2017; Core et al. 2008; Kwak 
et al. 2013). Our optimization efforts have achieved substantial improvements in computational 
efficiency, sensitivity, specificity, and site resolution. We developed a new approach to identify dREG 
peaks, called transcription initiation regions, based on a hypothesis testing framework that controls false 
discovery rates. Finally, we provide dREG as a web service where users can easily upload their own run-
on and sequencing data. Taken together, our dREG implementation has a number of advantages 
compared with alternative approaches. dREG offers substantial improvements in regulatory element 
resolution (compared with ChIP-seq), information about activity (DNase-I-seq and ATAC-seq), improved 
signal to noise ratio (ChIP-seq, DNase-I-seq, and ATAC-seq), and a higher sensitivity for certain types of 
active regulatory elements (ChIP-seq, DNase-I-seq, and ATAC-seq). Compared with GRO-cap (Core et al. 
2014), dREG is less dependent on paused Pol II, and can also be used to detect the levels of gene 
expression in the same molecular assay. Most importantly, dREG/ PRO-seq allows users to measure 
multiple aspects of gene regulation, including the position of regulatory elements, gene expression, and 
pausing levels using a single genomic experiment. When paired with ChRO-seq (Chu et al. 2017), which 
applies run-on assays in solid tissues, dREG allows the discovery of regulatory elements in primary 
tumors and other clinical isolates, in which the application of genomics technologies are limited by 
sample quantity and the cost of applying multiple assays across large cohorts. 

By comparing TIRs to other functional genomic assays, we identified >8,000 regulatory elements 
that were not detected using DNase-I-hypersensitivity or H3K27ac ChIP-seq. Differences between assays 
may in part reflect false negatives in DNase-I-seq and ChIP-seq, where signals drop below the 
background level, or false positives by dREG. Several lines of evidence outlined in our results suggest 
that most TIRs are unlikely to reflect false positives. For instance, we observed a residual enrichment in 
the average profiles of other functional marks near TIRs that lack peak calls, which suggests that at least 
some fraction of TIRs reflect weak enrichment in other molecular assays that were not detected as 
peaks. Our results may contribute additional support to experiments assigning regulatory function to 
rare sites which lack canonical promoter and enhancer marks (Diao et al. 2017; Rajagopal et al. 2016). 
Nascent transcription may be an effective tool to expand the catalog of functional elements. 

TIRs may also reflect weakly bound transcriptional activators that are relatively tolerant of 
binding to sites lacking DNase-I hypersensitivity. It is possible that some of these elements may denote 
distinct architectures of functional element that are better identified using nascent transcription. 
Consistent with this, we found an enrichment of MNase protection at sites lacking DNase-I-seq signal. At 
least one of the transcription factors that that we discovered having this property (GATA) was from a 
family reported to bind concurrently with a nucleosome in vitro (Takaku et al. 2016; Cirillo and Zaret 
1999). Thus, one interpretation is that many of these sites reflect weak binding events in which the 
transcription factor and nucleosome are both present on the DNA. 

A major open question following our study is whether weaker TREs that lack DNase-I 
hypersensitivity or other chromatin modifications have a distinct biological function. NFYB is an 
interesting example, as its enrichment of H3K27me3 in flanking sites, as well as a unique pattern of 
MNase-seq signal, might suggest binding inside of H3K27me3 chromatin domains. Transcription may be 
required within H3K27me3 domains either to maintain silencing, or to establish new profiles during 
cellular differentiation or in response to environmental signals. We anticipate that future studies will use 
transcription to categorize these distinct groups of functional elements in additional detail, and will 
determine their biological relevance in a myriad of cell types and biological conditions.  
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Methods 
 

Overview of the dREG method 
We devised a method to detect the location of transcriptional regulatory elements from 
GRO/PRO/ChRO-seq data (dREG). The basic idea behind dREG is to differentiate between two types of 
regions that show high levels of RNA polymerase: (i) positions where new RNA polymerase initiates, and 
(ii) positions where RNA polymerase transcribes through after initiating at an upstream site. Our 
strategy for dREG prediction and scoring closely follows our prior work (Danko et al. 2015), except with 
modifications that leverage our new and considerably faster implementation to achieve higher 
classification accuracy. In addition, we have also added a novel strategy to more precisely identify 
regions in which transcription start sites occur, representing the location of TREs.  

