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Abstract  1 

Psychophysiological interaction (PPI) and beta series correlations (BSC) are two commonly used 2 

methods for studying task modulated connectivity on functional MRI (fMRI) data.  So far there are no 3 

comprehensive tutorials to explain these two methods, and the relationships between these two have not 4 

been established.  In the current paper, we explained in detail what the two methods measure, and how 5 

these two methods are related.  We elucidated why the PPI approach always measures connectivity 6 

differences between conditions.  This is in contrast with the BSC approach, which can measure the 7 

absolute connectivity in a specific task condition.  By explaining the deconvolution process of the 8 

observed blood-oxygen-level dependent (BOLD) signals from fMRI with hemodynamic response 9 

function, we explicated that PPI can measure the differences of correlations of trial-by-trial variability in 10 

different conditions.  Therefore, when comparing connectivity between different conditions, PPI and BSC 11 

methods could in principle generate similar results.  In addition, we established that when modeling 12 

multiple conditions in PPI analysis, PPI models calculated from direct contrast between conditions could 13 

generate identical results as contrasting separate PPI terms coding each of the conditions (a.k.a. 14 

“generalized” PPI) if the models were defined correctly.  We also reported empirical PPI and BSC 15 

analyses on fMRI data of a stop signal task to support our points. 16 

 17 

Keywords: beta series, deconvolution, event-related design, functional connectivity, psychophysiological 18 

interaction.  19 

  20 
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1. Introduction 1 

Although the majority of fMRI studies are task-based, because of its simplicity, resting-state fMRI has 2 

emerged as an alternative method to measure functional connectivity (Biswal et al., 1995, 2010).  The 3 

entire scan period of resting-state can be treated as a single state.  Therefore, correlation coefficients of 4 

time series between different brain regions could be used to study functional connectivity (Biswal et al., 5 

1995).  For task based fMRI, there are typically multiple task conditions within a scan.  The challenge is 6 

to estimate functional connectivity differences between different conditions.  There are primarily two 7 

methods that have been developed to study functional connectivity differences for task fMRI data, namely 8 

psychophysiological interaction (PPI) (Friston et al., 1997) and beta series correlation (BSC) (Rissman et 9 

al., 2004).  There is also dynamic causal modeling (DCM) that can be used for this purpose (Friston et al., 10 

2003).  However, this method is restricted to a small number of regions of interest, and is largely 11 

hypothesis-driven.  Therefore, we did not cover DCM in the current paper.  12 

 PPI was first proposed by Friston and colleagues based on the interaction term between a 13 

physiological variable of a regional time series and a psychological variable of task design in a regression 14 

model (Friston et al., 1997).  Thereafter, a major update was made to perform deconvolution on the time 15 

series from the seed region, so that the interaction term could be calculated at the “neuronal level” rather 16 

than at the hemodynamic response level from fMRI signals (Gitelman et al., 2003).  Later, McLaren and 17 

colleagues proposed a “generalized PPI” approach for modeling PPI effects for more than two conditions 18 

(McLaren et al., 2012).  They proposed to model each task condition with reference to all other conditions 19 

and then compared the PPI effects between the conditions of interest, rather than directly calculating PPI 20 

effects between the two conditions.  Recently, we found that the interaction between not centering the 21 

psychological variable and imperfect deconvolution process may lead to spurious PPI effects (Di et al., 22 

2017), and the deconvolution may be not a necessary step for PPI analysis on block-design data (Di and 23 

Biswal, 2017).  24 

 The BSC method, on the other hand, was primarily proposed for event-related designs (Rissman 25 

et al., 2004).  By modeling the activations of every trial separately in a general linear model (GLM), one 26 
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can estimate a series of beta maps for the series of trials.  Therefore, connectivity in different task 1 

conditions can be calculated and compared by correlations of trial-by-trial beta series variability in 2 

different conditions.  The relationships between the BSC and PPI have not yet been clearly explained.  3 

Nevertheless, one study has suggested that BSC method is more suitable for event-related data than PPI 4 

(Cisler et al., 2014).  However, our recent study using a large sample did not support this conclusion (Di 5 

and Biswal, 2018).   6 

 In the current paper, we have provided an in depth explanation of the PPI and BSC methods, and 7 

explain the relationships and differences between these two methods.  In order to do so, we need to first 8 

clarify why the PPI method always measure connectivity differences between conditions.  In addition, we 9 

explained the deconvolution process implemented in the calculation of PPI term, which will help to 10 

understand how PPI can measure the differences between the trial-by-trial correlation in one condition 11 

and the moment-to-moment correlation in the remaining time points.  Because of this, the PPI differences 12 

between conditions and the BSC differences between conditions can in principle measure the same task 13 

modulated connectivity.  We have used both simulations and real fMRI data of an event-related designed 14 

stop signal task to illustrate our points.  15 

1.1. Modeling of task main effects 16 

We start with the modeling of the main effects of task conditions.  Assuming a simple task design of two 17 

conditions A and B, in a regression model, we can use two regressors to represent the two conditions in 18 

two different ways.  First, we can use the two regressors to represent the specific effect of each condition, 19 

i.e. using 1 to represent the modeled condition and 0 for the other condition (Figure 1A).  However, a 20 

constant term that represents the overall effect is usually added in a regression model, which is also 21 

known as the intercept.  Therefore, we only need to add one more regressor to represent the differential 22 

effect between the two conditions (Figure 1B).  The two models are mathematically equivalent, because 23 

the two regressors in model 1A could be expressed as linear combinations of the two regressors in model 24 

1B, and vice versa.  However, because of the differences model strategies, the meanings of the same 25 

regressor from the two models (the first regressor from model 1A and the second regressor from model 26 
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1B) have changed.  In model 1A, the regressors represent the condition specific effects.  In model 1B, 1 

however, the second regressor actually represents the differential effect of conditions A and B.  This is 2 

important regarding the interpretation of the estimated effects of these regressors.  Mathematically, model 3 

