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Figure 1: A pulvino-cortical circuit for two-alternative forced choice tasks. The simplified cir-
cuit to the right is composed of three modules: two reciprocally-connected cortical
modules (1 and 2) and the pulvinar that receives projections from and projects to the
cortex through feedforward (solid lines) and feedback (dotted lines) thalamo-cortical
pathways. A module here is defined as a set of two excitatory populations (blue and red
in cortex, green and orange in pulvinar) where each population is selective to one of two
choices, A or B. In general, synaptic weights J can connect two selective populations
of either the same (Jsame > 0, excitatory) or opposite (Jgig < 0, inhibitory) stimulus-
selectivity and can be either local (within area) or long-range (across areas). The thala-
mic reticular nucleus (TRN) allows for long-range disynaptic inhibition from the cortex
onto the pulvinar as well as mutual inhibition within the pulvinar. The cortico-pulvino-
cortical connections follow the general topography of the cortico-cortical connections.
Synapses labeled with triangles and circles denote effective excitatory and inhibitory
connections, respectively.

et al., 2010, 2013; Snow et al., 2009; Desimone et al., 1990). At least two distinct effects
have been observed after unilateral lesions of the pulvinar: hemispatial neglect, whereby
one area of the visual field is unaccessible either due to lack of perceptual awareness or
motivation (Wilke et al., 2010, 2013) and a deficit in distractor filtering, whereby perfor-
mance in a visual search task decreases when a target is flanked by irrelevant distractors
(Desimone et al., 1990; Fischer and Whitney, 2012; Snow et al., 2009; Strumpf et al.,
2013). We used the pulvino-cortical architecture introduced above to model the behav-
ioral effects after a unilateral lesion of the pulvinar and, more generally, to elucidate the
computations in the pulvinar (Fig. 2).

The first task was modeled after Wilke et al. (2013). In this task, subjects have to
select a target that appears on a screen after a fixation period. In the Instructed variant
of the task, only one target is presented and subjects have to make a saccade towards the
cued target to obtain a reward. In the Choice variant, the subjects are presented with two
targets that yield equal reward when selected. We modeled the contrast of the targets, a
bottom-up input, as an input current to the first module and modeled reward expectation,
a top-down input, as an input current to the second cortical area (see Figs. 2 A, B and
Methods).

We modeled a lesion by fixing the firing rate of one of the pulvinar populations to
zero. The basic finding is that after the lesion there is an attentional disruption in the
contralesional field of lesioned subjects with respect to control (Fig. 2 B). On Instructed
trials, unilateral lesions cause an increase in saccade latency towards the contralesional
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Figure 2: Pulvinar lesion-induced gain imbalance produces asymmetric attentional deficits.
A, Schematic as in Fig. 1 where external inputs are labeled as either bottom-up (sen-
sory) or top-down (internal), with pulvinar excitability A =230 Hz/nA. A unilateral
lesion is shown that affects the left visual field. Topography thus corresponds to visual
and not anatomical space. B, Visuospatial task based on Wilke et al. (2013), where a
subject must make a saccade towards a visual target after a delay period (instructed) or
select one of two simultaneously presented visual targets on opposite sides of the visual
field (choice). In the instructed task, saccade latencies towards the contralesional field
are larger than in controls. In the choice task, the proportion of saccades to the contrale-
sional field is reduced compared to controls, but ameliorated with the addition of reward
(Wilke et al., 2013). C, Visuospatial task modeled after Desimone et al. (1990) where
a subject must attend to and select a target (blue) that was flashed at the same position
as a cue presented during fixation. A distractor (red) is presented simultaneously in the
opposite hemifield. Simulations are performed for control and unilateral lesion of the
pulvinar. Black arrows point to the affected visual hemifield and two conditions can be
distinguished: either the target (magenta) or the distractor (dark blue) lies within the
affected hemifield. Error rates shown below.
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Figure 3: Gating of effective cortico-cortical connectivity and persistent activity through pulv-
inar gain modulation. A, A three-module pulvino-cortical architecture is equivalent to
a two-module cortical architecture, where the effective cortico-cortical connectivity is
controllable via the pulvinar excitability parameter A\, and dJ denotes the A-dependent
extra connectivity provided by the transthalamic route. B, Schematics of the tasks in
C (top, simple memory-saccade task) and D (bottom, memory saccade with distrac-
tor during the delay period) C, In a simple memory saccade task, persistent activity
in the cortico-thalamic system is contingent on the activation of the pulvinar, which
can act as a switch. When the pulvinar is ‘off” (A = 120 Hz/nA), the activity decays
in the first cortical area and no activity is observed in the rest of the pulvino-cortical
system. When the pulvinar is ‘on’ (A = 220 Hz/nA), reciprocal loops with the cortex
are enough to sustain reverberant activity in the cortico-thalamic circuit, and a global
attractor is reached. D, In a memory-saccade task with a distractor, the pulvinar can
control the response of the system by biasing the circuit into making the system more
(‘remember first’, A = 220 Hz/nA) or less (‘remember last’, A = 290 Hz/nA) robust to
distractor interference. Blue and red bars denote target and distractor presentation times,
respectively.
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Figure 4: Pulvinar-mediated effective connectivity between cortical areas resolves decision-
making conflict. A, Conflict resolution in the pulvino-cortical model. In the congruent
scenario (left), bottom-up and top-down inputs target populations with the same selec-
tivity so that a consistent decision is made. In the conflict scenario (middle and right),
bottom-up input favors the blue excitatory population in cortical area 1 while top-down
favors the red excitatory population in cortical area 2, resulting in inter-areal compe-
tition. For large A (A = 280 Hz/nA), the effective feedforward pathway connecting
cortical area 1 to 2 is preferentially biased so that the choice reflects bottom-up infor-
mation (middle). For small A (A = 220 Hz/nA), the effective feedforward strength is
decreased so that the choice reflects top-down input (right). High (¢’ = 20) and low
(¢’ = 10) conflict trials are shown in thick and thin lines, respectively. B, Schematic
of conflicting stimuli and responses in the pulvino-cortical circuit (top). In the conflict
scenario, the probability of cortical area 1- bottom-up recipient- enforcing its encoding
to cortical area 2 - top-down recipient- depends on the value of the pulvinar excitability
A and on the conflict level ¢’ (bottom).

