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Abstract

One of the challenging problems in the brain imaging research is a principled in-
corporation of information from different imaging modalities in association studies.
Frequently, data from each modality is analyzed separately using, for instance, di-
mensionality reduction techniques, which result in a loss of mutual information. We
propose a novel regularization method, griPEER (generalized ridgified Partially Em-
pirical Eigenvectors for Regression) to estimate the association between the brain
structure features and a scalar outcome within the generalized linear regression
framework. griPEER provides a principled approach to use external information
from the structural brain connectivity to improve the regression coefficient estima-
tion. Our proposal incorporates a penalty term, derived from the structural connec-
tivity Laplacian matrix, in the penalized generalized linear regression. We address
both theoretical and computational issues and show that our method is robust to the
incomplete information about the structural brain connectivity. We also provide a
significance testing procedure for performing inference on the estimated coefficients
in this model. griPEER is evaluated in extensive simulation studies and it is applied
in classification of the HIV+ and HIV- individuals.

Key words: Generalized Linear Regression, Penalized regression, Structured
penalties, Laplacian matrix, Brain connectivity, Brain structure

1. Introduction

In brain imaging applications researchers often collect multiple data types, but in
the majority of cases the analysis is performed separately for each of them. Implicit
in the work of Randolph et al. (2012) is a framework for simultaneously utilizing mul-
tiple data types. For instance, structural and/or functional connectivity measures
may serve as useful prior knowledge regarding the structure of dependencies between
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brain regions when used in a linear model that aims to estimate the association of
brain region properties (e.g., cortical thickness) with a scaler outcome. Karas et al.
(2017) explicitly showed that using correct prior information significantly increases
estimation accuracy. The statistical methodology, riPEER, developed by these au-
thors allows for incorporating such predefined structure into a regression model a
way that protects against using incorrect information. The derived estimation pro-
cedure, however, is limited by the assumption that the response variable is normally
distributed. Such design excludes, for instance, a binary response that indicates the
presence/absence of a condition such disease or phenotype.

To fill this gap, we developed a variant of riPEER, called generalized ridgified
Partially Empirical Eigenvectors for Regression (griPEER), which handles the out-
comes coming from the exponential family of distributions. In the context of brain
imaging analysis, our approach allows the analysis to incorporate information such
as that encoded in a structural or functional connectivity matrix. As with its pre-
cursor, griPEER is able to use the predefined information in a “soft” way — from
full inclusion absence — depending on how well this information is confirmed by
the data. To achieve this, griPEER employs a penalized optimization problem with
a flexible, parameterized penalty term with parameters chosen in a fully automatic
and data-driven manner.

We work with a generalized linear regression model where the ith scalar outcome,
yi, is assumed to be drawn from the exponential family of distribution with the pa-
rameter θi. We confine ourselves to the canonical link functions only and assume
that θ = Xβ + Zb. Here, X denotes a matrix of covariates (such as demographic
data) for which the prior information is not used and the columns of Z correspond
to variables having structure which is assumed to be at least partially known. In the
analysis performed in this article, β includes the intercept and demographic data,
while b represents the coefficients for the average thickness of 66 brain regions. These
regions are assumed to be linked and this linkage is represented by a connectivity ma-
trix; e.g., this matrix may encode a density of connections or the average Fractional
Anisotropy (FA).

There is a wide literature on using structural information in image reconstruction
and estimation (see, e.g., Bertero and Boccacci (1998), Engl et al. (2000), Phillips
(1962)). In situations when the object of the interest is assumed to be a function be-
longing to a class of, say, differentiable functions, a differential operator-based penalty
may be used to “regularize” or impose smoothness on the estimates (Huang et al.,
2008). This may improve the prediction and interpretability and is “efficient and
sometimes essential” in situations having many highly correlated predictors (Hastie
et al., 1995). When the object of estimation is a vector, the penalties are very often
constructed based on `1 and `2 norms. Examples include such methods as LASSO
(Tibshirani, 1996), adaptive LASSO (Zou, 2006), ridge regression (Tikhonov, 1963)
and elastic net (Zou and Hastie, 2005), to name just a few.

There is no the unique answer to the question of how to regularize a particular
model and the final construction depends strongly on the context. If, for instance,
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it is natural to assume sparsity in the coefficients or that they occur in blocks, then
using the `1 norm to constrain them (as in the LASSO) or constrain the difference
of adjacent coefficients (as in the fused LASSO) would be useful (Tibshirani et al.,
2005). A more generalized fused lasso using two `1 norms could also be applied: one
constraining on the coefficients and one constraining their pairwise differences (Xin
et al., 2016).

When more intricate structure among the variables is expected and when some
(possibly imprecise) knowledge of it is available, then less generic penalization schemes
are more appropriate (Tibshirani and Taylor, 2011; Slawski et al., 2010). For exam-
ple, a p × p adjacency matrix represents known connections, or “edges”, between p
nodes in a graph. This matrix can be used to inform a model that aims to estimate
the relationship between an outcome an a vector of p values at the nodes in the
graph. More specifically, the adjacency matrix is used to define the graph Laplacian
matrix which represents differences between nodes (Chung, 2005), and may be used
to penalize the process of estimating regression coefficients, b.

For any p× p matrix Q, defining a penalty of the form λbTQb, where λ is a non-
negative regularization parameter constitutes the essence of the methods of Li and
Li (2008) and Karas et al. (2017). Using a penalty of this form also serves to link
the optimization problem with theory of mixed effects models in which b is assumed
to be a random effects vector with distribution N (0, σ2

bQ
−1), for some σ2

b > 0. This,
in turn, reveals a connection with the Bayesian approach, where the distribution is
treated as a prior on b; see e.g., Maldonado (2009).

Problems with such an interpretation include the fact that Q may not be invert-
ible, as is the case when Q is defined as Laplacian or normalized Laplacian (Chung,
2005). Second, a single multiplicative parameter, λ, adjusts the trade-off between
model fit and penalty terms but it can not change the regularization pattern, i.e.,
the shape of the set {b : penalty(b) = const} is preserved. When Q is misspecified
(is not informative) this lack of adaptivity may significantly degrade performance to
be even worse than a uninformed penalty such as ridge regression or LASSO (Karas
et al., 2017).

Both of these issues were considered in (Karas et al., 2017) which does not assume
Q is exactly the true signal precision matrix, Q, but is merely“close”, in some sense;
i.e., Q contains some amount of true information which can be exploited. Therefore,
by considering a family of transformations of Q, and selecting the optimal member by
applying a data-adaptive procedure, one may obtain a modified matrix which reflects
Q better and improves prediction accuracy. Transformations of the form Q + aIp
(a > 0) are used by Karas et al. (2017). Any such modification of Q is invertible
and could be directly used in the estimation procedure. The resulting penalty term,
λbT(Q + aIp)b, has an equivalent form λQb

TQb + λR‖b‖22 and the connection with a
specific linear mixed model enables the optimal selection of λQ and λR.

The approach by Karas et al. (2017) assumes the response variable is normally
distributed and hence not suitable for categorical outcomes. In this presentation
we extenbd the concept of riPEER’s penalty function to the case when the distri-
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bution of the response variable is a member of one-parameter exponential family of
distributions. The proposed estimation method, griPEER, is of the form:[

β̂gP

b̂gP

]
:= argmin

β,b

{
− 2 loglik

(
β, b|y

)
+ λQb

TQb + λR‖b‖22
}
, (1)

where loglik
(
β, b|y

)
is a log-likelihood. Here, the term −2loglik

(
β, b|y

)
is used to fit

the model to the response distribution while the parameters λQ and λR are chosen
based on the connection between the optimization problem and the generalized linear
mixed model; this is formulated explicitly in Section 2. It is important to emphasize
that these parameters not only determine the trade-off between the model fit and the
penalty term, but also on the form of the penalty, which determines the structure
that the estimate is encouraged to have. More precisely, if λQ is large relative to
λR, then the connectivity information has a large role in the estimation process.
Conversely, when λQ is small relative to λR, the penalty is equal in all coordinates,
as with ridge regression.

