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Abbreviations 
 

7T3T 7T MRI subthalamic nucleus atlas for use with 3T MRI (Milchenko et al., 2018) 

ANOVA analysis of variance 

DBS deep brain stimulation 

DC Dice coefficient 

DISTAL DBS intrinsic template atlas (Ewert et al., 2017) 

FDA U.S. Food and Drug Administration 

FGATIR fast gray matter acquisition T1 inversion recovery 

FLAIR fluid attenuated inversion recovery 

MER microelectrode recordings 

MNIPD25 population-averaged atlas that was made with 3T MRI of 25 Parkinson’s disease 
patients (Xiao et al., 2017) 

PD Parkinson’s disease 

QSM quantitative susceptibility mapping 

SN substantia nigra 

STN subthalamic nucleus 

SWI susceptibility-weighted image 

T Tesla 

T1W T1-weighted 

T2W T2-weighted 

UHFA ultrahigh-field atlas (Wang et al., 2016) 
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ABSTRACT 

Deep Brain Stimulation (DBS) of the subthalamic nucleus (STN) has shown clinical potential for 

relieving the motor symptoms of advanced Parkinson’s disease. While accurate localization of the STN is 

critical for consistent across-patients effective DBS, clear visualization of the STN under standard clinical 

MR protocols is still challenging. Therefore, intraoperative microelectrode recordings (MER) are 

incorporated to accurately localize the STN. However, MER require significant neurosurgical expertise 

and lengthen the surgery time. Recent advances in 7T MR technology facilitate the ability to clearly 

visualize the STN. The vast majority of centers, however, still do not have 7T MRI systems, and fewer 

have the ability to collect and analyze the data. This work introduces an automatic STN localization 

framework based on standard clinical MRIs without additional cost in the current DBS planning protocol. 

Our approach benefits from a large database of 7T MRI and its clinical MRI pairs. We first model in the 

7T database, using efficient machine learning algorithms, the spatial and geometric dependency between 

the STN and its adjacent structures (predictors). Given a standard clinical MRI, our method automatically 

computes the predictors and uses the learned information to predict the patient-specific STN. We validate 

our proposed method on clinical T2W MRI of 80 subjects, comparing with experts-segmented STNs from 

the corresponding 7T MRI pairs. The experimental results show that our framework provides more 

accurate and robust patient-specific STN localization than using state-of-the-art atlases. We also 

demonstrate the clinical feasibility of the proposed technique assessing the post-operative electrode active 

contact locations. 

 

Keywords: Deep brain stimulation, neuromodulation, subthalamic nucleus, 7T MR imaging, machine 

learning, patient-specific sub-region targeting. 
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1. Introduction 

Deep brain stimulation (DBS) is a neuromodulation intervention for relieving the motor 

symptoms of Parkinson’s disease (PD), dystonia, and Essential tremor, among others [Dormont et al., 

2010; Kim et al., 2010; Krack et al., 2010; Limousin et al., 1998; Mallet et al., 2007; Patel et al., 2008; 

The Deep-Brain Stimulation for Parkinson’s Disease Study Group, 2001; Volkmann, 2007]. In particular, 

DBS of the subthalamic nucleus (STN) has been shown to be an effective symptom’s treatment for 

advanced PD [Dormont et al., 2010; Limousin et al., 1998; The Deep-Brain Stimulation for Parkinson’s 

Disease Study Group, 2001; Volkmann, 2007]. 

Accurate 3D positioning of the chronic electrode within the STN is critical for the success of the 

DBS surgery, as its efficacy and adverse effects are highly correlated with the electrode’s location [Hamid 

et al., 2005; Kerl et al., 2012; Mallet et al., 2007; Patel et al., 2008; Starr et al., 2002]. Thus, precise 

identification of the STN (lens-shaped) of individual patients facilitates the DBS planning (and post-op 

programming). However, such identification in clinical settings still remains challenging due to its small 

size (approximately 6x4x5mm) and the ambiguous border with neighboring regions [Abosch et al., 2010]. 

Both direct- and indirect- targeting is often incorporated to estimate the 3D STN location and 

shape. Direct identification of the STN and its surrounded regions (e.g., substantia nigra (SN) and zona 

incerta) is possible using various MRI modalities where these structures’ appearance is hypo-intense such 

as T2W, fluid attenuated inversion recovery (FLAIR), fast gray matter acquisition T1 inversion recovery 

(FGATIR), and susceptibility weighted imaging (SWI). However, the distinction amongst the 

neighborhood structures is often unclear on the clinical MRI, and the STN appears in only one or two 

slices, thereby resulting in sub-optimal targeting within the 3D STN (positive effects), and relative to 

adjacent structures of the STN (potential negative/side effects). There are efforts underway to directly 

visualize the STN via MRI reconstruction methods such as susceptibility weighted phase imaging or 

quantitative susceptibility mapping (QSM) [Chandran et al., 2015; Liu et al., 2013; Rasouli et al., 2017]. 
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Moreover, recent studies have proposed automatic methods to segment the STN on these contrast 

enhanced MR sequences [Garzón et al., 2017; Milletari et al., 2017; Visser et al., 2016b]. While early 

work on QSM shows promising results, uncertainty in susceptibility estimates under different acquisition 

protocols needs to be further investigated [Lauzon et al., 2016] and the overall performance needs to be 

validated on large-scale clinical data.  

The indirect STN localization approach refers to the selection of targets based on nearby 

anatomical landmarks and then the computation of consensus coordinates estimates in relation to these 

landmarks. The most common method is to select the anterior- and posterior-commissure anatomical 

landmarks on the clinical MRI, define the midline and the mid commissural point, and use the consensus 

coordinates ±12mm lateral, 4mm posterior, and 5mm inferior to the mid commissural point [Starr et al., 

2002]. This is used as an initial estimation for the location of the STN that is later refined based on the 

neurosurgeon’s expertise and preferences. However, this consensus method does not account for the 

obvious variability in the patients’ anatomy [Daniluk et al., 2010; Kerl et al., 2012]. Moreover, it was 

reported that there is significant inter-surgeon variability in the selection of anterior- and posterior-

commissure points, which has a substantial effect on the localization of targets using this indirect method 

[Pallavaram et al., 2008]. For these reasons, indirect targeting is almost always complemented by other 

refinement methods. 

Atlas-based approaches have been proposed to improve targeting accuracy. Some studies show 

promising results for the visualization of the STN for DBS surgery on 3 Tesla (T) MR datasets. Patch 

based label fusion methods were used for segmenting the STN and its adjacent structures using 

multimodal 3T MRIs [Haegelen et al., 2013; Xiao et al., 2014a]. Xiao et al. [2014b] analyzed the 

morphometric variability of the STN obtained by a majority voting label that was augmented on 3T MRIs 

of advanced PD patients. D’Albis et al. [2015] provided a pipeline for DBS planning and post-operative 

validation and adopted an atlas-based segmentation in the surgical planning flow. Post-operative active 

contacts’ clusters projected onto the CranialVault atlas were used for DBS target prediction in 
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[Pallavaram et al., 2015]. A probabilistic approach to map DBS electrode coordinates onto the MNI space 

was presented in [Horn et al., 2017a]. More recently, to achieve anatomical precision in the MNI space, a 

histological atlas, described in Chakravarty et al. [2006], was merged with subcortical atlases based on 

multiple contrast 3T MR sequences from PD patients [Xiao et al., 2017] and high resolution multimodal 

MRIs and structural connectivity data [Ewert et al., 2017]. 

While encouraging initial results were obtained with these techniques, the obtained targeting 

accuracy is oftentimes insufficient, due in part to the large per-patient STN variability, to fully ensure 

DBS treatment efficacy and safety. Based on patient-specific clinical data, further revisions of the 

approximated lead location are often required when using these atlas-based approaches. 

Microelectrode recordings (MER) are often incorporated to define the precise location of the STN 

for correct placement of the electrode within the targeted structure. These electrophysiological 

measurements require significant team expertise and extend the surgery time. MER are often 

complemented with patient’s behavioral feedback while the subject is awake [Abosch et al., 2010]. Note 

that brain shift has been shown to increase with the length of the procedure (e.g., resulting from extended 

MER), causing further challenges. Others have suggested that while the incidence of brain shift is 

infrequent, it is also unpredictable [Halpern et al., 2008; Ivan et al., 2014; Petersen et al., 2010]. Lack of 

standardization and variability in how individual centers use MER emphasizes the importance of 

developing additional standard and objective approaches for targeting the STN. 