We used support vector regression (SVR) to score 50 bp intervals along the genome. Loci that 
were low in PRO-seq reads were pre-filtered and excluded from both training and prediction tasks. We 
selected loci for analysis that meet either of the following heuristics: 1) contain more than 3 reads in a 
100 bp interval on either strand, or 2) more than 1 reads in 1 kbp interval on both strands. We refer to 
positions meeting these criteria as “informative positions”. We summarized PRO-seq read counts near 
each position by integrating reads in non-overlapping windows centering around the informative 
positions, followed by transformations that are the same as in our prior work (Danko et al. 2015). Non-
overlapping windows were taken at multiple scales, spanning both plus and minus strand, and both 
upstream and downstream directions. dREG scores can be interpreted as the degree to which each 
genomic position resembles a position that falls inside of a region in which transcription initiates. We 
use dREG scores to identify non-overlapping regions enriched for transcription initiation. We call these 
dREG “peaks” because they are analogous in most respects to ChIP-seq peaks.  
 
dREG training 
The new dREG model was trained using PRO/GRO-seq signal in K562 cells obtained from five 
independent experiments conducted by different hands in different labs over a period of approximately 
two years. This diversity of training data was designed to accommodate variation in experimental 
conditions, batch-specific effects caused by a variety of technical factors, and detection factors such as 
sequencing depth. A sixth K562 dataset (G7) and a dataset representing an independent cell type 
(GM12878) were held out during model training to evaluate whether the final was able to generalize to 
additional datasets. Table S1 lists all data sources. 

PRO-seq and GRO-seq data were downloaded from Gene Expression Omnibus (see accession 
numbers in Table S1). We verified that all libraries were highly correlated with one another (Figure S1). 
Using this data, dREG was trained on a positive set of transcribed DHSs, defined as the intersection 
between DHSs identified by Duke and UW DNase-I-seq assays (Thurman et al. 2012), and GRO-cap HMM 
calls (Core et al. 2014). We defined a negative set as informative positions that do not intersect with 
Duke DHSs, UW DHSs, or GRO-cap HMM calls in K562 cells. We labeled each informative position as 1 or 
0 according to whether it was found within a positive or negative region. To improve performance in 
unbalanced datasets we trained dREG on an unbalanced training set. In practice the number of 
informative genomic positions within and outside of bona-fide TSS differ greatly. To reduce the 
generalization error on genome-wide predictions, we optimized the ratio between positive and negative 
sets to best mimic this scenario. We selected 20K positive examples and 640K negative examples from 
each of the five datasets, which amounted to 3.3M training examples. Since the size of the dataset was 
beyond the capacity of conventional CPU-based SVM implementations, we developed a GPU-based 
SVM/SVR package Rgtsvm to handle this dataset, accomplishing the training within ~28.5hrs in a NVIDIA 
K80 GPU (Wang et al. 2017). The final models can be obtained from: 
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 ftp://cbsuftp.tc.cornell.edu/danko/hub/dreg.models/asvm.gdm.6.6M.20170828.rdata 

  
Discovering peaks enriched for dREG signal 
We devised a statistical framework to identify genomic regions that are enriched for evidence of 
transcription initiation. We break the discovery of sites into three separate stages: First, we identify 
regions enriched for high dREG scores; Second, we stitch these regions into candidate peaks; Third, we 
estimate the probability that these peaks are drawn from the negative set of sites. Final predictions for 
genomic regions that contain transcription start sites are corrected using the false discovery rate 
correction for multiple testing and reported to the user. 