We illustrate this using a simple example with p = 2 variables and prior infor-
mation that implies these variables are connected. Figure 1 shows how the shapes
of contour sets of penalty, which decide on the solution structure, change for various
lambdas. If the relationship between variables, as represented in Q, is reflected in
data and if this is related to the outcome y, then griPEER will tend to choose rela-
tively large λQ, which links the coefficients in b (see right plot in Figure 1). The other
extreme is when the structure in Q is not informative for the relationship between y
and Z. In this case, griPEER will select a relatively large λR inducing a ridge-like
penalty that ignores Q (see the left panel in Figure 1).

(a) λQ � λR (b) λQ ≈ λR (c) λQ � λR

Figure 1: Shapes of the set
{
b : λQb

TQb+ λR‖b‖22 = 1
}

for various pairs of regularization
parameters: (a) the assumed strong connections between variables was neglected, (b) the
moderate tendency for coefficients of the solution to be similar to each other (c) strong
tendency for coefficients of the solution to be similar to each other

The remainder of this work is organized as follows. In Section 2, we formulate our
statistical model, investigate the special case of binomial distribution and discuss the
equivalence between GLMM and penalized optimization problems. We also describe
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the penalty term construction from the graph-theory point of view. The estimation
procedure we use to select the optimal regularization parameters is introduced in
Section 3, while the next Section addresses the problem of the selection of response-
relevant variables. The extensive simulations showing very good performance of
griPEER in the context of estimation accuracy and variables selection (under various
scenarios illustrating the impact of inaccurate prior information) are reported in
Section 5. Finally, in Section 6, we apply our methodology to study the association
of the brain’s cortical thickness and HIV disease. The conclusions and a discussion
are summarized in Section 7.

2. Statistical model

We address the problem of estimation in a penalized generalized linear model
where the penalty term is derived from connectivity information. This information
is represented by a p×p symmetric matrix having non-negative entries with zeros on
the diagonal. This adjacency matrix or connectivity matrix and will be denoted by
A. The corresponding graph Laplacian matrix, Q, which defines the penalty term is
defined next, followed by specific details about the statistical model in (1).

2.1. The graph Laplacian, Q

We are interested in modeling the association between a scaler outcome, y, and
a set of p predictor variables that are measured at the nodes of graph. We assume
that information about connections between the these variables — i.e., strengths of
the connections between the nodes — can be summarized by a (symmetric) p × p
adjacency matrix A = [aij], 1 ≤ i, j ≤ p, having non-negative entries and zeros on
the diagonal. We denote the degree of the jth node as dj :=

∑
j ajj, and define the

degree matrix as D := diag(d1, . . . , dp).
Following Chung (2005), we define the unnormalized Laplacian, Qu, correspond-

ing to A simply as Qu := D − A. This matrix is always positive semidefinite. It
is also singular, since for the vector of ones, 1 := [1, . . . , 1]T we have 1TQu1 =
1TD1− 1TA1 =

∑
i di −

∑
i di = 0.

Intuition on the role of a penalty of the form bTQub, as in (1), is gained by
the following simple formula: for any adjacency matrix, A, and its unnormalized
Laplacian, Qu, then

bTQub =
∑
i,j

aij (bi − bj)2 . (2)

That is, the term bTQub in the optimization problem (1) penalizes the squared differ-
ences of coefficients in a manner that is proportional to the strengths of connections
between them. Consequently, coefficients corresponding to nodes having many strong
connections (nodes with large degree) are constrained more than others. T

In order to allow a small number of nodes with large di to have more extreme
values, we employ the normalized Laplacian, Q, which is obtained by by dividing
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each column and row of Qu by a square root of corresponding node’s degree. As a
result, the property (2), with Q instead of Qu, takes the form

bTQb =
∑

i,j:aij 6=0

aij

(
bi√
di
− bj√

dj

)2

.

Q has ones one the diagonal and, as with the unnormalized Laplacian, it is a sym-
metric, positive semidefinite and singular matrix.

2.2. Statistical model in general form

Consider the general setting where y is an n × 1 vector of observations, and
the design matrices, X and Z, are n × p and n × m matrices, respectively. The
columns of X represent the p covariates and the rows are denoted by Xi. Similarly,
the columns of Z correspond to m variables, or nodes in a graph, for which some
connectivity information may be available; the rows are denoted by Zi. We assume
there exists(unknown) vectors b and β such that, for each i ∈ {1, . . . , n}, yi is the
member of one-parameter exponential family of distributions of the form

f(yi) = exp
{
yiθi − ψ(θi) + c(yi, ϕ)

}
, (3)

where θi := Xiβ + Zib is a subject-specific parameter. The formula in 3 includes
exponential, binomial, Poisson and Laplace densities.

It can be shown that for the exponential family of distributions, the mean of yi
is simply given by the first derivative of ψ in the point θi, while the variance could
be expressed as the second derivative of ψ, i. e.

E
(
yi
)

= ψ′(θi), var
(
yi
)

= ψ′′(θi). (4)

Moreover, the log-likelihood function is

loglikψ,c
(
β, b| y

)
=

n∑
i=1

{
yi(Xiβ + Zib)− ψ(Xiβ + Zib) + c(yi)

}
(5)

and it provides a core for the methodology we propose in this presentation. Indeed,
we define griPEER as a solution to the following optimization problem[

β̂gP

b̂gP

]
:= argmin

β,b

{
− 2 lψ

(
β, b| y

)
+ λQb

TQb + λR‖b‖22
}
, (6)

where lψ
(
β, b| y

)
:=
∑n

i=1

{
yi(Xiβ+Zib)−ψ(Xiβ+Zib)

}
consists of the terms of log-

likelihood function (5) depending ond b and β. Here, λQ and λR are regularization
parameters, which are selected automatically, as described in Section 3.
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2.3. The special case – binomial distribution

To provide focus to our presentation we will concentrate on the setting of a
binomial outcome in all simulations (Section 5) and the responses in the applications
(Section 6) are modeled by the binomial distribution. So in this subsection we
explicitly describe this special choice of density function.

As in the classical logistic regression theory, we assume that the response, yi,
takes the value 1 with probability eθi/(eθi + 1) and 0 with the probability 1/(eθi + 1).
Consequently, the density function, f(yi), is given by

f(yi) = exp
{
yiθi − ln(1 + eθi)

}
, (7)

which is a member of exponential family of distributions (3) with ψ(θi) = ln(1 + eθi)
and c(yi) = 0. We also have{

E
(
yi
)

= ψ′(θi) = eθi/(eθi + 1)

var
(
yi
)

= ψ′′(θi) = eθi/(eθi + 1)2
. (8)

From this, θi = ln
(

E(yi)
1−E(yi)

)
which, with the assumption θ = Xβ + Zb adopted in

the manuscript, yields the canonical link for logistic regression—the logit function.

2.4. Equivalence between GLMM and two optimization problems

The optimization problem in (6) is strongly connected with the specific GLMM
formulation. Indeed, consider the model defined by the following conditions

A.1 β is a vector of fixed and b is a vector of random effects,

A.2 yi|b are independent and, consequently, f(y| b) =
∏n

i=1 f
(
yi |b

)
,

A.3 f
(
yi |b

)
= exp

{
yi(Xiβ + Zib)− ψ(Xiβ + Zib) + c(yi)

}
, for some (known)

functions ψ, c and i = 1, . . . , n,

A.4 b ∼ N
(
0, Q̃−1λ

)
, where Q̃λ := λQQ + λR Ip for some unknown, positive

parameters λQ and λR.

To see this correspondence, assume the parameters λQ and λR have been esti-

mated, say as λ̂ := [λ̂Q, λ̂R]T, and these values are used to obtain β and b. One can
proceed by treating both fixed and random effects as parameters and finding ML
estimates by maximizing (with respect to β, b) the density function

f(y, b) = f(y| b) f(b) =
n∏
i=1

{
f(yi| b)

}
f(b) ∝

exp

{ n∑
i=1

[
yiθi − ψ(θi)

]
− 1

2
bT Q̃λ̂ b

}
,

(9)
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where θi = Xiβ + Zib, for i = 1, . . . , n. Taking the logarithm of the above leads
directly to the objective in optimization problem (6).