With recent advances in ultrahigh magnetic fields hardware and acquisition protocols, 7T MR 

imaging techniques now allow the direct identification of small and complex anatomical structures, 

including the 3D STN, thanks to its superior contrast and high resolution [Abosch et al., 2010; Cho et al., 

2011; Kerl et al., 2012]. Furthermore, 7T MRI has already facilitated the study of connectivity within the 

basal ganglia and thalamus and enabled the subdivision of the STN into motor, associative, and limbic 

sub-regions [Abosch et al., 2010; Lenglet et al., 2012; Plantinga et al., 2016]. Keuken et al. [2013] 

investigated structural change of the STN using atlases based on 7T MRI in different age groups (healthy 
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subjects). Probabilistic atlas maps obtained from multiple 7T MR contrasts were used for analysis of 

anatomical variability on subcortical structures [Keuken et al., 2014]. Wang et al. [2016] generated the 

ultrahigh-field atlas of the STN using the 7T T1-weighted (T1W) and T2-weighted (T2W) MRI. For use 

with clinical data, Plassard et al. [2017] created atlases based on the 7T MRI of healthy subjects and used 

them to segment subcortical structures with 3T contrast enhanced MR sequences of the same subjects. 

Moreover, a high quality 7T atlas obtained from elderly subjects was registered onto the 3T MRI template 

averaged on PD patient’s data [Milchenko et al., 2018]. Automated methods to segment brain subcortical 

structures using 7T MRI have been proposed, leveraging sufficient intensity information from multiple 

MR contrasts [Kim et al., 2014; Visser et al., 2016a; Visser et al., 2016b]. The clinical feasibility of 7T 

MRI for localization of the STN has been previously demonstrated [Duchin et al., 2012]. More recently, 

the U.S. Food and Drug Administration (FDA) cleared the first 7T MRI system (The Magnetom Terra, 

Siemens Medical Solutions) for clinical use. However, 7T MR machines are still rare in current clinical 

practice and are associated with significant infrastructure costs [Plantinga et al., 2014]. Therefore, the 

STN still needs to be localized on the ubiquitous clinical platforms of 1.5T or 3T MRI. 

In this work, we propose to incorporate a high-quality 7T MR dataset for training machine 

learning methods to statistically model geometrical dependencies of the subcortical structures (the 

framework proposed here is named “7T-ML”). We demonstrate that this approach facilitates the accurate 

prediction of the patient-specific STN location and shape on standard clinical MRI,1 thereby enjoying the 

advantages of high-quality data without the need for a 7T machine, or any additional hardware. The 

proposed 7T-ML framework is extensively compared with ground truth obtained from 7T MRI of the 

same subjects and with state-of-the-art atlas-based results (comprising histology, healthy population, 

Parkinson’s population, and elderly, thereby introducing high variability in the testing and validation), 
                                                           

1 The framework and algorithm here described are components of the patented and FDA cleared patient-
specific STN visualization tool developed by Surgical Information Sciences, Inc. [Harel and Sapiro, 2016; 
Sapiro et al., 2017]. A preliminary work was presented at conferences [Kim et al., 2015a; Kim et al., 
2015b; Kim et al., 2015c]. The scope of this study is the validation and analysis of the method on a large 
scale clinical data, and comparison of the proposed method with available state-of-the-art methods. 
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showing the significantly improved performance, which is critical for accurate targeting, DBS lead 

localization, and clinical outcomes. The algorithm’s relevance for DBS in particular and neuromodulation 

in general is demonstrated with the accurate visualization of active contacts from real DBS surgeries. 

 

2. Methods 

2.1 Overview 

We create an annotated dataset of multiple pairs (same subject) of clinical (1.5T or 3T) and 7T MRIs 

along with the segmented (labeled) subcortical structures of interest. The 3D STN was segmented on the 

7T MRI, but not on the clinical image (where as discussed above, is not clearly visible). Subcortical 

structures in the vicinity of the STN were also segmented on the 7T MRI (hereafter named “predictors”), 

these are visible on the clinical image as well. This dataset was used for learning the geometric 

relationships between the STN and its predictors. The dataset containing the clinical and 7T MRIs along 

with the segmented structures is referred hereafter as the “training set.” Given a new patient’s clinical 

MRI (no 7T images for this patient), the algorithm automatically detects the predictors and then computes 

the patient-specific, i.e., patient’s own, 3D STN location and shape. This is based on the learned 

information from the training set. To evaluate and validate the quality of the automatic STN localization, 

the results are compared with the STN segmented by experts on the 7T MRI (the standard data split 

between training and testing set is used here), and further clinically validated with active contact positions 

obtained from the post-operative CT of the same patient. Comparisons with existing literature are 

provided as well, showing a significant improvement on accuracy and robustness, both critical for patient-

specific STN DBS and neuromodulation targeting. 

2.2 Database and Preprocessing 

7T MRI and its corresponding (same subject) clinical MRI (1.5T or 3T) of 80 subjects were used 

in this study under approval of the Institutional Review Board at the University of Minnesota. 
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Demographic and clinical details for the subjects are presented in Table 1. Table 2 presents the MRI 

modality and resolution of the 7T and clinical data that were used in this work.  

Experts in the team manually segmented the STN and its predictors on the 80 pairs of 7T T2W 

and SWI MRIs, and carefully cross-validated segmentation results. The 7T data acquisition protocol, pre-

processing, and manual segmentation are detailed in Lenglet et al. [2012] and omitted here for brevity. 

For illustration purposes, manual delineation of the STN and SN on a pair of 7T T2W and SWI MRIs is 

visualized in Fig. 1. Duchin et al. [2018] also demonstrated that the 7T MRI based STN segmentation 

highly agrees with MER data (see also Shamir et al., [2018]). Hypo-intense regions that are spatially 

adjacent with the STN are considered as predictors. Such subcortical structures are well visualized both 

on the 7T and clinical MRIs [Cho et al., 2011].  

The 7T T2W MRIs were co-registered to their clinical T2W MRI counterparts using the FSL 

FMRIB's Linear Image Registration Tool [Jenkinson and Smith, 2001], and the structures segmented on 

the 7T images were transformed accordingly (hereafter “7T priors”). Data acquisition, pre-processing and 

co-registration for 7T and clinical MRI (1.5T or 3T) used in this study were performed following 

protocols described in Duchin et al. [2012].  

The MRI pairs and the 7T priors were all stored in a database for retrieval upon the introduction of a new 

patient’s clinical MRI on which the STN needs to be localized. 46 datasets of 7T and 1.5T MRIs pairs of 

patient groups were used for training and 34 datasets of 7T and corresponding 1.5T or 3T MRIs of 

patients and normal control subjects were added in our database later for further validation. A subset of 15 

PD patients in the training set were selected to further study in detail various factors that affect the 

performance of our algorithm. Table 3 presents clinical details on to magnetic field strength of the clinical 

images in the training and validation sets. Note that 3T MRIs were not used at all to train the algorithm, 

only for validation. 

Given a new clinical T2W MRI, we first compute its affine registration with all 46 clinical T2W 

MRIs in the training set within our database. Intensity similarity scores are measured by calculating the 
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mutual information between mid-brain regions of the clinical query image and the registered images in 

the training set [Wells III et al., 1996]. About 30% of training images sorted by the similarity scores are 

empirically selected as the most similar sets to reduce biases [Aljabar et al., 2009], and then they are non-

linearly registered onto the clinical query image. The Advanced Normalization Tools [Avants et al., 

2011a; Avants et al., 2011b; Avants and Gee, 2004] was used for global affine registration (with the 

mutual information cost metric) and local nonlinear registration of the basal ganglia region (with cross-

correlation cost metric, SyN option, and bspline interpolation). Then, we resample the clinical query 

image to a 0.5mm isotropic resolution and transform the selected datasets into the query image 

coordinates system. As a result, the clinical query data and the 7T priors in the training set are now in a 

common coordinate system. 

2.3 7T-Machine Learning based STN Prediction 

The geometric relationship between the 3D STN and its predictors on the training set was 

analyzed using a regression-based shape prediction approach [Baka et al., 2011; Blanc et al., 2012; Rao et 

al., 2008]. 

 We first automatically segment the predictors on a query clinical T2W MRI, which are 

observable subcortical structures near the STN, later used to predict it. To this end, the training dataset is 

incorporated in a unified framework of active shape model and active appearance model algorithms 

[Cerrolaza et al., 2012; Cerrolaza et al., 2015; Cootes et al., 1995; Frangi et al., 2002; Heimann and 

Meinzer, 2009; Matthews and Baker, 2004; Sung et al., 2007; Tzimiropoulos and Pantic, 2013]. Then, we 

apply the regression-based shape prediction, incorporating the computed predictors on the query clinical 

image and the geometric relationship learned from the STN and the segmented predictors on the training 

dataset. 