During the first stage, our goal is to obtain an initial and inclusive set of sites and to stitch these 
into candidate peaks. We developed a statistical framework that determines a threshold dynamically for 
each dataset beyond which sites are likely to be located near a transcription start site. We estimate the 
distribution of dREG scores in negative sites using the Laplace distribution, following previous work 
using this distribution for the same task (Lin and Weng 2004). The Laplace distribution is parameterized 
by a mean and a scale (σ in equation 1). We assume that negative sites have a mean value of 0. The 
distribution of dREG scores represents a mixture distribution comprised of both negative and positive 
regions, and therefore fitting the scale parameter to all of the data tends to systematically overestimate 
the scale. To estimate the scale for a given dataset, we take advantage of the fact that the Laplace 
distribution is symmetric about its mean. Negative dREG scores are depleted for transcription start sites, 
and provide an estimate of the scale parameter which is empirically close to that obtained from the 
entire set of negative training examples when labels are available (Figure S4). Therefore, we estimate 
the scale parameter using negative dREG scores. Under these assumptions, the maximum likelihood 
estimate of the scale parameter is given as shown in (equation 1): 

𝜎 =  
∑𝑙

𝑙=1 |𝑙𝑙|

𝑙
                               (1) 

 
where ξ represents the dREG scores in training examples and l is the number of training examples. 
Genomic loci with dREG scores higher than 99.95% under the background model were selected and 
stitched together into intervals by extending genomic loci that pass the threshold by ±100 bp and 
merging these extended loci that were in 500 bp proximity. These broad regions are similar to those 
introduced in our first dREG publication (Danko et al. 2015). 

We next designed heuristics to refine the resolution of preliminary broad regions into narrow 
dREG peaks. Our approach was motivated by reports that TREs often form clusters of distinct 
divergently oriented initiation sites within a local genomic region (Chen et al. 2016; Scruggs et al. 2015). 
Conceptually, our strategy increases the density of sites that are scored by dREG within the region and 
defines heuristics to identify local maxima. We first increased the local density of SVR predictions within 
the boundaries of preliminary dREG peaks, from 50 bp (in the initial prediction of broad dREG regions) to 
10 bp. The dREG scores were smoothed by computing a weighted average of the seven dREG scores, 
representing ±60 bp of DNA (equation 2).  

 (2) 
We identified points representing local maxima within each peak in which the numerical 1st 

order derivatives changed from positive to negative. This resulted in one or more local maxima for each 
preliminary dREG region, each pair of which had a local minima between them. We trained a random 
forest to decide whether to break neighboring local maxima into separate transcription initiation regions 
at the local minima between them. The random forest employed dREG scores, ratio of scores between 
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the peak and valley, and the distance each peak and the valley. The random forest was trained on a 
manually curated dataset on chromosome 22 of the G1 PRO-seq dataset. dREG regions that contained 
three or more local maxima were split iteratively until no two adjacent ignored local maxima regions 
existed. The boundaries of final dREG peak were defined by two valleys between the split local maxima 
region. For the unsymmetric broad final peaks (>= 900 bp), we trimmed the longer trail to limit the 
width ratio between long side and short side within 2:1. The result of this procedure was a set of non-
overlapping transcription initiation regions which were often found in clusters. 

To estimate the statistical confidence of each candidate dREG peak we devised a hypothesis 
testing framework in which we test the null hypothesis that points within each peak are drawn from the 
null (i.e., non-TRE) distribution. We consider five dREG scores around the peak center (i.e., peak center - 
40bp, peak center - 20bp, peak center, peak center + 20bp, peak center + 40bp). Small peaks (<50 bp), 
were removed. We model dREG scores using a multivariate Laplace distribution parameterized by a 
mean vector and a covariance. We set the mean vector to 0, which corresponds to our null hypothesis 
that all five of these points are in negative regions. Nearby dREG scores have a complex correlation 
structure, requiring us to account for the covariance between sites. The covariance structure was 
specified by the Toeplitz matrix with homogenous variances and heterogeneous correlations (equation 
3), because this formulation provides the most flexibility to fit complex data, and plenty of data is 
available for training in each dataset. We compute the variance, σ2, between sites every 20 bp using all 
of the dREG scores in the dataset.  