We now derive a constrained optimization problem that is equivalent to (6) and
reveals the role of the regularization parameters on the solution from a slightly differ-

ent perspective. For this, suppose that

[
β̂
b̂

]
is the solution to (6) for given parameters

λQ and λR. Then define c := λQb̂
TQb̂ + λR‖b̂‖22 ≥ 0. One can check that

[
β̂
b̂

]
also

solves the problem

argmin
β,b

{
− 2 lψ

(
β, b| y

)
+ λQb

TQb + λR‖b‖22
}

subject to λQb
TQb + λR‖b‖22 = c.

(10)

The multiplicative factor may be neglected as well as the term λQb
TQb + λR‖b‖22,

which is constant on the feasible set. This yields

argmax
β,b

lψ
(
β, b| y

)
subject to λQb

TQb + λR‖b‖22 = c.
(11)

This formulation clarifies the intuition behind the example in the Introduction and
the corresponding Figure 1. I.e., griPEER selects the estimates by taking the maxi-
mal likelihood value on a set whose shape is explicitly regularized by the parameters
λQ and λR.

3. A new estimation algorithm

To select the optimal values of λQ and λR, we employ the corresponding GLMM
formulation defined by A.1 – A.4. The likelihood function, L

(
β, λ|y

)
, is given by

L
(
β, λ|y

)
=

∫
Rp
fβ,λ(y| b)fβ,λ(b) db =∫

Rp

∣∣∣2πQ̃λ

∣∣∣− 1
2

exp

{ n∑
i=1

[
yi(Xiβ + Zib)− ψ(Xiβ + Zib)− c(yi)

]
− 1

2
bT Q̃λ b

}
db.

(12)
Unfortunately, obtaining the maximum of L with respect to β and λ is complicated
by the fact that there is no closed-form solution to the multidimensional integral
in (12). For this, several approaches have been proposed. Breslow and Clayton
(1993) proposed a general method based on Penalised Quasi-Likelihood (PQL) for
the estimation of the fixed and prediction of random effects. Wolfinger and O’connell
(1993) investigated the pseudo-likelihood (PL) approach which is closely related to
the Laplace’s approximation of L. Other proposals include the Adaptive Gaussian
Quadrature to approximate integrals with respect to a given kernel (Pinheiro and
Chao, 2006) and an MCMC-based procedure (Zeger and Karim, 1991).
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In this article we focus on the Wolfinger PL approach which is recognized as
being fast and computationally efficient. It relies on the first-order Taylor series
approximation and uses the Linear Mixed Model (LMM) proxy in the iterative pro-
cess: at each iteration, the updates of β and b are based on the variance-covariance
parameters of random effects. The steps are repeated until convergence.

The procedure we derive here differs from (Wolfinger and O’connell, 1993) in
how the updates of β and b are obtained. In contrast to the Wolfinger PL approach,
we do not get them via the solution to the mixed-model equations, but instead we
employ the correspondence between GLMM and griPEER optimization problem, as

described in 2.4. Specfically, the (k − 1)-step estimates of λQ and λR (i.e.,
[k-1]

λQ and
[k-1]

λR) are used to obtain the (k − 1)-step estimates of β and b (
[k-1]

β and
[k-1]

b ) via the

solution to (6). Consequently, we can define
[k-1]

θi := Xi

[k-1]

β + Zi
[k-1]

b .
Details of our estimation procedure are as follows. Using the Taylor approxima-

tion of function ψ′ at point
[k-1]

θi we get

ψ′(θi) ≈ ψ′(
[k-1]

θi ) + ψ′′(
[k-1]

θi ) · (θi −
[k-1]

θi ) (13)

and therefore from (4)

[
ψ′′(

[k-1]

θi )
]−1 · (E(yi|β, b)− ψ′([k-1]

θi )
)

+
[k-1]

θi ≈ θi. (14)

We now define a random variable
[k]

yi :=
[
ψ′′(

[k-1]

θi )
]−1 · (yi − ψ′([k-1]

θi )
)

+
[k-1]

θi . The main

step now is the assumption that the distribution of
[k]

yi can be well approximated by

a normal density. Computation of mean and variance of
[k]

yi immediately yields

E
([k]
yi|b
)
≈ θi = Xiβ + Zib, and var

([k]
yi|b
)

=
[
ψ′′(

[k-1]

θi )
]−2

ψ′′(θi) ≈
[
ψ′′(

[k-1]

θi )
]−1

.
(15)

The assumption that
[k]

yi is approximately normally distributed allows for replacing
the GLMM formulation in kth step by an LMM of the form

B.1 β is a vector of fixed and b is a vector of random effects,

B.2
[k]

y = [X Z]
[
β
b

]
+

[k]

ε ,

B.3
[k]

ε ∼ N
(
0,

[k]

W
)
, where

[k]

W := diag
([
ψ′′(

[k-1]

θ1 )
]−1

, . . . ,
[
ψ′′(

[k-1]

θn )
]−1)

,

B.4 b ∼ N
(
0, Q̃−1λ

)
, where Q̃λ was defined in (A.4).

Denote by
[k]

P := I−X(XT
[k]

W−1X)−1XT
[k]

W−1 the
[k]

W -weighted projection onto the

orthogonal complement of the columns of X. Now, defining
[k]

ỹ :=
[k]

P [k]

y ,
[k]

X :=
[k]

PX and
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[k]

Z :=
[k]

PZ we assume that

[k]

ỹ ∼ N
(
0,

[k]

V λ

)
, for

[k]

V λ :=
[k]

Z Q̃−1λ
[k]T

Z +
[k]

W. (16)

Maximizing the log-likelihood for
[k]

ỹ , i.e. the function l(
[k]

ỹ ;λ) := −n
2

ln 2π− 1
2

ln |
[k]

V λ|−
1
2

[k]

ỹT
[k]

V −1λ

[k]

ỹ , leads directly to the optimization problem [k]

λQ
[k]

λR

 := argmin
λ�0

{
ln |

[k]

V λ| +
[k]

ỹT
[k]

V −1λ

[k]

ỹ
}
, (17)

where λ � 0 refers to
{

(λQ, λR) : λQ ≥ 0, λR ≥ 0
}

. The following proposition helps
us to rewrite the objective of (17). A proof is provided in the Appendix.

Proposition 3.1. Let
[k]

Ω :=
[k]T

Z
[k]−1
W

[k]

Z and
[k]

q :=
[k]T

Z
[k]−1
W

[k]

ỹ . Then

C.1 ln det
[k]

Vλ = det
(
Q̃λ +

[k]

Ω
)
− ln det Q̃λ + ln det

( [k]

W
)
,

C.2
[k]T

ỹ
[k]

V −1λ

[k]

ỹ = − [k]T
q
(
Q̃λ +

[k]

Ω
)−1 [k]

q +
[k]

ỹT
[k]

W−1
[k]

ỹ .

This proposition makes it possible to reformulate (17) and define the kth step

update,
[k]

λQ and
[k]

λR, as

argmin
λ�0

{
ln det

{(
Q̃λ +

[k]

Ω
)
Q̃−1λ

}
− [k]T

q
(
Q̃λ +

[k]

Ω
)−1[k]

q
}
. (18)

It is important to use an efficient and accurate method to solve (18) since this problem
appears in every step k and determines when the entire algorithm terminates (when

‖
[k]

λ −
[k-1]

λ ‖ is sufficiently small). To achieve this, we have analytically derived the
gradient and the Hessian of the objective function. (Details are in the the Appendix.)
The final algorithm for selecting the regularization parameters is outlined here:
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Algorithm 1 Finding regularization parameters in griPEER

Input: matrices: Z, X and Q; vector: y; initial point:
[0]

λ := [
[0]

λQ,
[0]

λR]T; stop criterion: δ > 0;
function which defines the density: ψ; k := 1
do

1. define
[k-1]

β and
[k-1]

b by solving:

argmin
β,b

{
− 2

∑n
i=1

[
yi(Xiβ + Zib)− ψ(Xiβ + Zib)

]
+

[k-1]

λQ b
TQb +

[k-1]

λR ‖b‖
2
2

}
;