More specifically, 3D shapes of the predictors and the STN are represented as the coordinates of 

surface points (vertices in a mesh), in correspondence, across random subsets of the most similar training 

sets previously selected (registered onto the clinical query image). The poses of the structures are 
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extracted using the generalized Procrustes analysis [Cootes et al., 1992; Gower, 1975], and their shape 

variations are then modeled using kernel principal component analysis [Guo, 2010; Rathi, 2006]. A 

bagging procedure [Breiman, 1996] is applied in the partial least squares regression technique [Abdi, 

2010; Krishnan et al., 2011; Wold, 1982; Wold et al., 2001] to learn the dependency between the STN 

and its corresponding predictors (in the pose and shape feature space) from these randomly selected 

subsets of the most similar training sets [Kim et al., 2015b]. We also investigated a regression forest 

model [Breiman, 2001; Criminisi et al., 2013] for finding the non-linear mapping between the STN and 

its predictors [Kim et al., 2015c]. Given the computed (visible) predictors in a new patient clinical data, 

the 3D STN binary volume is predicted by exploiting this learned spatial relationships. See Kim et al. 

[2015b] and Kim et al. [2015c] for additional technical details. 

Such an ensemble approach with equal weights does not consider the influence of each training 

subset on the final confidence map of the predicted STN. If some training subsets are more influential 

than others with respect to the specific patient’s STN prediction, the prediction accuracy can be further 

improved by increasing their weights/relevance. To estimate the contribution of each training subset to 

the prediction, we investigate non-linear relationships between pose-related features [Kim et al., 2015a] 

and the prediction accuracy from various subjects and corresponding training subsets. This is done using a 

random forest model [Breiman, 2001]. The global error score, namely a weighted sum of all the 

geometric measures, was used to determine the influence-weight of each training subset on the final 

prediction [Kim et al., 2015a]. Given new features from a query patient and each training subset, the error 

scores are estimated using the learned information. An ensemble of predictions from the random subsets 

with larger weighting (i.e., more influential sub-atlases for the prediction) yields lower error scores. The 

weighted ensemble also provides a final confidence map on the query patient. We refer to this procedure 

as “robust prediction” to differentiate it from “ensemble,” that simply incorporates equal weights for all 

the subsets. See additional details and explicit parameters’ values in Kim et al. [2015a]. 

2.4 Validation 
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To evaluate the performance of the proposed 7T-ML method, we used clinical data (1.5T or 3T 

MRI) from 80 subjects (46 cases using a leave-one-out approach on the training set and additional 34 

naïve cases for validation, not present at all in the training). One clinical MRI was selected as a query 

image at each iteration. When the query image was from the training set, all its associated data 

(segmented structures and other MRIs) was excluded from the 46 training sets. The STN was then 

automatically computed on the query image using the proposed framework. This was done with 

automatically segmented (on the clinical data) predictor structures, bagged partial least squares regression, 

and uniform weights of 100 training subsets. The current implementation utilizes Amazon Web Services 

to facilitate the large scale parallel processing.  

Our 7T-ML method is compared with the following publicly available STN atlases in the 

literature to validate its reliability for patient-specific clinical MRI based STN-DBS targeting: 1) 7T MRI 

STN atlas for use with 3T MRI (7T3T) [Milchenko et al., 2018]; 2) ultrahigh-field atlas (UHFA) [Wang 

et al., 2016]; 3) DBS intrinsic template atlas (DISTAL) [Ewert et al., 2017; Horn et al., 2017b]; and 4) 

population-averaged atlas that was made with 3T MRI of 25 PD patients (MNIPD25) [Xiao et al., 2017]. 

Data acquisition and template images for these atlases are summarized in Table 4. This is a very 

comprehensive comparison since these atlases include 7T data, histology, healthy subjects, PD patients, 

and elderly. To this end, we computed the transformation between the atlas MRI templates and the 

clinical T2W MRIs across 80 subjects, and standard STN atlases were accordingly transformed to the 

clinical data. For a fair comparison, we applied the same approach as the inter-patient registration 

between database clinical images and a clinical query image in our proposed framework. It is a multi-step 

registration (global affine registration and local nonlinear registration on the basal ganglia region) that 

was adjusted based on a long trial and error process. 

Additionally, we provide the STN segmentation results obtained with a conventional approach 

based on intensity information on the image - the active shape model and active appearance model  

framework (also used for predictor segmentation in our 7T-ML) [Sung et al., 2007; Tzimiropoulos and 
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Pantic, 2013]. This also motivates a novel approach in challenging situations, e.g., when the STN borders 

are not visible. 

The STN manually segmented on the 7T MRI and transformed onto the clinical MRI pair of the 

same subject was used as “ground truth.” The following measures were first calculated to compare our 

7T-ML and standard atlases with the 7T manual ground truth STN: 1) distance between the centers of 

mass; 2) mean Euclidean distance of surface points in correspondence; 3) Dice coefficient (DC), which is 

a normalized overlap measure between two co-aligned binary datasets, and; 4) volume of the STN (added 

here for completeness). As suggested in Shamir et al. [2009], 2mm accuracy is considered an acceptable 

threshold for neurosurgical and neuromodulation applications. Therefore, we counted the number of cases 

that are less than 2mm centers of mass distance as a clinically relevant prediction accuracy measure. Our 

7T-ML STN confidence map and standard atlases-based STN were normalized to [0, 1] and binarized 

with threshold values between 0.3 and 0.4 to eliminate resampling artifacts, thereby avoiding a bias in the 

measures induced by unexpectedly large volumes. A one-way analysis of variance (ANOVA) was 

calculated for each measure and a multiple comparison correction was performed to estimate the methods. 

Then, post hoc tests with Tukey's honest significant difference were executed. 

To demonstrate the relevance of the high accuracy of the proposed 7T-ML approach for DBS and 

neuromodulation, we also computed the distance between the DBS chronic electrode’s active contacts and 

the predicted STN’s centers of mass. The center of mass is used here for reference, providing intrinsic 

distances for proper and consistent comparison (also across subjects); it should be noted that the STN’s 

center of mass was not considered as the optimal target point. Pallavaram et al. [2015] measured the 

distance between active contacts and the estimated target position (using different targeting protocols, e.g., 

stereotactic coordinates corresponding to the center of the STN’s motor territory). For this, pre-operative 

clinical MRI and the STNs computed from each method are co-registered onto the post-operative CT of 

the same patient (where the implanted electrode is detected). We extensively examined the registration 

results to ensure the correct transformation of the STN. 
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Furthermore, to compare across different approaches the active contacts location of individual 

patients, we used a best-fit ellipsoid representation of the individual’s STN. Then, we divided the space 

into eight regions (in posterior/anterior, medial/lateral, and superior/inferior axes) and counted the number 

of active contacts in each region (for all patients for which we have available data). We defined an active 

contact as “in” a specific region of the STN if its center of mass was in that region. Note that in contrast 

to common averaging techniques where very different shapes are (often significantly) deformed into a 

common coordinate system, this is a patient-specific intrinsic measurement, each individual STN is split 

into its own 8 regions, and then votes are accumulated. This study demonstrates the sub-region accuracy 

of the proposed visualization/targeting approach that is critical both to localize the active DBS contacts 

and for future studies on the clinical targeting value of different STN sub-regions. The clinical data used 

for the post-operative analysis in the training and validation sets is summarized in Table 5. We used 38 

electrode’s lead images (with information available on 31 active contacts, the others had missing clinical 

data) reconstructed from the post-operative CT of 30 PD patients out of the total 80 subjects. These 

represent all the subjects from which we could retrieve from the available clinical records both post-

operative data and outcome information. This study was repeated also for the location of non-active 

contacts for completeness. 

Lastly, we selected from the training set 15 PD patients whose clinical 1.5T T2W MRIs contain a 

whole head image in order to investigate the different factors that affect the STN prediction in our 

proposed 7T-ML framework. For this in-depth analysis, we computed the STN under various setups: 1) 

Predictors: manual or automatic segmentation; 2) Regression methods: bagged partial least squares 

regression or random forest; 3) Ensemble sizes: 10, 100, and 200; and 4) Weighting methods: uniform or 

non-uniform weights on training subsets based on their contribution to the prediction accuracy. 

 

3. Results 
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 Our proposed 7T-ML and standard atlases-based STNs are compared with the 7T manual ground 

truth STN on 80 (160 STNs) subjects’ clinical data, Table 6 and Fig. 2. The 7T-ML STNs were 

significantly closer to the 7T manual ground truth STNs in comparison to the atlas-based results 

(p<0.0001; ANOVA). Our results demonstrate the high accuracy and consistency of the proposed 7T-ML. 

Compare the 1.25±0.60mm, 2.37±1.74mm, 2.94±1.49mm, 3.50±3.57mm, and 4.25±3.33 average centers 

of mass distance between the STN that was computed from the 7T-ML, 7T3T, UHFA, DISTAL, and 

MNIPD25 atlases, respectively, and the ground truth STN (p<0.0001; ANOVA). Note that the average 

error in the 7T-ML STN is close to half of the clinical data slice thickness (2mm), which is roughly a 

lower bound to the possible segmentation accuracy. Furthermore, 89.4% (143/160), 53.8% (86/160), 28.1% 

(45/160), 51.9% (83/160), and 24.4% (39/160) of the STNs computed from the 7T-ML, 7T3T, UHFA, 

DISTAL, and MNIPD25 atlases, respectively, were less than 2mm from the ground truth center of mass 

(acceptable maximal error). 