1B can be expressed as:  4 

εββ +⋅+= Psychxy 10           (1) 5 

where xPsych represents the differential effects between conditions A and B, i.e. the psychological variable.6 

y represents the brain signal in a brain region or voxel.  β0 and β1 are parameter estimates that represent 7 

the mean effect and differential effect of the two conditions, respectively.   8 

 9 

Figure 1 Main effects and interaction models for two experimental conditions.  The main effects of two 10 

conditions can be modeled as two separate regressors (A), or modeled as the differential and mean effects11 

of the two conditions (B).  When modeling the interaction terms of the experimental condition with a 12 

continuous variable, the same two strategies could be used as C and D.  E illustrates how the interaction 13 

term was changed (from D) when centering the psychological variable before calculating the interaction 14 

term.  Because of the different modeling strategies, the interpretations of the regressors changed. 15 

 16 

 Another important point from equation 1 is that although xPsych is usually represented as 1 and 0 17 

for the two conditions, the constant component in the xPsych can be explained by the constant term in 18 

el 

  

s 
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equation 1 (see supplementary materials).  Thus, whether centering the xPsych variable will not affect the 1 

effect estimate of β1, neither the interpretation of β1.  β1 always represents the differential effect of the two 2 

conditions. 3 

 4 

1.2. Functional connectivity and connectivity-task interactions 5 

The term functional connectivity was first defined by Friston (Friston, 1994) as temporal correlations 6 

between spatially remote brain regions.  Assuming that the functional connectivity is the same during the 7 

period of scan, e.g. in resting-state, it is straightforward to calculate correlation coefficients between two 8 

brain regions to represent functional connectivity.  In a more general regression form, the model can be 9 

expressed as:  10 

εββ +⋅+= physioxy 10           (2)
 11 

where  xphysio represents the time series of a seed region.  β1 in this case represents the correlation between 12 

seed and tested voxel, i.e. functional connectivity. 13 

 In most of task fMRI experiments, researchers design different task conditions within a scan run, 14 

so that the effect of interest becomes the differences of temporal correlations between the conditions.  We 15 

can combine equations 1 and 2 to include both the time series of a seed region (the physiological variable) 16 

and the psychological variable representing task designs into a regression model.  Most importantly, the 17 

interaction term between the psychological and physiological variables can also be included.  For the 18 

simplest scenario with only one psychological variable (two conditions), the psycho-physiological 19 

interaction (PPI) model can be expressed as: 20 

εββββ +⋅⋅+⋅+⋅+= PhysioPsychPhysioPsych xxxxy 3210           (3)
 21 

Equation 3 can be illustrated figuratively in Figure 1D.  Combine the two terms with xPhysio, equation 3 22 

can be expressed as: 23 

εββββ +⋅⋅++⋅+= PhysioPsychPsych xxxy )( 3210           (4)
 24 
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Equation 4 shows that the relationship between the seed region xPhysio and test region y is: β2+β3·xPsych, 1 

which is a linear function of xPsych.  Therefore, a significant β3 represent significant task modulations on 2 

connectivity.  3 

 Like the interpretation of task main effects, the interpretation of the PPI effect depends not only 4 

on the coding of the psychological variable, but also the inclusion of other variables in the model.  In 5 

equation 3 the main effect of time series xPhysio is included.  We can think about the time series main effect 6 

xPhysio and interaction effect xPhysio · xPsych as the second order counterparts of the constant effect and main 7 

effect of xPsych in equation 1.  Here the point is that adding this time series main effect affects the 8 

interpretation of the interaction term.  Because the overall relationship with the seed time series has been 9 

modeled, the interaction term measures the differences of the relationships between the two conditions.  10 

We note that if xPhysio main effect was not added, the interaction term could actually be calculated with 11 

each condition separately (Figure 1C).  Then the third and fourth columns in Figure 1C can represent 12 

condition specific connectivity effects.  Here again the same interaction terms from the two models 13 

(regressor 3 in model 1C and regressor 4 in model 1D) represent different effects.   14 

 In addition, because the main effects of xPhysio and xPsych are both added in the interaction model 15 

(equation 3), the interpretation of the interaction term should refer to the demeaned version of the two 16 

variables.  Because the xPsych is usually coded as 0 and 1 for the two conditions, the demeaned version of 17 

xPsych will be -0.5 and 0.5 instead.  This will make the interaction term look very different (column 4 in 18 

Figure 1E compared with that in Figure 1D).  However, the estimated interaction effect will be identical, 19 

because the difference between the two interaction terms is the physiological main effect, which has been 20 

taken into account in the model (For real fMRI data, however, the centering matters because the main 21 

physiological main effect interacts with the deconvolution process to produce spurious PPI effects (see Di 22 

et al., 2017 for more details)).  23 

 To better illustrate the meaning of PPI effect, we plot the PPI effect against the original time 24 

series xPhysio.  PPI can be represented as a projection of the seed time series, so that the PPI represents 25 
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different relationships with the seed region in different task conditions.  When the psychological variable 1 

is coded as 1 and 0 for the two conditions, the PPI represents a perfect relationship with the seed time 2 

series in the “1” condition and a smaller effect in the “0” condition, which is reflected as a horizontal line 3 

in Figure 2D.  When the mean of the psychological variable is removed before calculating the interaction 4 

term, the projection rotates clockwise compared with the non-centered version (Figure 2G).  However, 5 

what is reflected in the two projections are the same, which is the difference between the two conditions.  6 

In real cases, there may be positive connectivity in condition A and no connectivity in condition B, or 7 

there may be no connectivity in condition A but negative connectivity in condition B.  In both cases, PPI 8 

can capture the differential connectivity effects.  This logic is similar to the main psychological effect 9 

explained in section 1.1, which reflects the differences between the two conditions but not the effect in 10 

one condition.  11 

 12 

Figure 2 The interaction term as a projection of the continuous (physiological) variable.  A continuous 13 

variable (A) is multiplied with a psychological variable (B or E) to form an interaction term (C or F), 14 

which can be plotted against the continuous variable itself (D or G).  When the psychological variable is 15 

modeled as 0 and 1 (B), the projection will result in a horizontal line (y = 0) during the 0 period and a y = 16 

x line during the 1 period.  But usually the psychological variable is centered (D).  Therefore, the 17 

projection represents y = - 0.5 · x and y = 0.5 · x lines during the two conditions, respectively. 18 