2.
[k-1]

θ := X
[k-1]

β + Z
[k-1]

b ,
[k]

W := diag
([
ψ′′(

[k-1]

θ1 )
]−1

, . . . ,
[
ψ′′(

[k-1]

θn )
]−1
)

;

3. define
[k]
y by putting

[k]
yi :=

[
ψ′′(

[k-1]

θi )
]−1 ·

(
yi − ψ′(

[k-1]

θi )
)

+
[k-1]

θi , for i = 1, . . . , n;

4.
[k]

P := I−X(XT
[k]

W−1X)−1XT
[k]

W−1;

5.
[k]

ỹ :=
[k]

P
[k]
y ,

[k]

X :=
[k]

PX,
[k]

Z :=
[k]

PZ;

6.
[k]

Ω :=
[k]T

Z
[k]−1

W
[k]

Z ,
[k]
q :=

[k]T

Z
[k]−1

W
[k]

ỹ ;

7.
[k]

λ := argmin
λ�0

{
ln
∣∣(λQQ+ λR Ip +

[k]

Ω
)(
λQQ+ λR Ip

)−1∣∣− [k]T
q
(
λQQ+ λR Ip +

[k]

Ω
)−1[k]

q
}

;

8. k ← k + 1;

while
{
‖
[k]

λ −
[k-1]

λ ‖
/
‖
[k-1]

λ ‖ > δ
}

4. Procedures for the significance testing

Unlike the lasso estimation procedure that produces a sparse set of regression
coefficients but does not (without additional theory Zhao and Shojaie (2016)) provide
statistical significance testing, we employ two methods to identify variables that are
identified as statistically significantly related to the response. Two such approaches
are implemented in our software and we introduce them in this section. They both
use the knowledge about the optimal regularization parameters described in the
previous section. The first takes advantage of asymptotic properties of generalized
linear model (GLM) estimates and construct the estimate of asymptotic variance-
covariance matrix in the similar fashion as proposed by Cessie and Houwelingen
(1992) in the context of ridge-penalized logistic regression. The second applies the
bootstrap method. When griPEER is used for variable selection, we will refer to these
two approaches as griPEERasmp (the asymptotic-based approach) and griPEERboot

(the bootstrap-based approach), respectively. The numerical experiments performed
in Section 5 suggest that griPEERboot is able to achieve significantly larger power
than griPEERasmp under the settings reflecting brain imaging design and connectivity
matrices. Since the same experiment shows similar rates of false discoveries among
variables labeled as relevant, griPEERboot was used in real data analysis (Section 6)
to find brain regions associated with HIV.

4.1. Asymptotic variance-covariance matrix

We start by introducing notation. Denote X := [X, Z], let B be p+m dimensional
estimate given by (6), and θ := XB. Moreover, we define a (p+m)× (p+m) penalty
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matrix as

Q :=

[
0 0
0 λQQ+ λR Ip

]
, (19)

where the non-negative parameters λQ, λR are adjusted by the procedure 1. In
summary, B is the solution to

argmin
B∈Rp+m

{
2
∑

i
ψ(XiB) − 2yTXB + BTQB

}
, (20)

with ψ being a given function indicating the member of the exponential family of
distributions (3). Furthermore, the formulas we derive in this section include the
diagonal matrix Ψ defined as Ψ := diag

{
ψ′′(θ1), . . . , ψ

′′(θn)
}

.
Using the first-order Taylor approximation, as well as asymptotic properties of

GLM estimate, one can find that the estimate asymptotic variance for B has a form

vara(B) =
(
X TΨX +Q

)−1X TΨX
(
X TΨX +Q

)−1
. (21)

The derivation is based on Cessie and Houwelingen (1992) and was described in
detail in Appendix A.3. Based on the above formula, we propose a simple decision-
making strategy in which we label the ith covariate as statistically relevant if 0 is
not included in the 95% confidence interval for its respective regression coefficient,
i.e.

0 /∈
[
Bi − 1.96 ·

√
vara(B)ii , Bi + 1.96 ·

√
vara(B)ii

]
. (22)

4.2. The Bootstrap based approach

In this approach the variances of coefficients in B, the solution to (20), was esti-
mated based on Bootstrap samples. Each such sample was created from n elements
of y and n corresponding rows of Z and X, which indices were selected randomly by
sampling with replacement. The dataset obtained in jth repetition, X [j], Z [j] and y[j],
were then substituted to the objective in (6) with λQ and λR being selected by Al-
gorithm 1 applied to the original dataset (i.e., λQ and λR were estimated only once).
The percentile bootstrap confidence intervals, with the significance level α = 0.05,
were defined based on all estimates, B[1], ..., B[s]. The default value of s was set to
500 in our software and this number of bootstrap samples was generated in simu-
lations performed in subsection 5.3. Coefficients from the griPEER estimate whose
confidence intervals do not contain zero are labeled as response-related discoveries.

5. Numerical experiments

We conduct a simulation study to investigate the performance of griPEER in
the situation when responses are modeled by binomial distribution. Results are
compared with the logistic ridge estimates.

12

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2018. ; https://doi.org/10.1101/322420doi: bioRxiv preprint 

https://doi.org/10.1101/322420
http://creativecommons.org/licenses/by-nc/4.0/


5.1. Definitions

Matrix density. For a p × q matrix A define its density as a proportion of non-zero
entries,

dens(A) :=
1

pq

∑
i,j

I
{∣∣A(i, j)

∣∣ > 0
}
. (23)

Matrix dissimilarity. To quantify a dissimilarity between two p× q matrices, A and
B, with dens(A) = dens(B), we define

diss(A,B) :=
( ∑

i,j

I
{∣∣A(i, j)−B(i, j)

∣∣ > 0
})
/
(

2
∑
i,j

I
{
B(i, j) > 0

})
, (24)

with values in the interval [0, 1]. If diss(A,B) = 0 then A = B and diss(A,B) = 1
means that the positions of non-zero entries do not overlap.

5.2. Model coefficient estimation

5.2.1. Settings

“Informativeness” of the penalty term. The simulation settings were designed to
evaluate performance in a variety of situations ranging from an “observed” connec-
tivity matrix (i.e., a prescribed matrix used in estimation) that is fully informative to
one that is completely non-informative. Here “informativeness” refers to the amount
of true dependencies among the variables that are represented in the connectivity
matrix.

Denote By Atrue a matrix representing true connections between variables and
by Aobs one which is observed and used in an estimation via griPEER. To express
“informativeness” of Aobs with respect to Atrue, we use a measure of dissimilarity,
diss(Aobs,Atrue), defined in (24). We have

• diss(Aobs,Atrue) = 0 reflects a situation when Aobs is fully informative;

• diss(Aobs,Atrue) = 1 reflects a situation when Aobs is non-informative;

• diss(Aobs,Atrue) ∈ (0, 1) indicates Aobs is partially informative.

Connectivity in the context of brain regions. One may view Atrue as an adjacency
matrix of a graph representing the connections between brain regions, and our simu-
lations scenarios are based on the following four interpretations regarding this struc-
ture.

1. A1: “homologous regions”. A1 represents a situation when brain regions, i and
j, are connected (i.e., A1(i, j) = 1) if i and j are homologous brain regions
from different hemispheres, and A1(i, j) = 0 otherwise. This matrix is shown
in Figure 2, left plot.

2. A2: “modularity”. A2 represents a situation when brain regions i and j are
connected if and only if they belong to the same module with A2(i, j) = 1
within the module and 0 otherwise. This matrix is shown in Figure 2, middle
left plot.
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3. A3: “density of connections, masked”. A3 is defined based on the brain-imaging
measure — density of connections between brain regions (see, Section 6) — and
then is “masked” by modularity information. Here, A3(i, j) equals the median
of a density of connections between regions i and j if they belong to the same
module. Otherwise, A3(i, j) := 0. Matrix A3 is shown in Figure 2, middle
right plot.

4. A4: “neighboring regions”. A4 represents a situation when brain regions i
and j are connected if they are “close” according to their spatial location
(A2(i, j) > 0). Otherwise, they are not connected (A4(i, j) := 0). This matrix
is shown in Figure 2, right plot.