 The 7T-ML also yields significantly better average mean distance of surface points and DC 

values (0.57±0.18mm and 64±12%) than 7T3T (1.33±1.03mm and 44±21%), UHFA (1.76±1.01mm and 

24±23%), DISTAL (2.16±2.97mm and 39±27%), and MNIPD25 (2.60±2.73mm and 26±24%) atlases, 

respectively, in comparison with the ground truth (p<0.0001; ANOVA).  

 Volumes of the 7T-ML based predicted STN (135.3±25mm3) and 7T3T atlas (129.4±19mm3) are 

comparable to those of the 7T manual ground truth STN (134.1±29mm3) on average (p>0.05; ANOVA 

and post hoc test), while the STNs based on other atlases are significantly different (p<0.05; ANOVA and 

post hoc test). DISTAL atlas-based STN is the largest (142.5±27mm3), but UHFA and MNIPD25 based 

STNs are smaller on average (106.4±23mm3 and 116.0±21mm3, respectively).    

 Fig. 3-(a) presents histograms of the centers of mass distance measured on 160 STNs computed 

by the various discussed methods. Each zone represents bins that include median or average  

centers of mass distance (bin size: 0.5mm). Median and average centers of mass distance of our proposed 

7T-ML STN are in zone (i), while median and average centers of mass distance for the STNs computed 
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based on standard atlases are distributed in zones (ii) and (iii). Our proposed 7T-ML demonstrates both 

higher accuracy and higher consistency in the centers of mass distance than standard atlases (i.e., smaller 

average and narrower distribution). Fig. 3-(b) and (c) visualize, for the compared methods and example 

subjects, the STNs in different average and median centers of mass distance zones, exemplifying the 

superior performance of the proposed 7T-ML.  

The STN segmentation results based on the active shape model and active appearance model 

framework (with 7T priors) showed 1.51±0.78mm (centers of mass distance), 0.61±0.20mm (mean 

distance of surface points), and 52.3±12% (DC) on average, comparing to the 7T manual ground truth. 

79.4% (127/160) of the segmented STNs were less than 2mm in centers of mass distance. Our 7T-ML 

was still significantly better in average centers of mass distance and DC (p<0.001; ANOVA). The volume 

of the segmented STN was also significantly different from our 7T-ML and the 7T manual ground truth 

(p<0.001; ANOVA). 

We also observed that the distance between active contacts and the 7T-ML STN’s centers of mass 

(again, here used to provide per-patient intrinsic coordinates) is much closer to that of the 7T manual 

ground truth STN in comparison to standard atlas-based results (Table 7; compare 2.4mm for our 7T-ML 

and ground truth and 3.2-5.6mm for standard atlases; see also Table S1 in the supplemental material for 

data on all the contacts). Once again, the STN’s center of mass is not clinically considered the optimal 

target position, and is here used simply as a reference for intrinsic coordinates. The target region 

(preferred by implanting team) can be defined/visualized within our 7T-ML STN. Nevertheless, the 

results here reported for our tested clinical data are comparable to those in the literature [Pallavaram et al., 

2015].  

Furthermore, as shown in Table 8 and Fig. 4, the active contacts were frequently populated at the 

posterior lateral parts (i.e., regions 2 and 4) of the STN as obtained from the 7T manual ground truth STN. 

The proposed 7T-ML was consistent with this observation, while the spatial distribution of active contacts 
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was markedly different in the atlas-based results. This is repeated for all the contacts in Table S2 and 

figures S1-S4.  

Fig. 5 presents an STN visualization based on the 7T manual ground truth, our proposed 7T-ML, 

7T3T, UHFA, DISTAL, and MNIPD25 atlases, along with the post-operative electrode contacts of a 

specific PD patient. According to the post-operative monopolar reviews, the activation of the contact 1 

was associated with the best motor improvement (62%), while activation of other contacts had resulted in 

lower motor improvements (15-46%). Contact 1 was entirely inside the dorsal STN according to our 

proposed 7T-ML, confirmed with the 7T manual ground truth STN. Active contacts associated with 

motor improvements were also placed in the dorsal area of the STN based on 7T3T, DISTAL, and 

MNIPD25. However, the atlas-based STNs were associated with large errors in shape and location with 

respect to the ground truth (unreliable STN trajectory). Note that a system operating/deciding based on 

our proposed 7T-ML system would have achieved optimal results (with the predicted STN close to the 

ground truth and the current lead location), while the same system operating based on those atlases would 

have misled the electrode placement, thereby resulting in adverse effects. Therefore, atlas-based STN 

segmentation would require further revision before being utilized into a clinical setup. While a full 

investigation of these aspects and consequences is beyond the scope of this study,  these results confirm 

that our proposed sub-region accuracy 7T-ML provides a reliable guide for the STN (sub-region) 

targeting for DBS surgery and treatment based on patient-specific standard clinical MR data.  

Next, the effect of the main components in our proposed 7T-ML framework is analyzed as 

follows:  

1) Predictors: the average centers of mass distance between the predictors (non-STN subcortical 

structures) automatically segmented on the selected clinical MRI and their manual 7T MRI counterparts 

was 0.92±0.45mm. The 7T-ML STN using manually segmented predictors showed comparable results to 

these observed using automatically segmented predictors (Fig. 6; p>0.05; ANOVA).  
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2) Regression methods: The 7T-ML using the bagged partial least squares regression produced 

significantly better results than using the regression forest method (figures 6 and 7; p<0.05; ANOVA).  

3) Ensemble sizes: The number of training subsets (10, 100 and 200) had insignificant effect on the STN 

prediction accuracy (p>0.05; ANOVA).  

4) Weighting methods: Incorporating non-uniform weights based on estimated error scores produced 

comparable results to these observed using uniform weights (Fig. 7; p>0.05; ANOVA) for the bagged 

partial least squares regression and regression forest methods. However, incorporating the actual error 

scores for determining the weights of the training sets resulted in significantly better prediction with the 

regression forest method (p<0.01; ANOVA), but insignificant with the bagged partial least squares 

regression. The mean squared error computed between the estimated error scores and the actual ones was 

lower for the regression forest method in comparison to the bagged partial least squares regression (Fig. 8; 

p<0.05 ANOVA). The smaller the number of training subsets, the higher the obtained mean squared error. 

This observation suggests that the robust framework was more effective when using the regression forest 

method with over 100 subsets. 

 

4. Discussion 

In this work, we proposed a computational framework to automatically localize and visualize the 

STN based on the standard clinical MRI, where it is not clearly identifiable, by taking advantage of our 

7T MRI database and machine learning. For validation, we used the STN ground truth that was defined 

on the 7T MRI, with careful manual annotation and cross-validation. Particularly, the 7T manual 

segmentation was shown to be accurate and consistent with neurophysiological data [Duchin et al., 2018; 

Shamir et al., 2018]. Moreover, the most-effective contacts were located in the dorso-lateral area of the 

7T manual STN segmentation, which matches other clinical reports [Garcia-Garcia et al., 2016; Herzog et 

al., 2004]. These studies show that the 7T manual segmentation data is highly consistent with biological 

and clinical measures. Once segmented accurately, the 7T manually segmented STN can be transformed 
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to a lower-resolution clinical image as done here to train the proposed 7T-ML method, and still accurately 

represent the STN, although it may be hard to observe it on the standard clinical image. The proposed 7T-

ML based STN is highly consistent with the 7T manual ground truth in center of mass, mean surface 

points, DC, and volume. Moreover, the population and location of the active contacts at the different sub-

regions within the proposed 7T-ML based predicted STN highly agrees with that of the 7T manual 

ground truth. We believe that the consistency of our proposed method with neurological measures and 

clinical outcomes supports its use to facilitate the guidance of the DBS electrode based on direct targeting 

using standard clinical MRI of individual patients.  

As summarized in Table 9, a variety of automatic STN segmentation methods based on MRI have 

been proposed. While most methods are not publicly available, state-of-the-art atlases and corresponding 

templates were freely downloadable, and thus we have tested them on our own clinical datasets. While 

some automatic approaches exploit the sufficient intensity information from contrast enhanced MR 

sequence or even higher field MRI (e.g., QSM, FGATIR, or 7T), it remains to be investigated if these 

methods provide accurate segmentation of the STN on standard clinical T2W MRI. 

For this reason, we compared the performance of the proposed approach with that of state-of-the-

art atlas-based methods: 1) 7T3T [Milchenko et al., 2018], 2) UHFA [Wang et al., 2016], 3) DISTAL 

[Ewert et al., 2017; Horn et al., 2017b], and 4) MNIPD25 [Xiao et al., 2017]. While these atlases 

reasonably localize and visualize the STN on subject-specific data they represent well, their accuracy and 

consistency on our tested clinical data were much lower than the proposed 7T-ML method. A one-way 

ANOVA and post hoc test with Tukey's method showed that our 7T-ML is significantly better than any 

other popular method we tested against. Moreover, the atlas-based STNs missed a large portion of post-

operative active contacts, potentially resulting in sub-optimal planning, programming, or outcomes.  