e 
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 1 

1.3. More than two conditions 2 

When the number of conditions increases, more regressors are needed to represent each condition, with 3 

typically n regressors for n conditions.  Because there is always a constant term, or intercept, in the 4 

regression model, we actually need n – 1 additional regressors.  This is convenient for most task fMRI 5 

studies, because there is usually an implicit baseline conditions in an fMRI experiment.  For event-related 6 

design, it is even difficult to define the implicit baseline condition.  Therefore, we can include all other 7 

experimental conditions, and leave the baseline condition out of the model.  Because of the inclusion of 8 

the constant term, we should always keep in mind that the regressors included in the model represent 9 

differences of between the modeled condition with respect to all the other conditions, rather than the 10 

specific effect of a condition. 11 

 Let us assume a task design with task conditions A and B together with a baseline condition R.  In 12 

this case, the effect of interest is the differences between conditions A and B.  A natural way to model the 13 

three conditions is to use two regressors to represent A and B, separately (Figure 3B and 3D).  We could 14 

then calculate the interaction terms of the two psychological regressors separately with the seed time 15 

series.  The two interaction terms represent the correlation differences between A - (B + R) and B - (A + 16 

R), respectively.  A contrast of [A – (B + R)] – [B – (A + R)] = 2 × (A - B) can then be used to examine 17 

the differential effect between A and B.  This strategy is usually referred to as “generalized PPI” 18 

(McLaren et al., 2012).  One can also directly contrast A with B to define a new psychological variable.  19 

It can be achieved in SPM by defining contrast value 1 to condition A, and -1 to condition B.  However, 20 

one should not forget that there is the third condition R, which will be implicitly left as 0.  Simply doing 21 

this is problematic, because it assumes that the relationship in the R condition is somehow between what 22 

is in A and B conditions (Figure 3G).  Because there are three conditions per se, we have to use two 23 

variables to model the differential effects among the three conditions.  In this case, we could include one 24 

more psychological variable to represent the differential effect between the mean effect of A and B and 25 

the effect of R (Figure 3H).  The interaction term of this psychological variable with the seed time series 26 
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can effectively remove the differential effects of relationships between conditions A/B and condition R 1 

(Figure 3I).  Therefore, if we include the PPI terms of 3H and 3I in the model, the effect of 3G will be 2 

equivalent to the differential effects of 3C and 3E.  In the original paper of McLaren, it has been shown 3 

that the “generalized PPI” approach performed better than the contrast PPI.  It is probably because of the 4 

neglect of the R condition.  However, if the psychological variables are modeled correctly, the two 5 

methods should provide the same results.  6 

 7 

Figure 3 Illustrations of “generalized” PPI and contrast PPI for three conditions. Because of the inclusion 8 

of the constant term, two psychological variables are needed to model the differences among the three 9 

conditions.  In the “generalized” PPI approach, the two psychological variables are demonstrated as B and10 

D, which represent one specific condition against the other two conditions.  The corresponding PPI terms 11 

were plotted against the physiological variable (A) in C and E.  In the contrast PPI approach, the two 12 

psychological variables are demonstrated as F and H, which represent the differential and mean effects of 13 

the last two conditions.  The corresponding PPI terms were plotted against the physiological variable (A) 14 

in G and I. 15 

 16 

1.4. Block design and event-related design 17 

So far we have divided the observations of different task conditions into different groups regardless of the 18 

orders of the observations.  For fMRI, the task conditions need to be designed carefully to accommodate 19 

on 
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the properties of hemodynamic responses following the neural activity changes due to the task designs.  1 

There are usually two types of designs, i.e. block design and event-related design.  For block design, a 2 

task condition is broken into separate short blocks, and the blocks are repeated for several times within a 3 

scan run.  For event-related design, each trial is a unit to evoke hemodynamic responses.  The temporal 4 

distance between trials should be designed carefully, so that the hemodynamic response for each trial 5 

could be effectively separated.  The psychological variable for event-related design is modeled as a series 6 

of impulse function at the onset of the trials with remaining time points as 0.  The mathematical meanings 7 

of the psychological variables in a block design and an event-related design are the same, which represent 8 

the differences between conditions.  And it is the same for the PPI effects as well.  For the block design, 9 

we can think of PPI as a measure of the differences of moment-to-moment correlations between 10 

conditions.  The event-related design can be thought of as the correlation of activations at each trial onset 11 

time point compared with the correlation of all remaining time points.  In other words, it measures the 12 

correlations of trial-by-trial activation variability in one condition compared with the correlations of 13 

moment-to-moment activations in the remaining time points.  Again, it measures the differences of 14 

correlations between the two conditions but not the correlation of the trial condition itself. 15 

1.5. Convolution and deconvolution  16 

One important aspect of fMRI is the asynchrony between the (hypothetical) neuronal activity and the 17 

observed blood-oxygen-level dependent signals (BOLD).  Imagine that a single trial elicits neural activity 18 

that is typically treated as an impulse function with short event duration.  This event or short neural 19 

activity gives rise to a delayed hemodynamic response, usually called hemodynamic response function 20 

(HRF) (Figure 4A).  If we have a study design or hypothetical neural activity, the expected BOLD signal 21 

can be calculated as a convolution of the neural activity time series with the HRF.  Because the fMRI data 22 

are discrete signals, the convolution can be converted into a multiplication of the neuronal signal with a 23 

convolution matrix defined according to the HRF.  If we use z to represent variables at the neuronal level, 24 

and x to represent variables at the BOLD level, the convolution can be expressed as:  25 
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zHhzx ⋅=∗=           (5) 1 

where * represents the convolution process, and · represents matrix multiplication, h is the HRF, and H 2 

represents the matrix form of h.  Each column of H represents a HRF with a different start point (Figure 3 

4B).  Therefore, the multiplication of a neural time series H with z can be represented as a summation of 4 

the hemodynamic responses of z at every time point. 5 

 6 

Figure 4 Hemodynamic response function h (A) and its corresponding convolution matrix H (B).  7 

 8 

 In fMRI data analysis, we typically hypothesize that an experimental manipulation will evoke 9 

immediate neural response (relative to the time scale of BOLD responses).  The expected BOLD 10 

responses to the experimental manipulations could then be represented as the convolution of the 11 

psychological variable zPsych (a box-car function or a series of impulse functions) with the HRF.  Thus, the 12 