Figure 2: Matrices used in the simulation study to construct Atrue. Presented are variants
for p = 66. Left plot: A1 “homologous regions”. Middle left plot: A2 “modularity”. Middle
right plot: A3 “density of connections, masked”. Right plot: A4 “neighboring regions”.

A homologous regions matrix A1 reflects the situation where only homologous re-
gions from two hemispheres are assumed to be connected. A modularity matrix A2,
in turn, represents adjacency defining division of the brain cortical regions into five
modules (Sporns, 2013; Cole et al., 2014; Sporns and Betzel, 2016). Next, a “den-
sity of connections, masked” matrix A3 is based on estimated density of connections
between brain cortical regions, as described in Section 6). Finally, the “neighboring
regions” matrix A4 models the situation where brain regions are spatially connected;
i.e., the strength of connection between brain regions depends on the physical dis-
tance between them.

Simulation scenarios. We run three simulation scenarios to express different sources
of “uninformativeness” Aobs which loosely reflect real-life scenarios. For each sce-
nario, we tested all four types of matrices, A1, ...,A4.

• Scenario 1. The observed connectivity matrix, Aobs, represents connections
(partially) permuted with respect to connections represented by Atrue. Based
on one of four considered matrices, the correspondingAobs matrix is constructed
by randomizing edges of a graph given by Atrue until a desired dissimilarity,
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diss(Aobs,Atrue), is achieved (see: Fig. 3). The randomization technique pre-
serves graph size, density, strength and graph degree-sequence (and hence de-
gree distribution).

Figure 3: Atrue connectivity graph adjacency matrices (1st column panel) and Aobs connec-
tivity graph adjacency matrices (2nd-4th column panels) used in Scenario 1. Aobs matrix is
constructed by randomizing Atrue until a desired dissimilarity, diss(Aobs,Atrue), is achieved
(diss is growing when moving from left to right side of each row plot panel).
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• Scenario 2. We investigate the impact of using inaccurate information by
labeling the negative connections between variables as the positive. For Ai,
with i ∈ {1, . . . , 4}, the true signal was generated after changing the structure
of variables dependencies by allowing some negative connections first. Specif-
ically, Atrue was defined by turning entries of columns k ∈ {1, 4, 7, 10} and
corresponding rows of Ai into their negative values. Here, Aobsi,j = |Atruei,j | and
hence Aobs contains only non-negative values.

• Scenario 3. The observed connectivity matrixAobs is of lower or higher matrix
density than Atrue. For Atrue defined based on one of four considered matri-
ces, the corresponding Aobs is constructed by randomly removing, respectively
adding, edges to the graph of connections represented by Atrue until the desired
ratio of matrix densities, dens(Aobs)/dens(Atrue), is obtained (see Fig. 5).

Simulation procedure. In each numerical experiment, we perform the following steps.

1. For graph adjacency Atrue, compute its normalized Laplacian, Qtrue (in Sce-
nario 2 the node’s degree is defined as di :=

∑
j |aij|; see subsection 2.1).

2. Replace the zero singular values of Qtrue by 0.01 · s, where s is the smallest
nonzero singular value of Qtrue

(
to get an invertible matrix required in 6. (a)

)
.

3. For graph adjacency matrix, Aobs, compute its normalized Laplacian, Qobs.

4. Generate Z ∈ Rn×p, where the rows are independently distributed by Np(0,Σ),
where Σ is variance-covariance matrix estimated from a real data study (see:
Sect. 6); standarize columns of Z so as they have mean 0 and unit `2 norm.

5. Generate X as n-dimensional column of ones.

6. Run the following steps 100 times:

(a) generate b ∈ Rp as b ∼ N
(
0, σ2

b (Q
true)−1

)
; set β = 0,

(b) define θ := Xβ + Zb,

(c) define prBinom :=
[
eθ1/(1 + eθ1), . . . , eθn/(1 + eθn)

]T
,

(d) generate y ∼ Binom(prBinom), y ∈ Rn×1,

(e) estimate model coefficients b, β with the two methods: (1) griPEER,
assuming the binomial distribution of y and using Qobs in a penalty term,
(2) logistic ridge estimator,

(f) compute b estimation error, MSEr := ‖b̂− b‖22/‖b‖22, for two b estimates,
(1) b̂ griPEER and (2) b̂ l. ridge.

7. Compute mean MSEr out of the 100 runs from (5), for the two estimation
methods.

Importantly, a “true” coefficient vector b obtained as b ∼ N (0, σ2
b (Q

true)−1) re-
flects the connectivity structure represented by Atrue. Examplary vectors b generated
based on A1, ...,A4 are presented in Figure 11 in Appendix B.
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Figure 4: Atrue connectivity graph adjacency matrices used in Scenario 2. Atrue matrix is
constructed from A1, ...,A4 matrices (1st-4th row panels, respectively) by turning entries
of k, k ∈ {1, 4, 7, 10}, columns (and corresponding rows) of this matrix into their negative
values (k is growing when moving from left to right side of each row plot panel).
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Figure 5: Atrue and Aobs connectivity graph adjacency matrices used in Scenario 3. Atrue
matrix is defined as one of A1, ...,A4 matrices (1st-4th row panels, respectively). Cor-
responding Aobs is constructed by randomly removing / adding edges to the graph of
connections represented by Atrue until desired density ratio, dens(Aobs)/dens(Atrue), is
obtained (ratio is growing from 0.5 to 1.5 when moving from left to right side of each row
plot panel).
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Simulation parameters. We consider the following choices of the experimental set-
tings:

1. number of predictors: p ∈ {66, 198},

2. number of observations: n ∈ {100, 200},

3. Atrue matrix constructed based on Ai ∈ {A1, ...,A4},

4. (Scenario 1.) dissimilarity between Aobs and Atrue: diss(Aobs,Atrue) ∈ [0, 1],

5. (Scenario 2.) number of columns (and corresponding rows) of Atrue that have
switched signs: k ∈ {0, 1, 4, 7, 10},

6. (Scenario 3.) density ratio: dens(Aobs)/dens(Atrue) ∈ [0.5, 1.5].

The number of predictors, p = 66, is motivated by the brain imaging analysis
described in Section 6, where 66 brain regions were considered. To investigate the
situations with larger number of predictors for ith type of connectivity pattern, we
created block-diagonal adjacency matrices with Ai’s as blocks. The adjacency matrix
in the case with p = 198 was therefore defined as diag

{
Ai,Ai,Ai

}
.

5.2.2. Results

Scenario 1. In Scenario 1, we compare griPEER and logistic ridge estimation meth-
ods in a situation when an observed connectivity matrix Aobs contains connections
that are permuted with respect to connections represented by Atrue. We consider
combinations of simulation parameter values: number of predictors p ∈ {66, 198},
number of observations n ∈ {100, 200}, Atrue base matrix A1, ...,A4, dissimilarity
between Aobs and Atrue diss(Aobs,Atrue) ∈ [0, 1]. Fig. 6 displays the aggregated
(mean) values of the relative estimation error based on 100 simulation runs.

We observe that in each case, MSEr of griPEER is lower or equal to MSEr of logis-
tic ridge. The utility of griPEER is particularly apparent in cases with fully informa-
tive and largely informative Aobs; these cases correspond to low values of dissimilar-
ity diss(Aobs,Atrue) (marked at x-axis). As Aobs gets less informative about the true
connections between coefficients in a model, MSEr of griPEER approaches MSEr of
logistic ridge; these cases correspond to high values of dissimilarity diss(Aobs,Atrue).
The result illustrates an important property of griPEER estimation method: adap-
tiveness to the amount of true information contained in an observed Aobs matrix.
When Aobs is largely informative, incorporating Aobs into the estimation is clearly
a benefits. When Aobs carries little or no information about the true connections
between model coefficients, griPEER yields MSEr no larger than MSEr of logistic
ridge estimator.