Standard atlases that are well defined in a normalized space could be of great value for 

retrospective population studies in the field [Horn et al., 2017a; Horn et al., 2017b; Horn et al., 2017c; 

Keuken et al., 2014]. However, uncertainty in registration needs to be addressed when using such atlases 
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for patient-specific STN-DBS targeting. Single atlas-based methods heavily rely on the registration 

quality between the atlas template and the clinical MRI from individual patients. Since the registration 

error may be larger on standard clinical images where the STN is not clearly visible or when the atlas 

template does not represent subject-specific data, atlas-based methods usually require further revision of 

the segmentation. All the significant errors from standard atlases are not simple biases, which would be 

easy to correct, the errors are unpredictable and have large variance as well. Large variability of atlas-

based results on our tested clinical data might explain this issue. Furthermore, an inaccurate definition of 

the STN in the atlas template may produce an additional error in patient-specific targeting [Ewert et al., 

2017]. 

We provided comprehensive results from a variety of state-of-the-art atlases to discuss 

uncertainty in registration that might be induced by (1) morphological variability (normal vs. patient), (2) 

different contrast (magnetic field or modality) between atlas template and clinical data, and (3) its sub-

optimization. This also confirms the benefits of our proposed 7T-ML that combines accurate STN models 

and machine learning for prediction from clinical data.  

More specifically, the DISTAL atlas [Ewert et al., 2017] and UHFA [Wang et al., 2016] were 

defined on the atlas template from normal subjects, and segmentation results on data from normal subjects 

were provided. The results on the PD-specific data might be deteriorated by morphological variability 

between the atlas template and the clinical data. Moreover, UHFA [Wang et al., 2016] utilized the 7T 

T2W MRI atlas template, and thus the contrast discrepancy between the 7T MRI and standard clinical 

data also might have affected the registration (this might also explain the often smaller STN volume 

found when computed with this atlas compared with other atlases-based results). 

Although the MNIPD25 atlas [Xiao et al., 2017] is PD-specific, the MR modality of the STN 

atlas templates (T2*W) is different from that of our standard clinical T2W data. This might have caused an 

error in registration between the atlas template and the clinical data; this atlas was associated with worse 

performance and smaller volume than using other atlases. 
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Milchenko et al. [2018] created a 7T atlas from elderly subjects and registered it onto the average 

template representing 3T T2W MRIs from PD patients. While promising results on PD patient-specific 

data was reported, segmentation results on our own clinical data (mostly PD patients) were insufficient 

for clinical utilization (although it showed better performance than using other atlases). Sub-optimization 

in a single warp might have affected the results. 

Table 10 presents quantitative comparison for centers of mass distance and DC of the STNs 

obtained using each method, clustered according to magnetic field strength. Specifically, 7T3T and 

DISTAL using a 3T T2W MRI template, and UHFA using a 7T T2W MRI template, showed much better 

performance on 3T MRIs, that have closer appearance to those templates, than on 1.5T MRIs. This 

illustrates that atlas-based methods require a template image closer to a given clinical MRI to improve 

their accuracy. Note that our 7T-ML shows comparable accuracy regardless of the quality (and strength) 

of the clinical MRIs, although the algorithm was not trained on 3T MRIs. In a complementary study, we 

have computed with the exact same method here introduced the STN on 3T MRIs obtained in another 

center and observed that it is very similar (~1mm) to the STN that was defined based on MER and blindly 

compared to our method [Shamir et al., 2018]. These complementary studies show the high accuracy and 

consistency of the proposed computational method, regardless of the proxy used for representing the 

ground truth (7T or MER). 

Registration steps used in this work oftentimes caused large errors in atlas-based results that 

could lead to misplacement of the stimulating electrode and ineffective DBS treatment. An optimization 

of the registration processes can considerably improve the fitting of the atlas and the STN segmentation 

accuracy [Pallavaram et al., 2015]. However, assuring such an optimization in the single registration 

mode still remains a challenging task even though the field has progressed [Viergever et al., 2016]. 

Moreover, it is hard to generalize an optimized registration into cases in large-scale population. The full 

investigation of the registration performance is beyond the scope of this work, but is important for 

automatic targeting as here illustrated. 
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 Our 7T-ML minimizes the effort to find the optimal single warp in a robust and fully automatic 

way. More specifically, we register clinical training images in our database directly to the clinical query 

image and select the most similar sets to reduce random error and bias in the single warp [Aljabar et al., 

2009]. Moreover, we refine the STN location and shape by learning 7T knowledge. It should be noted that 

although our 7T-ML framework uses the same registration steps that affected inaccurate atlas-based 

segmentation, thanks to these important additions the obtained results are significantly better than those 

obtained using the standard atlases. 

 Recent multiple atlases-based approaches showed promising results for the localization of the 

STN [Haegelen et al., 2013; Xiao et al., 2014a; Xiao et al., 2014b]. In these studies, manual labeling was 

performed, based on the appearance of 3T MRI, and automatic segmentation of the subcortical structures 

on the query patient was done by registration between the 3T MRIs atlas templates and patient. While the 

automatic segmentation closely matches its manual STN on the patient images, taking advantage of 

multiple atlas templates with similar appearances (reducing the registration uncertainty), it is unclear if 

the STN that appeared as hypo-intense on the 3T MRI reflects an accurate geometrical representation of 

the STN of individual subjects, especially in the dorso-lateral part that is critical for DBS targeting [Cho 

et al., 2011; Plantinga et al., 2014] (see also difference between volumes of 7T manual ground truth and 

MNIPD25 atlas-based STN in Fig. 2-(d)). Moreover, employing such methods in standard clinical 

scenarios based on lower quality images (e.g., 1.5T MRI) may result in larger errors since the registration 

accuracy is expected to be lessened [Avants et al., 2011b; Ou et al., 2014].  

Using current standard clinical imaging protocols, it is not feasible to differentiate the STN from 

the SN in clinical 1.5T or 3T MRI [Abosch et al., 2010]. As such, it remains unclear how approaches 

based on intensity and texture information on the target image [Bernard et al., 2012; Li et al., 2016] 

handle leakage around the border between the STN and SN. To explore this issue, we automatically 

segmented the STN using the active shape model and active appearance model framework (the same 

method that was used for segmentation of predictor structures in our 7T-ML framework). While it 
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reasonably localized the STN with the initialization from the 7T priors, our 7T-ML was still significantly 

better in average centers of mass distance and DC. Particularly, the size of the segmented STN was much 

smaller than the 7T manual ground truth. This might be attributed to fuzzy boundary of the STN on the 

image.  

Some approaches use pre-processed sequences or high quality data to make the STN more 

discernible or segment visible various mid-brain structures. For example, Garzón et al. [2017], Visser et 

al. [2016b], Milletari et al. [2017], and Plassard et al. [2017] utilized contrast enhanced MR sequences 

(QSM or FGATIR) to visualize subcortical structures, including the STN. Garzón et al. [2017] mentioned 

that the algorithm showed lower accuracy on R2* and T2W FLAIR images, indicating that it was 

specialized to high contrast data. Visser et al. [2016b] automatically segmented the STN on the 7T 

multimodal MRI. Also, Visser et al. [2016a] segmented the striatum and globus pallidus - that are fairly 

visible on 1.5T T1W MRI. Recently, several state-of-the-art methods using deep neural networks to 

segment brain structures are of interest [Bao and Chung, 2015; De Brébisson and Montana, 2015; Dolz et 

al., 2017; Shakeri et al., 2016]. Similarly, they focused on segmentation of brain regions (e.g., Thalamus, 

Caudate, Putamen, Pallidum, etc.) that are discernable on the image. Low quality clinical images, where 

even manual segmentation of the STN is not possible, might lead to challenges when using deep learning 

for the task here considered [Zhou et al., 2018]. We could potentially apply deep learning architectures to 

instead segment the predictor structures (fairly visible on the clinical image) that are used to predict the 

STN. 

The proposed 7T-ML leverages our 7T MRI database and machine learning to predict the STN 

that is not normally visible on the clinical MRI. It learns anatomical knowledge encoded from our 7T 

training data, which are independent of image intensity values. The 7T-ML, thereby, achieves comparable 

results to 7T manual segmentation on the clinical image. We observed an average of 1.1±0.6mm in 

centers of mass distance (93% of the cases were better than 2mm accuracy) from even lower quality data 

(1.5T MRI) of selected 15 PD patient’s data used for the in-depth study. This is consistent with the 
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reported results for 160 STNs from 80 subjects and also validates that the 7T-ML is robust on clinical 

1.5T MRI as well as 3T MRI. 

