Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Engagement of pulvino-cortical feedforward and feedback pathways in cognitive computations

View ORCID ProfileJorge Jaramillo, View ORCID ProfileJorge F. Mejias, Xiao-Jing Wang
doi: https://doi.org/10.1101/322560
Jorge Jaramillo
1Center for Neural Science, New York University, New York, NY 10003, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jorge Jaramillo
Jorge F. Mejias
2Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jorge F. Mejias
Xiao-Jing Wang
1Center for Neural Science, New York University, New York, NY 10003, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Computational modeling of brain mechanisms of cognition has been largely focused on the cortex, but recent experiments have shown that higher-order nuclei of the thalamus, in particular the pulvinar, participate in major cognitive functions and are implicated in psychiatric disorders. Here we show that a pulvino-cortical circuit model, composed of two cortical areas and the pulvinar, captures a range of physiological and behavioral observations related to the macaque pulvinar. Effective connections between the two cortical areas are gated by the pulvinar, allowing the pulvinar to shift the operation regime of these areas during attentional processing and working memory, as well as to resolve decision-making conflict. Furthermore, cortico-pulvinar projections that engage the thalamic reticular nucleus enable the pulvinar to estimate decision-making confidence. Finally, feedforward and feedback pulvino-cortical pathways participate in frequency-dependent inter-areal interactions that modify the relative hierarchical positions of cortical areas. Overall, our model suggests that the pulvinar provides crucial contextual modulation to cortical computations associated with cognition.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted May 16, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Engagement of pulvino-cortical feedforward and feedback pathways in cognitive computations
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Engagement of pulvino-cortical feedforward and feedback pathways in cognitive computations
Jorge Jaramillo, Jorge F. Mejias, Xiao-Jing Wang
bioRxiv 322560; doi: https://doi.org/10.1101/322560
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Engagement of pulvino-cortical feedforward and feedback pathways in cognitive computations
Jorge Jaramillo, Jorge F. Mejias, Xiao-Jing Wang
bioRxiv 322560; doi: https://doi.org/10.1101/322560

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4682)
  • Biochemistry (10357)
  • Bioengineering (7670)
  • Bioinformatics (26332)
  • Biophysics (13523)
  • Cancer Biology (10683)
  • Cell Biology (15438)
  • Clinical Trials (138)
  • Developmental Biology (8497)
  • Ecology (12821)
  • Epidemiology (2067)
  • Evolutionary Biology (16853)
  • Genetics (11399)
  • Genomics (15478)
  • Immunology (10616)
  • Microbiology (25208)
  • Molecular Biology (10220)
  • Neuroscience (54465)
  • Paleontology (401)
  • Pathology (1668)
  • Pharmacology and Toxicology (2897)
  • Physiology (4342)
  • Plant Biology (9245)
  • Scientific Communication and Education (1586)
  • Synthetic Biology (2557)
  • Systems Biology (6780)
  • Zoology (1466)