BOLD level prediction variable xPsych can be calculated from zPsych as the following: 13 

hzx PsychPsych ∗=           (6) 14 

On the other hand, we have a time series of a region xPhysio, which is already at the BOLD level.  15 

Therefore, we can directly calculate the interaction term by multiplying xPhysio with xPsych. 16 

PhysioPsychPPI xxx ⋅=1           (7) 17 

This is how PPI was calculated when the method was originally proposed (Friston et al., 1997).  The 18 

limitation of this approach is that it calculates the interaction at the BOLD level, but the real interaction 19 

would happen at the hypothetical “neuronal” level.   20 

he 
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 Given the BOLD level time series x, we can perform the inverse process of convolution, i.e. 1 

deconvolution to recover the time series z at the neuronal level from equation 5.  However, the H matrix 2 

is a square matrix, and deconvolution cannot be simply solved by inversing the H matrix.  In addition, in 3 

real deconvolution problem like the fMRI signals, there are always noises in the recorded signals that 4 

need to be taken into account.  Therefore, the deconvolution problem has to solve the following model 5 

with a noise component ε.  6 

ε+⋅= zHx           (8) 7 

Because H cannot be directly inversed, some computational methods like regularization are needed to 8 

reliably obtain z.  In SPM, it additionally substitutes z with Discrete Cosine Series, so that the estimation 9 

of temporal time series was transformed into frequency domain (Gitelman et al., 2003).  And the 10 

regularization is applied to specific frequency components.  11 

 Using deconvolution, a seed time series xPhysio could be deconvolved to the neuronal level time 12 

series zPhysio and multiplied with the neuronal level psychological variable.  The interaction term could be 13 

convolved back into BOLD level.   14 

hzzx PhysioPsychPPI ∗⋅= )(2           (9) 15 

Comparing x1
PPI and x2

PPI, we know that they are not mathematically equivalent.  The later one is more 16 

appropriate to describe neural interactions.  However, empirically, the PPI terms calculated with the two 17 

ways could be very similar for block designs (Di and Biswal, 2017).  On the other hand, deconvolution is 18 

an ill-posed problem, and relies on sophisticated computational techniques, which may not work well in 19 

some circumstances.  Therefore, it has been suggested that at least for block design, deconvolution may 20 

not be necessary (Di and Biswal, 2017; O’Reilly et al., 2012).  The deconvolution approach may still be 21 

important and necessary for event-related design. 22 

1.6. Beta series correlations 23 

BSC is based on a simple idea of calculating correlations of trial-by-trial variability of activations.  24 

Therefore, instead of modeling different task conditions, BSC models every trial’s activationss to obtain a 25 
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beta map for each trial.  For each trial, an impulse function at the trial onset is defined and is convolved 1 

with HRF.  Therefore, in a GLM model for BSC analysis there is the same number of regressors as the 2 

number of trials plus a constant term.  The model can be expressed as the following: 3 

εβββββ +⋅+⋅++⋅+⋅+= nn xxxxy 1122110 L           (10) 4 

where n represents the number of trials, and xn represents the modeled response of the trial n.  The model 5 

can be expressed in a matrix form: 6 

εβ +⋅= Xy           (11) 7 

where β represents a vector of βs that represent the activations of different trials (plus a β0 for the constant 8 

term).  The matrix X is the design matrix (see Figure 5 for examples).  One can then calculate cross-trial 9 

correlations of the beta values between regions to represent functional connectivity.  Since there are 10 

usually more than one experimental condition, the beta series can be retrospectively grouped into 11 

different conditions, and the beta series correlations can be compared between the conditions. 12 

 13 

Figure 5 Example design matrices for beta series correlation (BSC) analysis for a slow event-related 14 

design (Flanker task) (A) and a fast event-related design (Stop signal task) (B).  Each regressor (column) 15 

other than the last one represents the activation of a trial, while the last column represents the constant 16 

term.  The sampling time is 2 s for both of the two designs.  The intertrial intervals for both the designs 17 

were randomized to optimize the estimations of hemodynamic responses.  The mean intertrial intervals 18 

are 12 s for the Flanker task and 2.5 s for the Stop signal task, which result in 24 trials and 126 trials, 19 

respectively. 20 

 21 

nt 

n) 
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 The hemodynamic response typically reaches the peak at 6 s after the trial onset and returns back 1 

to the baseline after about 15 s.  To avoid overlaps of hemodynamic responses between trials, 2 

conventional event-related experiments use slow designs with intertrial interval usually greater than 10 s.  3 

Figure 5A demonstrates a beta series GLM for a slow event related design from a Flanker task (Kelly et 4 

al., 2008).  Considering the sampling time of 2 s for typical fMRI, the design matrix of Figure 5A can be 5 

reliably inversed (24 trial regressors vs. 146 time points).  However, fast event-related design is becoming 6 

popular, because of its efficiency of maximizing experimental contrasts.  The intertrial interval could be 7 

close to the sampling time of fMRI for some designs.  Figure 5B demonstrated a beta series GLM for a 8 

fast event-related design from a stop signal task (Di and Biswal, 2018).  In this case the mean intertrial 9 

interval is 2.5 s.  It can be seen from Figure 5B that the number of regressors becomes closer to the 10 

number of time points (126 trial regressors vs. 182 time points).  This matrix cannot be reliably inversed 11 

using ordinary least squares (OLS) method, and some sophisticated computational methods may be 12 

helpful to resolve the problem, e.g. using regularization or modeling a single trial against all other trials to 13 

reduce the number of regressors (Mumford et al., 2012). 14 

 The beta values in the beta series model typically represent BOLD level activations at each trial.  15 