 Similarly to the 7T manual ground truth, the 7T-ML based STN accurately localized and 

predicted the active contacts, especially in the posterior lateral region that is considered a motor territory 

often targeted for Parkinson’s DBS [Plantinga et al., 2016]. We should stress that we analyzed the spatial 

relationship between contact location and the STN using the ellipsoid representation within the STN in an 

individual patient data space. This is important since the transformation of the patient data into the 

common space and vice versa entails biases in the relationship. This also validates that our proposed 7T-

ML approach facilitates precise localization of the electrode’s leads within patient-specific STN’s sub-

regions. A few active contacts were found to be outside the posterior part of our 7T-ML and the 7T 

manual ground truth STN. However, all of them were placed closely to the boundary, possibly having an 

overlap between the volume of tissue activated and the STN sub-region. Small resampling or registration 

errors may also explain this slight mismatch. Micro-lesion effect may bias contact localization as well 

[Granziera et al., 2008]. Overall, our results show that while standard atlases do not achieve the accuracy 

and consistency needed for sub-region STN targeting, the proposed 7T-ML is successful in this major 

DBS challenge: consistently providing accurate target localization. Importantly, the clinical feasibility of 

our 7T-ML approach is further demonstrated, comparing to MER mapping in Shamir et al. [2018]. 

The 7T-ML STN resulted in what could be considered at first glance as relatively low DC values, 

although the geometric measurements are within the tolerance level of the stereotactic frame used for the 

surgery [Shamir et al., 2009]. The partial volume effect for small structures, such as the STN, under 

clinical imaging resolution affects the DC values [Hoffman et al., 1979]. It has been also reported that the 

size of objects affects the DC, where small structures are associated with smaller DC values [Rohlfing, 

2012; Zou et al., 2004]. Shamir et al. [2016] provided numerical analysis of DC by modeling the clinical 

MRI resolution and center of mass error distribution in the STN manually segmented on the 7T MRI, and 

an average upper bound DC was estimated at 64%. This indicates that the proposed 7T-ML, with average 
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63.5% DC value, achieves near optimal accuracy. Recent automatic segmentation of the STN on the 7T 

data also resulted in comparable DC values [Visser et al., 2016b]. We should note that our 7T-ML 

targeted the STN on only standard clinical T2W MRI data where its borders are not visible, while the 

automatic segmentations in the above studies were obtained from the 7T multi-modal MRI with clear 

texture and boundary information. 

The geometric distortion on the 7T MRI and inaccurate co-registration between the 7T MRI and 

clinical data may potentially affect the quality of the 7T priors and thus cause errors in our 7T-ML 

framework. Therefore, minimizing such biases was critical to increase the reliability. Experts in the team 

manually segmented the STN and it predictor subcortical structures by leveraging superior contrast and 

anatomical details on both 7T T2W and SWI and carefully cross-validated. Furthermore, Duchin et al. 

[2012] demonstrated clinical feasibility of the 7T MRI by evaluating the distortion based on the co-

registration quality between 7T and 1.5T MRI. Following the proposed protocols we performed the co-

registration between 7T and clinical MRI. Recently, we further validated that the 7T manual STN 

segmentation is highly consistent with the MER data [Duchin et al., 2018; Shamir et al., 2018]. 

We also examined the effect of multiple factors in our proposed 7T-ML approach. Generally, and 

as expected, the accuracy of predictors’ segmentation highly affects the accuracy of the resulting STN 

prediction. We observed comparable STN prediction results using the manual and automatic predictors’ 

(non-STN) segmentation. This indicates that an error level in predictors’ segmentation on the clinical data 

was not influential in the STN prediction, and the automatic segmentation was near optimal. Comparable 

STN prediction accuracy was also observed for 10, 100 and 200 randomly selected subsets from the 

training set, but the estimation of STN prediction error was more accurate as the subset size increased. 

Weighting the training set based on the estimation of its contribution to the prediction accuracy reduced 

the variance observed with regression forest, but not bagged partial least squares regression. Therefore, 

the larger subset size results in more accurate estimation of STN prediction error that, in turn, helps to 

improve the STN prediction (an ensemble size of 100 is considered sufficient and used for validation of 
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our 7T-ML approach). Adding more subjects to our database may result in a significant correlation 

between the subset size and the STN prediction accuracy, which was not yet observed with training sets. 

 

5. Future Work and Conclusions 

We are currently investigating the shape refinement of the 7T-ML STN on a standard clinical 

MRI. If the ventral border of the STN that is adjacent to the SN can be identified in an automatic way, the 

STN prediction can be further refined to facilitate an even more reliable targeting. However, it remains 

questionable if the intensities around the STN boundary are consistent across clinical MR datasets from a 

large population of patients and centers.  

While we focused on localization of the STN in this manuscript, which is the most popular DBS 

target for Parkinson’s disease, the approach presented here can be exploited for segmenting other 

structures such as the internal globus pallidus and Vim. With a greater number of centers beginning to 

target the internal globus pallidus for PD and given that it is the predominant target for dystonia, precise 

localization of the internal globus pallidus and its sub-regions may also prove valuable for physicians 

targeting this structure. 

The identification of the STN on a standard clinical MRI is challenging. Therefore, more than one 

targeting method is incorporated today in DBS practice, often involving a more time-consuming and 

potentially extended-risk approach using intraoperative validation of electrode location with 

microelectrode recordings. Given that MER requires a level of expertise not typically found in most 

surgical centers, its utility and the ability of surgical sites to localize the STN and its sub-regions using 

this technique is highly variable across centers. To address these problems we introduced a patient-

specific automatic software-only method for the visualization of the 3D STN location and shape from 

standard clinical MRI. The method incorporates a database of high-field 7T MRI and a novel set of 

machine learning algorithms. The experimental results validated that our proposed 7T-ML approach can 

automatically and accurately localize the STN and its sub-regions on standard clinical MRI. This work 
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provides neurosurgeons and neurologists with accurate means for automatic patient-specific targeting of 

the STN and its sub-regions, potentially reducing the need for other approaches that may lengthen the 

procedure and/or be associated with a higher risk of side effects. Surgical Information Sciences, Inc. plans 

to make the 7T-ML based STN segmentation tool available for its clinical use in the near future. 
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Figure legends 

 

Figure 1: Direct visualization of SN and STN on a coronal 7T T2W image (top) registered onto SWI, 

coronal 7T SWI (bottom). The red and yellow represent contours of manually segmented SN and STN, 

respectively. Green arrows are toward the anterior direction.  

 

Figure 2: Comparison of (a) centers of mass distance, (b) mean distance of surface points (c) DC, and (d) 

volume for our proposed 7T-ML based STN prediction (using the bagged partial least squares regression, 

uniform weights, 100 ensemble size, and automatically segmented predictors), 7T3T, UHFA, DISTAL, 

and MNIPD25 atlases, in comparison with 7T manual ground truth across 80 patients. A one-way 

ANOVA and post hoc test (with Tukey's method) is performed for multiple comparisons. The 

significance level is denoted by asterisks (* for p<0.05 and ** for p<0.001; ANOVA and post hoc test). 

Note that the volume difference between the 7T manual ground truth and our 7T-ML based STN and 

7T3T, respectively, are not significant (p>0.05; ANOVA and post hoc test.) 

 

Figure 3: Centers of mass distances’ histogram and visual examples of the proposed 7T-ML and standard 

atlases (blue) overlaid with 7T manual ground truth (red) from specific subjects. (a) Comparison of 

histograms of centers of mass distance measured on 160 STNs obtained from the different methods. (b) 

Visualization of the STNs from zone (i) and (ii) in (a), representing average centers of mass distance of 

the 7T-ML and standard atlases, respectively on the 1.5T MRI of an example PD patient (age: 51). (c) 

Visualization of the STNs from zone (i) and (iii) in (a), representing median centers of mass distance on 

the 3T MRI of an example PD patient (age: 79). From left to right: 3D surface and contours in (A) axial, 

(C) coronal, and (S) sagittal planes along with arrows indicating the anterior direction. CMD: centers of 

mass distance. MSD: mean distance of surface points. 
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Figure 4: Density maps of the active contact population in different regions within the per-patient 

ellipsoid representation of the STN based on 7T manual ground truth, proposed 7T-ML, 7T3T, UHFA, 

DISTAL, and MNIPD25. Top left represents the region numbers in 3D and the right represents the 

corresponding numbers in the 2D slices along with posterior(P)/anterior(A) and medial(M)/lateral(L) axes. 

(The example shows the right STN. Left STN is mirrored into M-L direction for the population analysis.) 