                       (3) 
 
We calculated the p value based on the conditional cumulative distribution of a multivariate Laplace 
(i.e., p(Si≥psi | Xi=0, for i ∈ [1,...,5]), where psi denotes the predicted score for locus i). Each dREG peak is 
associated with an estimated p-value. P-values are corrected for multiple testing using the Benjamini 
Hochberg false discovery rate (Benjamini and Hochberg 1995). By default, dREG reports peaks with an 
FDR corrected p value ≤ 0.05. 

 
Web-based implementation using Apache Arvitata 
The public web-based version of dREG is hosted as a Science gateway in the Extreme Science and 
Engineering Discovery Environment (XSEDE) high performance computing resource (Gesing and 
Lawrence; Knepper et al. 2017). The dREG Gateway is hosted on the Jetstream server as a web service 
which can submit compute jobs and download the results of dREG peaks. From the view of software 
architecture, it can be divided into two parts: the secured web service and the High-performance 
computing (HPC) resource. The secured web service is built with PGA (PHP gateway with Airavata) on an 
Apache web server performs user authentication, data upload, sequence data transfer, and jobs 
submission to GPU servers using Apache Airavata middleware (Marru et al. 2011; Pierce et al. 2015). The 
HPC resources are GPU servers hosted by XSEDE. The dREG gateway, uses a job scheduler to call the 
dREG package complete the peak calling on GPU nodes. Once the calculation is completed, Apache 
Airavata copies the results from the HPC storage into the user's web storage. Since this gateway uses 
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GPUs to speed up dREG prediction with the aid of the Rgtsvm package (Wang et al. 2017), a typical run 
takes ~4-12 hours (mean = 6.7 hours) after the job starts running on the GPU server.  
 
Using TFit 
The Tfit software (most recent on April 28th 2017) was obtained from https://github.com/azofeifa/Tfit. 
The Tfit software package was run using the default parameters, following instructions from the package 
authors. We tried using a variety of different settings (both with and without optimizing the template 
density function by promoter or TSS associated regions; -tss parameter), and treating input data as both 
full Illumina reads and specifying the 3’ ends. We present the parameters that achieved the highest 
sensitivity for transcribed DHSs (without the -tss parameter, and with fully extended reads). 
 
Comparison to DNase-I-seq and ChIP-seq data 
DNase-I hypersensitive sites for the ENCODE reference cell types were processed using a uniform 
pipeline that we recently described (Chu et al. 2017). Sites detected using dREG were classified into 
DHS+ (defined as TIRs having peak calls in both Duke and UW DNase-I hypersensitivity data), and DHS- 
(defined as having peak calls in neither Duke nor UW data). All computations on bed files were 
performed using bedtools (Quinlan and Hall 2010). Bedtools was used to calculate overlap regions 
(bedtools intersect), closest distances (bedtools closest) and jaccard scores (bedtools jaccard). 
Downstream processing, data analyses, heatmaps, and other and visualizations were performed in R 
using the bigWig package (https://github.com/andrelmartins/bigWig). Our scripts are posted on GitHub 
(https://github.com/Danko-Lab/dREG/tree/master/dREG_submit_2018). 
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Figure Legends 
 
Figure 1.  dREG identifies regions of transcription initiation.  (A) WashU Epigenome Browser 
visualization of dREG signal, PRO-seq data, GRO-cap, DNase-I hypersensitivity, and H3K27ac ChIP-seq 
near the PRR14L and DEPDC5 genes.  Inserts show an expanded view of gene-proximal promoter 
elements (left) and a distal enhancer (right), each encoding multiple transcription initiation sites. (B) 
Barplots show the fraction of transcribed DHSs (left) and H3K27ac+ DHSs (right) in two holdout datasets 
that were discovered by dREG (red) and Tfit (blue).  (C) Scatterplot shows the fraction of sites recovered 
(Y-axis) as a function of sequencing depth (X-axis) for seven datasets shown in Supplementary Table 1.  
The best fit lines are shown.  The color represents whether the dataset was used for training (green) or 
is a holdout dataset (K562, red) or cell type (GM12878, blue). 
 