However, in an extreme case when the trials are presented at every time point, the beta series GLM model 16 

will become exactly the same as the convolution matrix in Figure 4B.  This suggests a link between the 17 

beta series model and deconvolution.  For the deconvolution model, the response for every time point was 18 

modeled (equation 8).  For the beta series GLM model, however, only the time points of trial onsets were 19 

modeled (equation 11).  Nevertheless, the goals of the two models are the same to measure activity at the 20 

modeled trial onsets.  Here the activations at the neuronal level at the trial onset are equivalent to the 21 

activations at the BOLD level of the trials.  Therefore, we can think of beta series modeling as a modified 22 

deconvolution process, even though strictly speaking it is not.  Given this, we can discuss the 23 

relationships between the PPI and BSC methods.   24 

1.7. The relationship between PPI and BSC 25 
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As described in previous sections, the BSC method selectively picks the time points at trial onsets, and 1 

computes trial-by-trial correlations between brain regions.  The PPI, on the other hand, always measures 2 

connectivity differences as coded by a psychological variable.  Therefore, an absolute beta series 3 

correlation in one condition is not directly comparable to a PPI effect.  However, what are usually of 4 

interest are the connectivity differences between conditions.  In this case, we can compare beta series 5 

correlation differences between conditions.  Considering the same task design with experimental 6 

conditions A, B, and a baseline R, we can directly compare the beta series correlations between 7 

conditions A and B (i.e., A – B).  If PPI was modeled using the “generalized” approach, we can have the 8 

two PPI effects representing A – (B + R) and B – (A + R).  These two PPI effects can be directly 9 

contrasted, which result in the contrast of 2 × (A – B).  Therefore, in theory the BSC and PPI methods 10 

measure the same connectivity differences.  11 

 Although theoretically PPI and BSC could measure the same task modulated connectivity, the 12 

results of PPI and BSC on real fMRI data may not be identical.  Several factors may contribute to the 13 

differences.  The first is the different approaches to deconvolution.  The deconvolution method 14 

implemented in SPM uses Discrete Cosine Series to convert the temporal domain signal into frequency 15 

domain, and then applies regularization on the frequency domain to suppress high frequency components 16 

in the signals.  For BSC method, if it is a slow event-related design, the design matrix includes all the 17 

trials to obtain all the trial activations at the same time.  For a fast event-related design, some 18 

regularization methods may be used to obtain the beta series, or the model should be modified to contain 19 

one regressor of one trial and one regressor of all other trials to reduce the number of regressors 20 

(Mumford et al., 2012).  The efficiency and reliability of these mentioned methods are difficult to 21 

determine and compare.  And it may depend on the intertribal intervals of a design (Abdulrahman and 22 

Henson, 2016; Mumford et al., 2014; Visser et al., 2016), or different brain regions due to different 23 

amount of HRF variability (Handwerker et al., 2004).  Therefore it is difficult to make a definite 24 

conclusion at the current point about which method is better over the other.  25 
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 Another difference may be the differences in measure of connectivity.  By using a regression 1 

model PPI essentially measures covariance differences between conditions.  On the other hand, BSC 2 

typically uses correlation coefficients.  It is still largely unknown how the variability of BOLD signals 3 

changes in different task conditions.  But the differences in measures of covariance and correlations can 4 

certainly give different results.  For BSC, one can choose different measures of connectivity, e.g. Pearson 5 

product-moment correlation, Spearman rank correlation, covariance, or even use the similar beta series by 6 

task interaction to estimate connectivity differences.  However, it is still an open question about which 7 

method is optimal for the purpose of connectivity estimation.  8 

1.8. An empirical demonstration 9 

To summarize, we have explained the meanings of PPI and BSC analyses, as well as the relationships 10 

between them.  PPI always measures connectivity differences as coded by the psychological variable, 11 

while BSC could measure connectivity in specific condition.  When comparing connectivity between 12 

conditions, PPI and BSC methods should in principle generate similar results, although different ways to 13 

handle deconvolution and different measures of connectivity may contribute to the differences in results.  14 

For PPI analysis, there may be multiple ways to model task conditions in PPI analysis.  But if done 15 

correctly, different approaches in principle should generate the same results.   16 

 In the following sections, we describe PPI and BSC analyses on a fast event-related designed stop 17 

signal task.  In this task there were two experimental conditions (Go and Stop) in addition to an implicit 18 

baseline.  The connectivity differences between the Stop and Go conditions have been reported in our 19 

previous work (Di and Biswal, 2018).  To better illustrate the relationships between PPI and BSC 20 

methods, we reported connectivity measures of PPI and BSC methods for simple conditions and condition 21 

differences.  In addition, we will compare different measures of BSC, i.e. Pearson’s correlation, 22 

Spearman’s correlation, and covariance, and examine whether these measures will affect BSC results.  23 

Lastly, we will compare PPI results using the “generalized PPI” approach with direct contrast approach 24 

where the differential and mean effects of the two conditions are both modeled.  We will show that these 25 

two modeling approaches can provide identical connectivity difference measures. 26 
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 1 

2. Materials and methods 2 

2.1. Dataset and designs 3 

In a previous study, we have reported PPI and BSC results of connectivity differences between the Stop 4 

and Go conditions (Di and Biswal, 2018).  In the current manuscript, we have used the same data to 5 

illustrate how different PPI models could give rise to the same results and how the PPI and BSC methods 6 

can be similar or different.  This dataset was obtained from the OpenfMRI database, with accession 7 

number ds000030.  Only healthy subjects’ data were included in the current analysis.  After removing 8 

subjects due to large head motion, a total of 114 subjects were included in the current analysis (52 9 

females).  The mean age of the subjects was 31.1 years (range from 21 to 50 years).  In the stop signal 10 

task, the subjects have to indicate the direction (left or right) of an arrow presented in the center of the 11 

screen.  For one fourth of the trials, a 500 Hz tone was played shortly after the arrow, which signaled the 12 

subjects to withdraw their response.  In a single fMRI run, there were 128 trials in total in total, with 96 13 

Go trials and 32 Stop trials.  The task used a fast event-related design, with a mean intertrial interval of 14 

2.5 s (range from 2 s to 5.5 s).  For a subset of 103 subjects, we also analyzed their resting-state fMRI 15 

data.  The exclusion of subjects were due to large head motions in either the resting-state run or other task 16 

runs that were not included in this paper.  17 

 The fMRI data were collected using a T2*-weighted echoplanar imaging (EPI) sequence with the 18 

following parameters: TR = 2000 ms, TE = 30 ms, FA = 90 deg, matrix 64 × 64, FOV = 192 mm; slice 19 

thickness = 4 mm, slice number = 34.  184 fMRI images were acquired for each subject for the stop signal 20 

task, and 152 images were acquired for the resting-state run.  The T1 weighted structural images were 21 

collected using the following parameters: TR = 1900 ms, TE = 2.26 ms, FOV = 250 mm, matrix = 256 × 22 