The performances of griPEER and logistic ridge depend on the structure of con-
nections imposed by Atrue on the true b. We can observe that a difference between
MSErs for griPEER and logistic ridge is smaller when Atrue is defined based on A1:
homologous regions matrix (Fig. 6, left column panel). Indeed, A1 has smaller density
than A2, A3, A4 matrices, and imposes fewer connections between true coefficients
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in a model. Therefore, utilizing (full or partial) connectivity information Aobs in
estimation for A1-based signals is less beneficial compared to other considered pat-
terns of coefficients dependencies. Furthermore, when each node is connected with
everty other by a path consisting of strong connections, as in a case when Atrue is
created based on A4 (4th column panel in Fig. 6), it is expected that all “true” model
coefficients in a generated vector b are strongly dependent on each other; see Fig. 11
in Appendix B. In such a situation, even using even inaccurate information about
the connections (high diss(Aobs,Atrue) values) may be still be beneficial, as long as
the correct message about strong coefficients’ dependence is provided. Finally, if we
compare the results within each column panel of Fig. 6, we observe, as expected,
that the estimation error gets smaller as number of predictors p gets smaller and as
number of observations n gets larger.

Figure 6: MSEr for estimation of b in Scenario 1. Results for griPEER (blue line) and
logistic ridge (gray line). Presented are the average values of MSEr from 100 experiment
runs for: n ∈ {100, 200}, p ∈ {66, 198} and four true connectivity pattern inducing ma-
trices, A1, ...,A4. Dissimilarity between Aobs and Atrue measured by diss(Aobs,Atrue) is
represented by x-axis. Standard error of the mean bars are showed.

Scenario 2. In Scenario 2., we compare griPEER and logistic ridge estimation meth-
ods in a situation when an observed connectivity matrix, Aobs, represents only pos-
itive connections, whereas Atrue represents both positive and negative connections.
We run the simulation for number of observations, n = 100, number of variables,
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p = 66, and for Atrue created based on four connectivity pattern inducing matrices,
{A1, ...,A4}. Matrix Atrue was generated form Ai by switching signs in k columns
(and corresponding rows), were k ∈ {1, 4, 7, 10}. Fig. 7 displays the aggregated
(mean) values of the relative estimation error based on 100 simulation runs.

With increasing k, Aobs increasingly differs from the connectivity pattern used in
the true signal generation and so the relative difference between MSEr for logistic
ridge and griPEER decreases (for nearly all settings). Notably, MSEr for griPEER
remains less than or equal to MSEr for logistic ridge. The results suggest that even
using some incorrect information regarding the true connectivity structure (such as
misspecifying negative dependencies as being positive) is not detrimental.

Figure 7: MSEr for estimation of b in Scenario 2. Results for griPEER (blue line) and
logistic ridge (gray line). Presented are the average values of MSEr from 100 experiment
runs for n = 100, p = 66 and four true connectivity pattern inducing matrices, A1, ...,A4.
The number of columns (and corresponding rows) of Ai, for which entries signs where
switched in Atrue construction is represented by x-axis. Standard error of the mean bars
are showed.

Scenario 3. In this scenario, we compare griPEER and logistic ridge estimation meth-
ods in a situation when Aobs is of lower / higher matrix density than Atrue. As in
Scenario 2, we consider n = 100 and p = 66. This time, we do not change the signs
of {A1, ...,A4} matrices but we generate Atrue by adding/removing some connections
to/from Ai. This influences the density of resulting matrix. In the simulation we
consider dens(Aobs)/dens(Atrue) ∈ [0.5, 1.5] as a densities ratio range. Fig. 8 displays
the mean values of the relative estimation error based on 100 simulation runs.

We can observe that, similar to Scenario 1, incorporating information on only
a few connections (A1 case) yields the smallest gain in the estimation accuracy
measured by MSEr among all considered connectivity patterns. If Atrue is set to A4,
then (again, analogously to Scenario 1) the information about strong coefficients’
dependence is provided through Aobs. This results in substantially lower MSEr for
griPEER across all densities ratio range we considered. When Atrue is equal to
one of modules-based matrices, A2 or A3, we still benefit from using Aobs of lower
density than Atrue, since Aobs contains unaffected information about five separated
modules in connectivity structure (values smaller than 1 at x-axis). Including the
false connections in Aobs (values greater than 1 at x-axis) disturbs the message about
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the lack of dependencies between modules. A loss in griPEER’s estimation accuracy
is apparent at the transition point x = 1. It remains, however, significantly better
than the estimation accuracy for logistic ridge over the entire range of considered
densities ratios.

Figure 8: MSEr for estimation of b in Scenario 3. Results for griPEER (blue line) and
logistic ridge (gray line). Presented are the average values of MSEr from 100 experiment
runs for n = 100, p = 66 and four true connectivity pattern inducing matrices, A1, ...,A4.
Ratio of densities, dens(Aobs)/dens(Atrue), is represented by x-axis and varies from 0.5 to
1.5. Standard error of the mean bars are showed. Green dashed vertical lines denote the
cases when ratio of matrix densities equals 1; in these cases, Aobs is identical to Atrue.

5.3. Model coefficient significance testing

5.3.1. Settings

We design a simulation study to evaluate performance of the two procedures
for coefficient significance testing for griPEER, introduced in Section 4: asymptotic
variance-covariance matrix-based approach, griPEERasmp, and Bootstrap-based ap-
proach, griPEERboot.

Simulation scenario. We follow the simulation setting used in Scenario 1, described in
subsection 5.2. Specifically, we assume that Aobs represents connections (partially)
permuted with respect to connections represented by Atrue. I.e., the correspond-
ing Aobs is constructed by randomizing entries in Atrue until a desired dissimilarity,
diss(Aobs,Atrue), is achieved; see: Figure 3. The randomization technique preserves
graph size, density, strength and graph degree-sequence (and hence degree distribu-
tion). Here, we confine ourselves to p = 66 and the case when Atrue is based on
A3; i.e., the median of a density of connections masked by modularity information,
which corresponds to the construction of an adjacency matrix in the brain imaging
analysis Section 4.

The adopted simulation scheme starts by generating the true signal and responses
as in subsection 5.2. We generate large number of observations, n = 1000, but in the
estimation we use only 150 records to emulate a real data setting. The large sample
size is used only to label the variables which are “truly relevant” so that the perfor-
mance of griPEERasmp and griPEERboot in the context of variables selection can be
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assessed. Defining “truly relevant” variables is done through the asymptotic confi-
dence interval for the logistic model estimate (non-regularized estimation), which is
unbiased and asymptotic normal (Fahrmeir and Kaufmann, 1985). The details are
described below.

Simulation study procedure. In the experiment, we perform the following steps.

1. Apply steps 1–5 from the simulation study procedure described in subsection
5.2 with n = 1000.

2. Run the following steps 100 times:

(a) generate p-dimensional vector of true coefficients, b, as well as n-dimensional
vectors, θ and y, by following steps 2(a)–2(d) described in subsection 5.2,

(b) calculate the asymptotic standard deviations, δi :=
√[(

ZTΨZ
)−1]

ii
, for

i = 1, . . . , p, where Ψ := diag
{

eθ1

(eθ1+1)2
, . . . , eθn

(eθn+1)2

}
(see, Appendix A.3),

(c) divide the set of indices, {1, . . . , p}, into two separated groups: IT , cor-
responding to the variables defined as relevant and IF , corresponding to
the variables defined as irrelevant, by using the criterion

i ∈ IT ⇐⇒ 0 /∈
[
bi − 1.96 δi, bi + 1.96 δi

]
,

(d) generate the data for estimation, y∗, X∗ and Z∗, by taking first 150 rows
of y, X and Z; center and normalize the columns of Z∗ to zero means and
unit `2 norms,

(e) apply griPEERasmp and griPEERboot on y∗, X∗ and Z∗ to indicate response-
related variables defined by each of methods,

(f) based on information about “truly relevant” and “truly irrelevant” vari-
ables; i.e., the known division into IT and IF , for each method identify: S
— the number of true discoveries and V — the number of false discoveries,

(g) for each method collect measures pow∗ := S
|IT |

and fdr∗ := V
V+S

,

3. Define the estimates of power and FDR as the averages of pow∗ and fdr∗

(across 100 repetitions of the step 2).