Figure 2.  dREG identifies new regions that were not found using other molecular assays.  (A) 
Heatmaps show the log-signal intensity of PRO-seq, DNase-I-seq, or ChIP-seq for H3K27ac, H3K4me1, 
and H3K4me3. The fraction of sites intersecting ENCODE peak calls is shown in the white-black color 
map beside each plot.  Color scales for signal and the fraction in peak calls are shown below the plot.  
Each row represents TIRs found overlapping an annotated transcription start site (n= 15,652) or >5kb to 
a start site (n= 43,127) (B) Scatterplot shows the number of new TIRs that were not discovered in 
DNase-I-seq or H3K27ac ChIP-seq data (Y-axis) as a function of sequencing depth (X-axis) for seven 
datasets shown in Supplementary Table 1.  The best fit line is shown.  The color represents whether the 
dataset was used for training (green) or is a holdout dataset (K562, red) or cell type (GM12878, blue). (C) 
Three separate genome-browser regions that denote TIRs discovered using dREG, but were not found in 
DNase-I-seq or H3K27ac ChIP-seq data.  Tracks show dREG signal, PRO-seq data, GRO-cap, DNase-I 
hypersensitivity, H3K27ac ChIP-seq, and annotated genes. 
 
Figure 3. dREG TIRs were reproducibly associated with specific transcription factor binding. (A) Plot 
shows the number of elements discovered using dREG, but not found in DNase-I hypersensitivity or 
H3K27ac ChIP-seq (Y-axis) for PRO-seq datasets in K562 and GM12878 cells. The color denotes other 
functional marks intersecting sites discovered only using dREG. (B) Histogram representing the fraction 
of binding sites for 100 transcription factors supported by a dREG TIR that was not also discovered in 
DNase-I hypersensitivity data (i.e., dREG+ DHS- / dREG+ DHS+). Several of the outliers are shown. The 
color denotes whether the factor is a member of the Pol III preinitiation complex (green), Pol II 
preinitiation complex (red), associated with H3K9me3 or H3K27me3 heterochromatin (purple), or is a 
sequence specific transcription factor (blue). (C) Metaplots show the raw signal of DNase-I 
hypersensitivity, MNase-seq, and ChIP-seq for H3K4me1, H3K4me3, H3K27ac, and H3K27me3 for six 
transcription factors, including MAZ, ZNF143, GATA2, SPI1, NFYB, and CEBPB. Signals are shown for 
dREG+DHS- (green) and dREG+DHS+ (purple) sites. The number of sites contributing to each signal is 
shown (bottom). 
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Supplementary Figure Legends 
 
Supplemental Figure S1.  PRO-seq datasets used during dREG model training.  Heatmap shows 
Spearman’s rank correlation (upper left) and raw gene-body correlations (lower right) between five 
PRO-seq and GRO-seq datasets used during dREG model training. 
 
Supplemental Figure S2.  dREG accurately detects the location of regulatory elements.  Precision-recall 
curves show the precision (Y-axis; true positives/ [true positives + false positives]) and recall (X-axis; true 
positives / [true positives + false negatives]) of the new and previously published dREG models on the 
indicated dataset. The gold standard positive set was defined as DNase-I hypersensitive sites having a 
GRO-cap-defined transcription start site. The negative set was defined as sites lacking both GRO-cap and 
DNase-I hypersensitivity. The figure reflects all informative positions having a threshold of PRO-seq 
signal scored by dREG in the indicated dataset.  Both datasets were held out during model training. 
 
Supplemental Figure S3.  Procedure for discovering transcription initiation regions (TIRs).  We devised 
a new method for finding peaks of dREG signal, called transcription initiation regions (TIRs).  dREG 
selects informative positions and predicts dREG signal, increases the local density in high scoring 
regions, and smoothes to identify local increases in signal intensity.   
 
Supplemental Figure S4.  Laplace distribution fits dREG scores in negative regions. Histogram shows 
the density (Y-axis) of dREG scores (X-axis) in regions that were defined as true negatives using 
orthogonal sources of genomic data. The lines represent the best fits to the distribution based on all 
true-negative sites (blue) or based on negative dREG scores (red). 
 