256, sagittal plane, slice thickness = 1 mm, slice number = 176.  More information about the data can be 23 

found in (Poldrack et al., 2016). 24 

2.2. FMRI preprocessing 25 
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The fMRI image processing and analysis were performed using SPM12 (v6685) 1 

(http://www.fil.ion.ucl.ac.uk/spm/) and MATLAB codes in MATLAB R2013b environment 2 

(https://www.mathworks.com/).  The anatomical image for each subject was first segmented, and 3 

normalized to standard MNI (Montreal Neurological Institute) space.  The first two functional images 4 

were discarded, and the remaining images were realigned to the first image, and coregistered to the 5 

subject’s own anatomical image.  The functional images were then transformed into MNI space by using 6 

the deformation images derived from the segmentation step,  and were spatially smoothed using a 8 mm 7 

FWHM (full width at half maximum) Gaussian kernel. 8 

2.3. PPI analysis 9 

The first step of PPI analysis is to build a GLM model of task regressor, which can also be used to obtain 10 

task related activations.  In the current analysis, the Go and Stop conditions were modeled separately as 11 

series of events.  In SPM, the durations of the events are usually set as 0 to reflect the impulse nature of 12 

the events.  But for PPI analysis, the problem is that after deconvolution, the time series were up-sampled 13 

(16 times by default).  If the duration was set as 0, then the neuronal level psychological variable only has 14 

a time bin of TR/16 of one, leaving all other time bins as 0.  This may be problematic when multiplying 15 

this psychological variable with the deconvolved seed time series.  Considering that the calculated PPI 16 

term will be convolved back with HRF, which resembles a low pass filtering, the effects of trial duration 17 

may not be that significant.  In the previous analysis, we set the duration to 1.5 s, which is the actual 18 

duration of the trial.  We have also shown in the supplementary materials that setting the event duration as 19 

0 produce very similar results as those with 1.5 s duration.  In addition to the two task variables, 24 head 20 

motion regressors and one constant regressor were also included in the GLM model.  After model 21 

estimation, the times series from 164 ROIs were extracted.  The head motion, constant, and low frequency 22 

drift effects were adjusted during the ROI time series extraction.  These 164 ROIs were adopted from 23 

previous studies (Di and Biswal, 2018; Dosenbach et al., 2010) to represent whole brain coverage.  The 24 

following connectivity analyses using PPI and BSC were all performed on the ROI basis. 25 
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 The PPI terms were calculated using the two different approaches, i.e. “generalized” PPI and 1 

contrast PPI.  In the first approach, we first used the contrasts [1 0] and [0 1] to define two psychological 2 

variables to represent the Go and Stop conditions, separately.  The PPI terms were then calculated 3 

accordingly using the deconvolution method.  The calculated PPI terms were combined together with the 4 

original model to form a new GLM model for PPI analysis: 5 

εββββββ +⋅+⋅+⋅+⋅+⋅+= StopPPIGoPPIROIStopGo xxxxxy :5:43210           (12)
 6 

This model included one constant term, two regressros of task activations of the Go and Stop condition, 7 

one regressor of the time series of a seed region, and two regressors of PPIs.  Because the dependent 8 

variable y is also a ROI time series, where the head motion effects have already been removed, the head 9 

motion regressors were no longer included in the PPI models.  After model estimation, we calculated β5 – 10 

β4 as the connectivity effects between the Stop and Go conditions.  11 

 We also applied the second model where the differential and mean effects of the Stop and Go 12 

conditions were modeled.  The differential effect was defined using the contrast [-1 1], and the mean 13 

effect was defined using the contrast [1/2 1/2].  The GLM for the contrast PPI analysis was as follow:  14 

εββββββ +⋅+⋅+⋅+⋅+⋅+= −+−+ GoStopPPIStopGoPPIROIGoStopStopGo xxxxxy :5:43210           (13)
 15 

The β5 could be used for group level analysis to present connectivity differences between the Stop and Go 16 

conditions.  17 

 For each subject, the PPI models were built for each ROI, and were fitted to all other ROIs.  The 18 

beta estimates of interest or contrast of interest were calculated between each pair of ROI, which yielded a 19 

164 by 164 matrix for each effect.  The matrices were transposed and averaged with the original matrices, 20 

which yielded symmetrical matrices.  One sample t test was performed on each element of the matrix for 21 

an effect of interest.  False discovery rate (FDR) correction was used at p < 0.05 to identify statistical 22 

significant effects in a total of 13,366 effects (164 x (164 – 1) / 2). 23 

2.4. Beta series analysis 24 
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As has been shown in our previous paper (Di and Biswal, 2018), modeling all trials together in a single 1 

model could not work for the beta series analysis.  Therefore, we only reported the results from the single-2 

trial-versus-other-trials method (Mumford et al., 2012).  We first built a GLM model for each trial, where 3 

the first regressor represented the activation of the specific trial and the second regressor represented the 4 

activations of all the remaining trials.  The 24 head motion parameters were also included in the GLMs as 5 

covariance.  The duration of events was set as 0.  After model estimation, beta values of each ROI were 6 

extracted for each trial.  The beta series of each ROI were sorted into the two conditions, and connectivity 7 

measures across the 164 ROIs were calculated.  In our previous work, we used Spearman’s rank 8 

coefficients to avoid the assumption of Gaussian distribution of beta values or spurious correlations due to 9 

outliers.  In the current analysis, we also calculated Pearson’s correlation coefficients and covariance to 10 

examine whether these two measures may give more reliable estimates of connectivity.  Before 11 

calculating the covariance, the whole beta series (Go and Stop together) of a ROI were z transformed.  All 12 

of the three measures yielded a symmetrical matrix for each subject.  The correlation matrices (either 13 

Pearson’s or Spearman’s) were transformed into Fisher’s z matrices.  For a single condition, the mean of 14 