5.3.2. Results

Figure 9 displays the values of power (left plot) and FDR (right plot), estimated
based on the simulation procedure described in subsection 5.3.1. As expected, for
both methods power decreases as Aobs becomes less informative regarding the true
connections between coefficients in a model. We observe however, that griPEERboot is
able to reach substantially higher power than griPEERasmp under considered settings.
The estimated FDRs are not very distinct for both methods and they tend to be very
similar for less accurate connectivity information.
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The results obtained in the simulation study suggest that one can potentially
gain power by utilizing griPEERboot for coefficient significance testing, compared
to griPEERasmp approach. In addition, power gain occurs without a substantial
increase of FDR. consequently, we employ griPEERboot in the real data application
in Section 6.

Figure 9: The estimated values for power (left plot) and FDR (right plot) obtained
with asymptotic variance-covariance matrix-based approach (griPEERasmp, blue line) and
Bootstrap-based approach (griPEERboot; gray line). Values are aggregated (mean) out of
100 experiment runs, for number of observations n = 150, number of variables p = 66 and
A3 (Figure 2, middle right plot) as a true connectivity pattern. The dissimilarity between
Aobs and Atrue is represented by the x-axis. Standard error of the mean bars are showed.

5.4. The software used in simulations

The code used to generate the results was built in Matlab and is available at
GitHub (https://github.com/dbrzyski/griPEER).

6. Imaging data application

We model the association between the presence/absence of HIV and the properties
of the structural cortical brain imaging data. More specifically, we employ cortical
thickness measurements obtained using the FreeSurfer software (Fischl, 2012) to
classify the binary response indicating the status of HIV infection, where 0 indicates
an HIV-negative individual and 1 an HIV-positive individual.

6.1. Data and preprocessing

Study sample. The analyzed sample consists of 162 young (age range: 18–42 years)
males, where 108 were HIV-positive and 54 were HIV-negative. Study sample sub-
jects’ demographic and a HIV-related characteristics are summarized in Table 1.
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Study variables Min Max Mean Median StdDev

Age 18 41 25.80 23 6.47

Recent CD4 20 1179 461.83 446 243.81

Nadir CD4 15 690 289.13 293 158.31

Table 1: Study sample subjects’ characteristics.

Cortical measurements. The FreeSurfer software package (version 5.1) was used to
process the acquired structural MRI data, including gray-white matter segmentation,
reconstruction of cortical surface models, labeling of regions on the cortical surface
and analysis of group morphometry differences. The resulting dataset has cortical
measurements for 68 cortical regions with parcellation based on Desikan-Killiany
atlas (Desikan et al., 2006). The subset of 66 variables describing average gray
matter thickness (in millimeters) of gray matter brain regions did not incorporate
left and right insula due to their exclusion from the structural connectivity matrix.

Structural connectivity information. In the analysis we used two adjacency matrices,
which were incorporated in the estimation with griPEER through the normalized
Laplacian matrix. The adjacency matrices were created based on two structural con-
nectivity information types: density of connections (DC) and fractional anisotropy
(FA). For each of them, two steps were performed to achieve the final adjacency
matrix, A. In the first step, we computed the entry-wise median (across subjects)
of DC or FA connectivity matrices. The second step relied on “masking by modu-
larity partition”, i.e. limiting the information achieved in the first step only to the
connections between brain regions being in the same modules (i.e. we set Aij := 0,
if regions i and j were not in the same module). For this purpose, we used the
modularity connectivity matrix (see Sporns (2013); Cole et al. (2014); Sporns and
Betzel (2016)), which defines the division of the brain into five separated communi-
ties. The modularity matrix was obtained by using Louvain method (Blondel et al.,
2008) and based on model proposed in Hagmann et al. (2008). More details on this
construction can be found in Karas et al. (2017).

6.2. Estimation methods

We employed logistic ridge and griPEERboot to classify the HIV-infected and
non-infected individuals based on the estimate cortical thickness measurements. All
analyses were adjusted for Age with its respective coefficient non-penalized. Con-
sequently, X was an n by 2 matrix containing the column of ones (representing
the intercept) and the column corresponding to subjects’ age. Columns of design
matrices (other than intercept) were centered to zero mean and normalized to unit
standard deviation before the estimation. The selection of regularization parameter
in logistic ridge was done within the GLMM framework. For all methods we used
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Bootstrap-based approach with 50,000 samples, to define the subset of statistically
significant variables.

6.3. Results

The estimates obtained from the logistic ridge and the griPEERboot for considered
groups of subjects are presented in Figure 10. Brain regions labeled as response-
related are marked with solid red vertical lines. In Table 2, we summarize the
estimated values corresponding to brain regions being labeled as response-related by
at least one considered approach. Note that all significant associations are negative,
indicating thinner cortical areas are indicative of HIV-positive status. Significant
estimates obtained from the griPEER for both types of connectivity matrices (FA-
and DC-based) agree in 7 out of 8 cortical brain regions, while the logistic ridge
significant findings disagree with the FA-based griPEER estimates in 4 regions and
with the DC-based griPEER estimates in 3 regions.
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Figure 10: Results obtained by griPEERboot on 162 subjects (with 108 HIV-infected).
Here, the response variable was defined as the disease indicator and 66 cortical brain
regions were considered – 33 from the left and 33 from the right hemisphere. Regions
labeled as response-related were marked by red vertical lines. Confidence intervals were
calculated based on 50, 000 bootstrap samples.

7. Discussion

We have provided a rigorous and computationally feasible method which incor-
porates additional information to estimate regression parameters in the generalized
linear model setting. Our proposed method, griPEER, extends our work performed
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Connectivity
type

Caudal
middle
frontal [L]

Post
central

[L]

Pre
central

[L]

Pre
cuneus

[L]

Superior
parietal

[L]

Supra
marginal

[L]

Entorhinal
[R]

Post
central

[R]

Superior
parietal

[R]

Empty -0.016 -0.025 -0.018 -0.019 -0.015 -0.029 -0.021 -0.020 -0.013

Masked FA -0.019 -0.031 -0.030 -0.011 -0.020 -0.029 -0.023 -0.019 -0.017

Masked DC -0.016 -0.026 -0.022 -0.016 -0.018 -0.028 -0.018 -0.018 -0.015

Table 2: Estimates of the cortical brain regions coefficients obtained by the logistic ridge
and griPEERboot with two different connectivity matrices – fractional anisotropy (Masked
FA) and density of connections (Masked DC). Both matrices were masked by the modular-
ity matrix before the analysis. Values corresponding to regions being labeled as response-
related are shown in bold, green font and non-significant findings are shown using the
red font. We show the results for all regions being selected by at least one method as
response-related.

in the linear model setting Karas et al. (2017). We utilize the structural connectivity
information obtained from the DTI to inform the association between the cortical
covariates and a generalized outcome (e.g. binary indicator of HIV-infection). The
structural connectivity information is used to create a Laplacian matrix, which in
turn is used to specify the regularization penalty.

The simulation study shows that in each scenario considered, the proposed method,
griPEER, outperforms logistic ridge in a binomial model coefficient estimation –
griPEER yields smaller or similar estimation relative error MSEr = ‖b̂ − b‖22/‖b‖22
compared to the logistic ridge. Performance of griPEER is significantly better
when the observed connectivity information is fully or largely informative about
the true connectivity structure between model coefficients. Notably, even in cases
when observed connectivity information is only partially informative or completely
non-informative, the proposed method yields MSEr no larger than the logistic ridge
estimator.

Application of griPEER to classify the individuals as HIV-infected and non-
infected resulted in discovery of 3 additional cortical regions, namely Left Caudal
Middle Frontal Gyrus, Left Superior Parietal Lobule and Right Superior Parietal
Lobule, that were thinner in the HIV-infected individuals.

Our future work will incorporate both structural and functional brain connectivity
information in the regularized estimation procedure. We will also include other
properties of the cortex, namely the cortical area and its curvature.
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A. Appendix

A.1. Proof of proposition 3.1

The claim quickly follows from two well known linear algebra theorems: Wood-
bury identity and matrix determinant lemma. We recall the both results below as
Theorem A.1.