 

Figure 5: Comparison of the STN computed based on the 7T manual ground truth, our proposed 7T-ML, 

7T3T, UHFA, DISTAL, and MNIPD25 atlases, overlaid with the electrode contacts for a specific PD 

patient (age: 48). The visualization is an example from zone (i) and (iii) in Fig. 3-(a), representing average 

centers of mass distance of our 7T-ML and standard atlases-based STNs, respectively. Electrode contacts 

were placed into the dorsal zone according to the ground truth. Similarly to the ground truth, our 7T-ML 

STN completely includes the active contact (red, contact 1) associated with the best motor improvement 

(62%) and the active contacts (blue, contact 2 and 3) with lower motor improvement (15-46%). Dorsal 

STNs based on 7T3T, DISTAL, and MNIPD25 also would have been activated by the contacts associated 

with motor improvements, but they showed much larger errors in shape and location than 7T-ML. This 

means that it might lead to misleading placement. None of contacts are placed in the dorsal STN based on 

UHFA. CMD: centers of mass distance. MSD: mean distance of surface points. 

 

Figure 6: Comparison of (a) centers of mass distance and (b) DC values for predicted STNs with 

automatically and manually segmented predictors on the 1.5T MRI of 15 PD patients. 

 

Figure 7: Comparison of (a) centers of mass distance, (b) DC values, and (c) error scores for ensemble 

STN prediction and robust prediction (for estimated error scores and actual ones) by bagged partial least 

squares regression and regression forest learning, with automatically segmented predictors and an 

ensemble size of 100. 
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Figure 8: Average mean squared error between estimated error scores and true ones (computed from the 

7T manual ground truth STN) for predicted STN using the bagged partial least squares regression and the 

regression forest according to different number of training subsets within the robust framework. 
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Table legends 

 

Table 1: Demographic and clinical details of the used 80 subjects. 

 

Table 2: MRI modality and resolution of 7T and clinical data used in our 7T-ML. 

 

Table 3: Clinical details and magnetic field strength of clinical images in the training and validation sets 

(80 subjects). 

 

Table 4: Data acquisition and template images for tested state-of-the-art atlases. 

 

Table 5: Summary of patient data used for the post-operative analysis in the training and validation sets. 

 

Table 6: Quantitative comparison of the STNs obtained using the proposed 7T-ML and the 7T3T, UHFA, 

DISTAL, MNIPD25 atlases. The various methods were compared to the 7T manual ground truth STNs of 

80 patients (160 STNs). A one-way ANOVA and post hoc test (with Tukey's method) showed that the 

proposed 7T-ML is significantly better than atlas-based methods in each measure (p<0.0001). CMD: 

centers of mass distance. MSD: mean distance of surface points.  

 

Table 7: Distance between active contacts and STN’s centers of mass computed from the 7T manual 

ground truth, proposed 7T-ML, 7T3T, UHFA, DISTAL, and MNIPD25 atlases. 

 

Table 8: Numbers of active contacts placed in each region within the per-patient ellipsoid representation 

of the STN computed based on the 7T manual ground truth, proposed 7T-ML, 7T3T, UHFA, DISTAL, 

and MNIPD25 atlases. See Fig. 4 for the localization of each region. 
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Table 9: Summary of automatic STN segmentation methods based on MRI. 

 

Table 10: Centers of mass distance and DC value between the STNs obtained using the proposed 7T-ML, 

7T3T, UHFA, DISTAL, MNIPD25 atlases and the 7T manual ground truth STNs, grouped according to 

magnetic field strength in the training and validation sets. A one-way ANOVA and post hoc test (with 

Tukey's method) showed that the proposed 7T-ML is significantly better than atlas- based methods in 

each measure (p<0.0001). 
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Table 1: Demographic and clinical details of the used 80 subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gender Diagnosis 
Age 

(mean ± standard 
deviation) Male Female 

Essential 
Tremor 

Parkinson’s 
Disease 

Normal 
Control 

61 19 12 56 12 60±13.8 
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Table 2: MRI modality and resolution of 7T and clinical data used in our 7T-ML. 

Magnetic field 
strength 

7T 1.5T 3T 

MRI modality T2W SWI T2W T2W 

Resolution 
0.39x0.39x1.0mm 
0.39x0.39x2.0mm 

0.39x0.39x0.8mm 
0.5x0.5x2.0mm 

0.72x0.72x2.0mm 
0.55x0.55x2.0mm 
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Table 3: Clinical details and magnetic field strength of clinical images in the training and validation sets 
(80 subjects). 
 

Dataset Training set Validation set  

Magnetic field strength 1.5T 1.5T 3T 

The number of patients 46 (15) 10 24 

Essential Tremor 10 - 2 

Parkinson’s Disease 36 (15) 10 10 

Normal Control - - 12 

( ) indicates the number of PD patients for in-depth study 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2018. ; https://doi.org/10.1101/322230doi: bioRxiv preprint 

https://doi.org/10.1101/322230
http://creativecommons.org/licenses/by-nc-nd/4.0/


- 47 - 
 

Table 4: Data acquisition and template images for tested state-of-the-art atlases. 

Atlases 
7T3T 

(Milchenko et al., 2018) 
UHFA 

(Wang et al., 2016) 
DISTAL 

(Ewert et al., 2017) 
MNIPD25 

(Xiao et al., 2017) 

Data on which 
the STN atlas 
was obtained 

7T T2W MRI  
(elderly normal) 

7T T2W MRI 
(normal) 

3T T1W/T2W/proton 
density MRI (normal),   

histology, and  
DWI  

(normal/PD patients) 

3T T2*W MRI 
(PD patients) 

Provided STN 
atlas template 

image 

3T T2W MRI in ICBM 
MNI152 space 
(PD patients) 

7T T2W MRI 
(normal) 

3T T2W MRI in 
ICBM 2009b Asym 

MNI152 space 
(normal) 

3T T2*W MRI in 
ICBM MNI152 

space (PD patients) 
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Table 5: Summary of patient data used for the post-operative analysis in the training and validation sets. 

Dataset Training set Validation set  

The number of patients 46 34 

The number of patients for  
post-operative analysis 

15 15 

Unilateral STN-DBS 12 (11/12) 10 (9/10) 

Bilateral STN-DBS 3 (5/6) 5 (6/10) 

( ) represents the number of available active contacts out of total electrode reconstruction image 
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Table 6: Quantitative comparison of the STNs obtained using the proposed 7T-ML and the 7T3T, UHFA, DISTAL, MNIPD25 atlases. The 
various methods were compared to the 7T manual ground truth STNs of 80 patients (160 STNs). A one-way ANOVA and post hoc test (with 
Tukey's method) showed that the proposed 7T-ML is significantly better than atlas-based methods in each measure (p<0.0001). CMD: centers 
of mass distance. MSD: mean distance of surface points.  
 

 

7T-ML 
7T3T 

(Milchenko et al., 2018) 
UHFA 

(Wang et al., 2016) 
DISTAL 

(Ewert et al., 2017) 
MNIPD25 

(Xiao et al., 2017) 

CMD 
(mm) 

MSD 
(mm) 

DC 
Volume 
(mm3) 

CMD 
(mm) 

MSD 
(mm) 

DC 
Volume 
(mm3) 

CMD 
(mm) 

MSD 
(mm) 

DC 
Volume 
(mm3) 

CMD 
(mm) 

MSD 
(mm) 

DC 
Volume 
(mm3) 

CMD 
(mm) 

MSD 
(mm) 

DC Volume 
(mm3) 

Average 1.25 0.57 0.64 135.3 2.37 1.33 0.44 129.4 2.94 1.76 0.24 106.4 3.50 2.16 0.39 142.5 4.25 2.60 0.26 116.3 

Standard 
deviation 

0.60 0.18 0.12 24.85 1.74 1.03 0.21 18.56 1.49 1.01 0.23 16.62 3.57 2.97 0.27 26.87 3.33 2.73 0.24 20.76 

CMD 
< 2mm 

(%) 
89.4 (143/160) 53.8 (86/160) 28.1 (45/160) 51.9 (83/160) 

 
24.4 (39/160) 
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Table 7: Distance between active contacts and STN’s centers of mass computed from the 7T manual 
ground truth, proposed 7T-ML, 7T3T, UHFA, DISTAL, and MNIPD25 atlases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Ground 
Truth 

7T-ML 
7T3T 

(Milchenko 
et al., 2018) 

UHFA 
(Wang et al., 

2016) 

DISTAL 
(Ewert et al., 

2017) 

MNIPD25 
(Xiao et al., 

2017) 

Average 
(mm) 

2.39 2.43 3.56 3.24 5.14 5.61 

Standard 
deviation 

1.06 1.02 1.98 1.13 4.86 4.10 
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Table 8: Numbers of active contacts placed in each region within the per-patient ellipsoid representation 
of the STN computed based on the 7T manual ground truth, proposed 7T-ML, 7T3T, UHFA, DISTAL, 
and MNIPD25 atlases. See Fig. 4 for the localization of each region. 