Fisher’s z values or covariance values were averaged across subjects.  Paired t tests were also performed 15 

to compare the differences between the two conditions at every element in the matrix.  A FDR correction 16 

at p < 0.05 was used to identify statistical significant effects.  17 

2.5. Resting-state connectivity 18 

A voxel-wise GLM model was first built for each subject, which included 24 head motion regressors and 19 

on constant term.  After model estimation, the times series from the 164 ROIs were extracted, adjusting 20 

for the head motion, constant, and low frequency drift effects.  For each subject, a Pearson’s correlation 21 

coefficient matrix was calculated across the 164 ROIs.  The matrices were transformed into Fisher’s z 22 

matrices, and averaged across subjects.   23 

 24 

3. Results 25 
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Figure 6 demonstrates the PPI and BSC effects across the 164 ROIs in the Go and Stop conditions, as 1 

well as the differences between the two conditions.  To show the overall effects, the matrices were not 2 

thresholded.  For the “generalized PPI” model, both the Go and Stop condition had greater connectivity 3 

compared with the respective control conditions, mainly between visual and sensorimoter regions and 4 

between cerebellar and sensorimotor regions.  The Stop condition additionally showed widespread 5 

connectivity increases, which resulted in different connectivity between the Stop and Go conditions in 6 

many connections.  For the direct contrast PPI model, the mean effect of Go and Stop trials compared 7 

with the baseline were very similar to the single PPI effects of the two conditions separately.  And the 8 

differential effects of the Stop and Go conditions looked identical to the contrast of Stop and Go PPI 9 

effects from the “generalized PPI” model.  This can be confirmed by showing the scatter plot between the 10 

two matrices from the two PPI methods (Figure 7A), which demonstrated a straight line.  It should be 11 

noted that the effects of the “generalized” PPI (contrast values) were as two times as the effects of the 12 

contrast PPI.  This has been explained in section 1.3 that the contrast between two “generalized” PPI 13 

effects A and B represent the effect of 2 x (A - B).  In contrast, the BSC analysis for the Go and Stop 14 

trials separately did not show similar patterns as the simple PPI effects in the “generalized PPI” models 15 

(see also Figure 7B and 7C).  The correlation matrices are indeed similar to resting-state correlations.  To 16 

confirm this, we analyzed the resting-state fMRI data from a subset of 103 subjects, and calculated 17 

resting-state functional connectivity matrix (Figure 8A).  The correlations between the resting-state 18 

connectivity and the BSC matrices of the Go and Stop conditions were 0.91 (Figure 8B) and 0.92 (Figure 19 

8C), respectively.  However, despite the differences of effects in the single condition, the differential 20 

effects between the Stop and Go conditions are similar for the two PPI models as well as the BSC.  The 21 

correlations between the matrices of the Stop -  Go contrast between the “generalized” PPI method and 22 

BSC method was 0.73, which has been reported previously (Di and Biswal, 2018).  This is consistent with 23 

our theoretical explanations of these methods. 24 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2018. ; https://doi.org/10.1101/322073doi: bioRxiv preprint 

https://doi.org/10.1101/322073
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

 1 

Figure 6 Psychophysiological interaction (PPI) and beta series correlation (BSC) results from the stop 2 

signal task.  The top row showed the PPI matrices using the “generalized PPI” model, where the Go 3 

condition and Stop condition were modeled separately.  The middle row showed the PPI matrices using 4 

direct contrast of the Go and Stop conditions.  The bottom row showed correlation matrices using the beta 5 

series method.  The right-side color scales of all matrices were made sure to be positive and negative 6 

symmetrical, but the range was adjusted based on the values in each matrix.  The left and bottom color 7 

bars indicate the seven functional modules, including cerebellar, cingulo-opercular, default mode, fronto-8 

parietal, occipital, sensorimotor, and emotion modules from dark blue to dark red.  9 

 10 

ta 
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 1 

Figure 7 Scatter plots between the psychophysiological interaction (PPI) and beta series correlation (BSC2 

matrices.  A shows the relationship between the Stop – Go contrasts calculated from the contrast and 3 

“generalize” PPI methods.  B shows the relationship between the Go – baseline contrast from the 4 

“generalize” PPI analysis and the Go condition from the BSC analysis.  C shows the relationship between 5 

the Stop – baseline contrast from the “generalize” PPI analysis and the Stop condition from the BSC 6 

analysis.  7 

 8 

 9 

Figure 8 Resting-state functional connectivity matrix (mean Fisher’s z) from a subset of 103 subjects (A),10 

and its relationship with the beta series correlations (BSC) matrices of single conditions (B and C).   11 

 12 

 The connectivity differences between the Stop and Go conditions have been reported previously 13 

(Di and Biswal, 2018).  Here we only focus on the effect of task execution, i.e. the mean effect of the Go 14 

the Stop conditions compared with the baseline.  Statistical significant effects were thresholded at p < 15 

0.05 (FDR corrected) and visualized using BrainNet Viewer (Xia et al., 2013) (Figure 9).  It clearly shows16 

that there was reduced connectivity within the visual areas, and increased connectivity mainly between 17 
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visual regions and sensorimotor regions and between visual regions and other brain regions such as 1 

cingulo-opercular regions. 2 

 3 

Figure 9 Mean PPI effects of the Go and Stop trials compared with the implicit baseline.  A shows the 4 

thresholded PPI matrix at p < 0.05 of FDR (false discovery rate) correction.  Yellow represents positive 5 

PPI effects, while blue represents negative effects.  The color bars indicate the seven functional modules, 6 

including cerebellar, cingulo-opercular, default mode, fronto-parietal, occipital, sensorimotor, and 7 

emotion modules from dark blue to dark red.  B and C show the positive and negative effects on a brain 8 

model using BrainNet Viewer.  9 

 10 

 Lastly, for the contrast of Stop vs. Go where the two PPI models and BSC yielded similar results, 11 

we compared the BSC results with different methods with the PPI results (Figure 10).  The significant 12 

effects of the “generalized PPI” and contrast PPI were identical.  When comparing the three measures of 13 