Theorem A.1. Suppose that A and C are invertible n by n matrices and U , V are
n by p matrices. Then

I.1 det
(
A+ UV T

)
= det

(
Ip +V TA−1U

)
det
(
A
)
,

I.2
(
A+ UCV

)−1
= A−1 − A−1U

(
C−1 + V A−1U

)−1
V A−1.

We will start with the proof of (C.1). Thanks to I.1,

det
( [k]

Vλ
)

= det
( [k]

W +
[k]

Z Q̃−1λ
[k]T

Z
)

= det
(

Ip +
[k]T

Z
[k]

W−1
[k]

Z Q̃−1λ
)

det
( [k]

W
)

= det
(
Q̃λ +

[k]T

Z
[k]

W−1
[k]

Z
)

det
(
Q̃λ

)−1
det
( [k]

W
)
.

(25)

Now

ln det(
[k]

Vλ) = ln det
(
λQQ+ λR Ip +

[k]

Ω
)
− ln det

(
λQQ+ λR Ip

)
+ ln det

( [k]

W
)
, (26)

which finishes the proof (C.1). To show the second claim, we will rewrite
[k]

V −1λ as

[k]

V −1λ =
[k]

W−1 −
[k]

W−1
[k]

Z
(
λQQ+ λR Ip +

[k]

Ω
)−1 [k]T

Z
[k]

W−1, (27)

thanks to (I.2). Therefore

[k]

ỹT
[k]

V −1λ

[k]

ỹ = − [k]T
q
(
λQQ+ λR Ip +

[k]

Ω
)−1 [k]

q +
[k]

ỹT
[k]

W−1
[k]

ỹ . (28)

A.2. Gradient and Hessian for the objective in (18)

Denote by h(λQ, λR) the objective function of interest, i.e.

h(λQ, λR) := ln det
(
λQQ+λR Ip +Ω

)
−ln det

(
λQQ+λR Ip

)
−qT

(
λQQ+λR Ip +Ω

)−1
q,

(29)
where Ω and q were defined in the statement of proposition 3.1 (“[k]”s symbols

were omitted for clarity). After using notations Dλ :=
(
λQQ + λR Ip +Ω

)−1
and

Q̃λ := λQQ+ λR Ip, this function takes the short form

h(λQ, λR) = ln detD−1λ − ln det Q̃λ − qTDλq. (30)

To find the gradient and Hessian of h we will use the following well known formulas

31

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2018. ; https://doi.org/10.1101/322420doi: bioRxiv preprint 

https://doi.org/10.1101/322420
http://creativecommons.org/licenses/by-nc/4.0/


Proposition A.2. Suppose that A and B are p by p, symmetric, positive semi-
definite matrices, ν is p is p-dimensional vector and tA + sB is positive definite.
Then it holds

II.1
∂

∂t

{
ln det

(
tA+ sB

)}
= tr

[(
tA+ sB

)−1
A
]
,

II.2
∂2

∂t∂s

{
ln det

(
tA+ sB

)}
= − tr

[(
tA+ sB

)−1
A
(
tA+ sB

)−1
B
]
,

II.3
∂2

∂t2

{
ln det

(
tA+ sB

)}
= − tr

[((
tA+ sB

)−1
A
)2]

,

II.4
∂

∂t

{
− νT

(
tA+ sB

)−1
ν
}

= νT
(
tA+ sB

)−1
A
(
tA+ sB

)−1
ν,

II.5
∂2

∂t ∂s

{
− νT

(
tA+ sB

)−1
ν
}

= − νT
(
tA+ sB

)−1
A
(
tA+ sB

)−1
B
(
tA+ sB

)−1
ν

− νT
(
tA+ sB

)−1
B
(
tA+ sB

)−1
A
(
tA+ sB

)−1
ν,

II.6
∂2

∂t2

{
− νT

(
tA+ sB

)−1
ν
}

= − 2νT
(
tA+ sB

)−1
A
(
tA+ sB

)−1
A
(
tA+ sB

)−1
ν.

Thanks to the above, we quickly get

∇h
∣∣
λ=λ0

=

[
tr
[
(Dλ0 − Q̃−1λ0 )Q

]
+ qTDλ0QDλ0q

tr
[
Dλ0 − Q̃−1λ0

]
+ qTD2

λ0
q

]
. (31)

and

H
(
h
)∣∣
λ=λ0

=

[
H11 H12

H21 H22

]
, (32)

where

H11 :=− tr
[
Dλ0QDλ0Q− Q̃−1λ0 QQ̃

−1
λ0
Q
]
− 2qTDλ0QDλ0QDλ0q,

H22 :=− tr
[
D2
λ0
− Q̃−2λ0

]
− 2qTD3

λ0
q,

H12 = H21 :=− tr
[
(D2

λ0
− Q̃−2λ0 )Q

]
− qTDλ0QD

2
λ0
q − qTD2

λ0
QDλ0q.

A.3. Asymptotic confidence interval

We start with the optimization problem equivalent to 20, with the objective
multiplied by 1

2
,

argmin
B∈Rp+m

{ ∑
i
ψ(XiB) − yTXB +

1

2
BTQB︸ ︷︷ ︸

`(B)

}
. (33)

Calculating the derivatives of ` yields

∂`

∂B
(B) = X Tψ′(XB)−X Ty +QB and

∂2`

∂B2
(B) = X TΨXBX +Q, (34)
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where {
ψ′(XB) :=

[
ψ′(X1B), . . . , ψ′(XnB)

]T
ΨXB := diag

{
ψ′′(X1B), . . . , ψ′′(XnB)

} . (35)

Denote by BT the true signal and consider the Taylor series expansion of ∂`
∂B

about BT. If we consider the value of Taylor polynomial in the solution of (33), B̂,
this yields the following expression

∂`

∂B

(
B̂
)

=
∂`

∂B

(
BT

)
+ (B̂ −BT)T

∂2`

∂B2

(
BT

)
+ o

(
‖B̂ −BT‖22

)
(36)

Since the left-hand side of the above equals zero, using (34) we get the first-order
approximation of B̂

B̂ = BT −
[
∂2`
∂B2

(
BT

)]−1
∂`
∂B

(
BT

)
=

BT −
[
X TΨXBT

X +Q
]−1[
X Tψ′(XBT)−X Ty +QB

]
=[

X TΨXBT
X +Q

]−1[(
X TΨXBT

X +Q
)
BT −X Tψ′(XBT) + X Ty −QBT

]
=[

X TΨXBT
X +Q

]−1[
X TΨXBT

XBT −X Tψ′(XBT) + X Ty
]

=[
X TΨXBT

X +Q
]−1
X TΨXBT

X B̂0,

(37)

where B̂0 := BT +
[
X TΨXBT

X
]−1(

X Ty − X Tψ′(XBT)
)

is the first-order approx-

imation of the generalized linear model estimate, i.e. for Q = 0. It was shown
that, under some regularity conditions, this estimate is unbiased and asymptotic
normal (Fahrmeir and Kaufmann, 1985). The corresponding asymptotic variance is[
X TΨXBT

X
]−1

. Consequently, the asymptotic variance , vara, of B̂ is given by

vara(B̂) =
[
X TΨXBT

X +Q
]−1
X TΨXBT

X
[
X TΨXBT

X +Q
]−1

. (38)
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B. Appendix

Figure 11: Examplary vectors of b model coefficients generated as b ∼ N (0, σ2b (Q
true)−1),

where Qtrue is Laplacian matrix of Atrue graph adjacency matrix. Clearly, b coefficient val-
ues reflect the connectivity structure represented by Atrue matrices assumed in the simula-
tion study; left plot: A1 “homologous regions”, middle left plot: A2 “modularity”, middle
right plot: A3 “density of connections, masked”, right plot: A4 “neighboring regions” (see:
Fig. 2). In the left plot, vertical dashed line marks the separation between coefficients
corresponding to left hemisphere brain regions and right remishpere brain regions assumed
in A1 “homologous regions” construction. In the middle left plot, vertical dashed lines
mark the separation between connectivity modules assumed in A2 “homologous regions”
construction. In the middle right plot, vertical dashed lines mark the separation between
connectivity modules assumed in A3 “homologous regions” construction.
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