Region Ground truth 7T-ML 
7T3T 

(Milchenko et 
al., 2018) 

UHFA 
(Wang et al., 

2016) 

DISTAL 
(Ewert et al., 

2017) 

MNIPD25 
(Xiao et al., 

2017) 

1 4 5 2 2 3 1 

2 9 9 5 3 7 1 

3 5 6 3 2 2 5 

4 10 7 5 9 2 3 

5 0 0 2 0 0 0 

6 0 0 3 0 2 0 

7 0 0 2 0 0 0 

8 0 1 1 0 0 0 

9 3 3 8 15 15 21 
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Table 9: Summary of automatic STN segmentation methods based on MRI. 

Author (year) Method 

Test data (subject-specific) 
Implementation  

availability MRI 
Modality 

Magnetic 
field 

strength 

Dataset 
source 

The number of 
datasets 

(clinical details) 

Ewert et al. (2017) 
single atlas 
propagation 

T2 1.5T/3T 
IXI 

Dataset 
22 

(normal) 
3T T2 template 

(MNI)/atlas 

Wang et al. (2016) 
single atlas (7T) 

propagation  
T2 1.5T 

Own 
dataset 

unknown 
(normal) 

7T T2 
template/atlas 

Xiao et al. (2017) 
single atlas 
propagation 

- - - - 
3T T2* template 

(MNI)/atlas 

Milchenko et al. (2018) 
single atlas (7T) 

propagation 
T2 3T 

Own 
dataset 

56 
(PD) 

3T T2 template 
(MNI)/atlas 

Haegelen et al. (2012) 
multiple atlases 

propagation (patch 
based label fusion) 

T1/T2 3T 
Own 

dataset 
10 

(PD) No 

Xiao et al., (2014a) 
multiple atlases 

propagation (patch 
based label fusion) 

T1-T2* fusion 3T 
Own 

dataset 
10 

(PD) No 

Xiao et al., (2014b) 
multiple atlases 

propagation 
(majority voting) 

T1/T2 3T 
Own 

dataset 
10 

(PD) 
No 

Plassard et al. (2017) 
multiple atlases (7T) 

propagation 

T1/Inversion 
recovery scan 

(O-IR) 
3T 

Own 
dataset 

9 
(Normal) 

No 

Bernard et al., (2012) active shape model SWI 3T 
Own 

dataset 
24 

(unknown) 
No 

Kim et al., (2014) 

active contour with 
multi-contrast edge 

maps and shape 
priors and non-

overlapping 
constraints 

SWI/T2 7T 
Own 

dataset 
6 

(Normal) 
Available  

upon request 

Li et al. (2016) 
level set (chan and 

vese with MLE 
initial contour) 

T2 3T 
Own 

dataset 
10 

(PD) 
No 

Garzon et al. (2017) 
spatial priors based 

GMM of image 
intensities 

QSM 3T 
Own 

dataset 
40 

(Normal) 
Yes 

Visser et al. (2016b) 
MRF shape prior 

model and intensity 
model 

T2*(QSM) 7T 
Own 

dataset 
53 

(Normal) 

No (will be 
available in 
upcoming 

version of FSL) 

Milletari et al. (2017) 
Hough-voting to 
acquire mapping 

from CNN features 
QSM unknown 

Own 
dataset 

55 
(unknown) 

No 

Proposed 7T-ML 

Statistical shape and 
pose relationship 
learning from 7T 

priors 

T2 1.5T/3T 
Own 

dataset 
80 

(PD/ET/Normal) 
Available soon 
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Table 10: Centers of mass distance and DC value between the STNs obtained using the proposed 7T-ML, 
7T3T, UHFA, DISTAL, MNIPD25 atlases and the 7T manual ground truth STNs, grouped according to 
magnetic field strength in the training and validation sets. A one-way ANOVA and post hoc test (with 
Tukey's method) showed that the proposed 7T-ML is significantly better than atlas-based methods in each 
measure (p<0.0001). 
 

 Training set Validation set 

Magnetic field strength 1.5T 1.5T 3T 

7T-ML  
CMD(mm) 

DC 
1.28±0.65  
0.62±0.13 

1.16±0.48  
0.66±0.11 

1.22±0.55  
0.66±0.08 

7T3T 
(Milchenko et al., 2018) 

CMD (mm) 
DC 

2.63±2.09 
0.40±0.24 

2.26±1.16 
0.41±0.21 

1.92±0.93 
0.52±0.11 

UHFA 
(Wang et al., 2016) 

CMD (mm) 
DC 

3.28±1.60 
0.21±0.22 

3.16±1.42 
0.17±0.21 

2.21±0.96 
0.33±0.23 

DISTAL 
(Ewert et al., 2017) 

CMD (mm) 
DC 

4.35±4.15 
0.31±0.27 

3.59±3.41 
0.39±0.32 

1.83±0.84 
0.54±0.17 

MNIPD25 
(Xiao et al., 2017) 

CMD (mm) 
DC 

4.41±3.68 
0.28±0.26 

3.85±2.65 
0.18±0.21 

4.11±2.89  
0.24±0.18 
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Figure 1: Direct visualization of SN and STN on a coronal 7T T2W image (top) registered onto SWI, 
coronal 7T SWI (bottom). The red and yellow represent contours of manually segmented SN and STN, 
respectively. Green arrows are toward the anterior direction.  
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Figure 2: Comparison of (a) centers of mass distance, (b) mean distance of surface points (c) DC, and (d) 
volume for our proposed 7T-ML based STN prediction (using the bagged partial least squares regression, 
uniform weights, 100 ensemble size, and automatically segmented predictors), 7T3T, UHFA, DISTAL, 
and MNIPD25 atlases, in comparison with 7T manual ground truth across 80 patients. A one-way 
ANOVA and post hoc test (with Tukey's method) is performed for multiple comparisons. The 
significance level is denoted by asterisks (* for p<0.05 and ** for p<0.001; ANOVA and post hoc test). 
Note that the volume difference between the 7T manual ground truth and our 7T-ML based STN and 
7T3T, respectively, are not significant (p>0.05; ANOVA and post hoc test.) 

(d) 
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Figure 3: Centers of mass distances’ histogram and visual examples of the proposed 7T-ML and standard 
atlases (blue) overlaid with 7T manual ground truth (red) from specific subjects. (a) Comparison of 
histograms of centers of mass distance measured on 160 STNs obtained from the different methods. (b) 
Visualization of the STNs from zone (i) and (ii) in (a), representing average centers of mass distance of 
the 7T-ML and standard atlases, respectively on the 1.5T MRI of an example PD patient (age: 51). (c) 
Visualization of the STNs from zone (i) and (iii) in (a), representing median centers of mass distance on 
the 3T MRI of an example PD patient (age: 79). From left to right: 3D surface and contours in (A) axial, 
(C) coronal, and (S) sagittal planes along with arrows indicating the anterior direction. CMD: centers of 
mass distance. MSD: mean distance of surface points. 

(c) 
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Figure 4: Density maps of the active contact population in different regions within the per-patient 
ellipsoid representation of the STN based on 7T manual ground truth, proposed 7T-ML, 7T3T, UHFA, 
DISTAL, and MNIPD25. Top left represents the region numbers in 3D and the right represents the 
corresponding numbers in the 2D slices along with posterior(P)/anterior(A) and medial(M)/lateral(L) axes. 
(The example shows the right STN. Left STN is mirrored into M-L direction for the population analysis.) 
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Figure 5: Comparison of the STN computed based on the 7T manual ground truth, our proposed 7T-ML, 
7T3T, UHFA, DISTAL, and MNIPD25 atlases, overlaid with the electrode contacts for a specific PD 
patient (age: 48). The visualization is an example from zone (i) and (iii) in Fig. 3-(a), representing average 
centers of mass distance of our 7T-ML and standard atlases-based STNs, respectively. Electrode contacts 
were placed into the dorsal zone according to the ground truth. Similarly to the ground truth, our 7T-ML 
STN completely includes the active contact (red, contact 1) associated with the best motor improvement 
(62%) and the active contacts (blue, contact 2 and 3) with lower motor improvement (15-46%). Dorsal 
STNs based on 7T3T, DISTAL, and MNIPD25 also would have been activated by the contacts associated 
with motor improvements, but they showed much larger errors in shape and location than 7T-ML. This 
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means that it might lead to misleading placement. None of contacts are placed in the dorsal STN based on 
UHFA. CMD: centers of mass distance. MSD: mean distance of surface points. 
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Fig. 6: Comparison of (a) centers of mass distance and (b) DC values for predicted STNs with 
automatically and manually segmented predictors on the 1.5T MRI of 15 PD patients. 
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Fig. 7: Comparison of (a) centers of mass distance, (b) DC values, and (c) error scores for ensemble STN 
prediction and robust prediction (for estimated error scores and actual ones) by bagged partial least 
squares regression and regression forest learning, with automatically segmented predictors and an 
ensemble size of 100. 

(a) 

(b) 

(c) 
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Figure 8: Average mean squared error between estimated error scores and true ones (computed from the 
7T manual ground truth STN) for predicted STN using the bagged partial least squares regression and the 
regression forest according to different number of training subsets within the robust framework. 
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