Spearman’s correlation, Pearson’s correlation, and covariance, Pearson’s correlation produced more 14 

significant effects than Spearman’s correlation.  And covariance differences only showed one positive and15 

one negative significant effect.  However, even the results from Pearson’s correlation showed less 16 

significant results than the two PPI models. 17 

s, 

s, 
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 1 

Figure 10 Unthresholded (upper row) and thresholded (lower row) matrices of task modulated 2 

connectivity between the Stop and Go conditions estimated by different methods.  A p < 0.05 of false 3 

discovery rate (FDR) correction was used to threshold each matrix.  The color scales of all matrices were 4 

made sure to be positive and negative symmetrical.  But the range was adjusted based on the values in 5 

each matrix. 6 

 7 

4. Discussion 8 

In the current paper, we have compared between PPI and BSC, and explained that because the inclusion 9 

of the physiological variable in the PPI model, a PPI effect always represents the differences of 10 

correlations between conditions.  In contrast, BSC can measure correlations in a specific task condition.  11 

However, when comparing between conditions, PPI and BSC methods should in principle yield similar 12 

estimates of connectivity differences.  The results of PPI and BSC analyses on a real event-related 13 

designed stop signal task agree with our theoretical explanation of the two methods.  Firstly, PPI always 14 

conveyed connectivity differences between conditions, even when using a simple psychological variable 15 

of 1s and 0s.  The direct contrast PPI could show exactly the same results as “generalized PPI” when the 16 

conditions were modeled properly.  Secondly, we showed that simple correlations of beta series in one 17 

condition reflected the absolute effects of connectivity, which resembled resting-state connectivity.  18 

However, when the effects were contrasted between conditions, the PPI and BSC results turned out to be 19 

very similar.  20 

re 
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 The simple BSC correlation for the Go and Stop conditions are very similar to each other, and are 1 

also similar to what we typically observed in resting-state.  They all show square like structures along the 2 

diagonal, which reflects higher functional connectivity within the predefined functional modules, and 3 

lower functional connectivity between regions from different functional modules.  This is consistent with 4 

the observation that the moment-to-moment correlations in many different task conditions are very 5 

similar (Cole et al., 2014).  On the other hand, for PPI analysis even the simple PPI effects of one 6 

condition yield connectivity differences between the very condition and the rest of the time points.  In the 7 

current analysis, we demonstrate the task modulated connectivity of the Go and Stop conditions compared 8 

with their respective baseline.  But this cannot be achieved by using the BSC method, because the implicit 9 

baseline conditions cannot be easily modeled in the BSC model.   10 

 The connectivity differences between the Go or Stop conditions compared with their respective 11 

baseline suggested changes of connectivity related to general task executions.  This contrast revealed 12 

decreased connectivity between visual areas, and increased connectivity between visual areas and 13 

sensorimotor areas among other brain regions.  The reduced connectivity within the visual areas during 14 

task execution compared with baseline is consistent with our previous studies using a set of different tasks 15 

(Di et al., 2017) as well as in a simple checkerboard task (Di and Biswal, 2017).  However, in contrast to 16 

the reduced functional connectivity between visual and sensorimotor regions in the checkerboard task (Di 17 

and Biswal, 2017), the current results showed increased connectivity between the visual and sensorimotor 18 

regions.  It is not surprising because the stop signal task requires the subjects to response to visual stimuli, 19 

therefore yielding increased functional coupling between visual and sensorimotor regions.   20 

 When directly comparing the differences between the Stop and Go conditions, all the PPI and 21 

BSC methods showed similar results.  First, the “generalized PPI” and contrast PPI showed identical 22 

results.  It is not surprising given that we have explained they are mathematically equivalent.  Although 23 

we think that the “generalized PPI” is still a better strategy to model PPI effects, in some circumstances 24 

the direct contrast method may be useful.  For example, if there are too many task conditions designed 25 

(say conditions A, B, C, D, E, and a baseline condition R), but eventually one is only interested in one 26 
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contrast of A vs. B, there is no need to model PPI effects of all the five conditions separately.  One can 1 

model the mean effects of A and B and the contrast effect between A and B, leaving all other conditions 2 

as 0.  In this way, the direct contrast method is more flexible in terms of defining psychological variables 3 

and contrasts. 4 

 As has been reported in our previous paper, BSC differences can yield similar connectivity 5 

differences when compared between the Stop and Go conditions (Di and Biswal, 2018).  In the current 6 

analysis, we further compared BSC differences results using Pearson’s correlation and covariance.  The 7 

unthresholded matrices of the three connectivity measures were very similar.  When performing statistical 8 

inferences using a p < 0.05 threshold of FDR correction, Pearson’s correlation yielded more statistical 9 

significant effects than Spearman’s correlation, while covariance could only show two statistical 10 

significant effects.  Nevertheless, the numbers of statistical significant effects were all smaller than those 11 

in the PPI analyses.  Mathematically, the PPI effect is more similar to the covariance differences between 12 

conditions than the other correlation measures.  However, the covariance differences of beta series failed 13 

to convey as many significant results as the other correlations measures.  It is probably due to the fact that 14 

the BSC model for the stop signal task is not reliable enough, so that there are large amounts of spurious 15 

trial-by-trial variability that need to be standardized before calculating covariance.  16 

 In this paper, we have explained the relationships between PPI and BSC, and showed that in 17 

principle these two methods should measure the same connectivity differences between conditions.  18 

However, PPI and BSC methods could yield slightly different results mainly due to the different ways of 19 

dealing with deconvolution or trail-by-trial activation estimates.  Because of this, simply comparing the 20 

two methods is less of interest.  Further studies may focus on deconvolution techniques such that the 21 

results of both PPI and BSC could improve.  For example, more sophisticated filters could be used for 22 

deconvolution, e.g. cubature Kalman filtering (Havlicek et al., 2011).  In addition, applying subject 23 

specific HRF (Pedregosa et al., 2015) may be helpful for both PPI and BSC methods.  Lastly, the 24 

effectiveness of the two methods may also depend on the temporal distance of trials (Abdulrahman and 25 

Henson, 2016; Mumford et al., 2014; Visser et al., 2016).  Although the current study showed that both of 26 
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the methods could work for the fast event-related stop signal task, it is reasonable to speculate that these 1 

two methods may work better when trial distances are larger.  The fitness of the two methods on different 2 

design parameters warrants further investigations.  3 
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