Supplemental Figure S5.  dREG identifies unidirectional TREs. WashU Epigenome Browser visualization 
of dREG signal, PRO-seq data, GRO-cap, DNase-I hypersensitivity, and H3K27ac ChIP-seq near the ASTN1  
and HHAT genes.  Two TIRs (bottom) are supported by reads on only one strand. TIR indicated by the 
gray bar (top) lacks signal in both H3K27ac and DNase-I hypersensitivity Two TIRs (bottom) are 
supported by reads on only one strand. 
 
Supplemental Figure S6. Novel elements discovered using dREG frequently overlap transcription 
factor ChIP-seq peaks. Plot shows the number of novel elements discovered using dREG, but not found 
in DNase-I hypersensitivity or H3K27ac ChIP-seq (Y-axis) for seven PRO-seq datasets. Six datasets were 
used from K562 cells (G1-7) and one dataset was used from GM12878. The number of novel dREG sites 
overlapping transcription factor ChIP-seq peaks (dark gray),H3K4me1 ChIP-seq peaks (gray), or not 
overlapping either (light gray) are shown. 
 
Supplemental Figure S7. Novel dREG TIRs overlap local increases in histone marks associated with 
enhancers. Meta plots show the raw signal for H3K27ac, H3K4me1, and H3K4me3 near TIRs identified 
using dREG, but were not found in peak calls for H3K27ac or DNase-I hypersensitivity. 
 
Supplemental Figure S8. Histogram shows the distribution of jaccard distance between dREG sites in 
K562 cell with respect to DNase-I hypersensitivity sites in ENCODE reference cell types.  Jaccard 
distance was calculated for (A) all dREG sites in K562 cells, (B) dREG sites in K562 cells that do not 
overlap with DNase-I hypersensitive sites, and (C) dREG sites in K562 cells that do not overlap with 
DNase-I hypersensitive sites nor with H3K27ac ChIP-seq peaks.  Major cell types among the outliers 
were colored and labeled.  
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Supplemental Figure S9. dREG+DHS- sites do not reflect clonal differences in between K562 cells 
grown by ENCODE and by our lab. Heatmaps show raw signal for two replicates of ATAC-seq data from 
K562 cells grown in our lab and clonally related to K562 cells used to produce PRO-seq data. Data is 
shown near dREG+DHS+ (n= 29,828) and dREG+DHS- (n= 7,350). Sites were ordered by dREG score. 
 
Supplemental Figure S10. Accuracy of classifying DHS status of dREG TIRs. Receiver operating 
characteristic (ROC) plot shows the accuracy of predicting whether TIRs identified using dREG were also 
DHSs recognized by DNase-I hypersensitivity using either 100 transcription factor ChIP-seq datasets in 
K562 cells (black, auROC= 0.88) or the dREG score alone (gray, auROC= 0.75).   
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Supplementary Tables 
 
Supplemental Table S1: Sources of PRO-seq data used in dREG model training and evaluation. 
Columns show the data identification number, cell line, number of mapped sequence reads, informative 
sites in which dREG scores were computed, reference, and the role (training or holdout validation) in 
this particular study. 
 

Data ID Cell line Mapped 
Reads  

Informative 
Sites 

GEO Reference Role 

G1 K562 374,946,808 17,120,769  GSM1480327 (Core et al. 2014) Training 

G2 K562 18,129,333 4,189,045  GSM1480325 (Core et al. 2014) Training 

G3 K562 57,520,888 9,201,344  SUBMIT Herein Training 

G5 K562 71,452,942  8,678,964  GSE89230 (Vihervaara et al. 2017) Training 

G6 K562 26,972,822 5,890,140  GSM2545324 (Dukler et al. 2017) Training 

G7 K562 27,046,373 5,839,230  GSM2545325 (Dukler et al. 2017) Holdout 

GM GM12878 105,936,649 9,738,488 GSM1480326 (Core et al. 2014) Holdout 
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