neurons within their choice receptive field, thus reflecting a decision (Kiani and Shadlen,
2009; Roitman and Shadlen, 2002). For trials where the subject opts out, however, the
firing rates of neurons both within and outside their receptive field reached intermediate
levels. Thus the subject was more confident, i.e., would opt out less often, when there was
arelative divergence of LIP activity during choice behavior. More precisely, the difference
between the firing rate traces within and outside the response field predicted a confidence
level(Wei and Wang, 2015).

In a related study, Komura et al. (2013) found single neurons in the medial pulvinar
of the macaque whose firing rate predicted whether the animal, in another version of an
opt-out task (Komura task), would opt out. In contrast to the LIP neurons in the Kiani
study, pulvinar neurons in the Komura study represented confidence explicitly: a single
firing-rate trace was informative of the confidence level. The characterization of decision-
making confidence in the Kiani and Komura tasks prompts the following question: why
do pulvinar cells represent confidence via their firing rate and how is this representation
related to the implicit confidence representation in cortex? Given the known connectivity
between parietal cortex and pulvinar (Gutierrez et al., 2000), we explored how a cortico-
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Figure 5: Calculation of absolute differences by a circuit that engages the cortex, pulvinar, and
TRN. A, The cortical circuit component consists of two cortical populations (here
schematically represented by single neurons) differentially selective to two distinct stim-
uli, blue and red. As in Fig. 1, the cortical excitatory populations receive lateral projec-
tions and interact through a common pool of interneurons (connections are not shown
for clarity). The two cortical populations are connected to a pulvinar cell via a direct ex-
citatory monosynaptic connection and a disynaptic inhibitory projection. The excitatory
connection exhibits short-term facilitation while the inhibitory TRN-pulvinar connec-
tion exhibits short-term depression. B, Top, the short-term synaptic dynamics in the
thalamo-cortical circuit result in non-linear function of the cortical firing rate so that
the input is effectively inhibitory for low firing rates but excitatory for high firing rates.
Inset shows the motif that generates the plot for a single cortical cell. Bottom, if the ac-
tivity of both cortical cells is combined, the resulting activity at the level of the pulvinar
(A =300 Hz/nA) resembles approximately an absolute value function of the difference
between the firing-rate activities of the two cortical cells. C, Firing activites of the cor-
tex (top) and pulvinar (bottom), where the pulvinar integrates the cortical activity and
approximately calculates the absolute value of the difference between the activities of
the competing cortical populations.

thalamo-cortical feedback pathway could contribute to the representation of decision con-
fidence in the pulvinar.

We propose a pulvino-cortical circuit model to elucidate the mechanisms behind confidence-
related computations in cortex and pulvinar. The reciprocally connected pulvino-cortical
circuit is based on that of Fig. 1 but now contains explicit TRN-pulvinar connections as
shown in Figure 5 A. For simplicity, we focus on one cortical module. The cortical mod-
ule is composed of two excitatory populations that are selective to two stimuli A, B (e.g.,
motion direction). The cortical populations exhibit winner-take-all dynamics and can ac-
cumulate sensory evidence. The cortical module sends projections to the pulvinar that
first target the TRN and receives thalamo-cortical feedback in return. We first describe
this connectivity in more detail and then analyze how this connectivity relates to pulvinar
activity during a decision making task.
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Figure 6: A pulvino-cortical circuit for estimating decision-making confidence. A, Schematic of

the task is shown on the left (see details in main text). Single cells in the pulvinar (green,
bottom) represent confidence through their firing rate for correct, error, and escape trials.
A necessary condition for a correct trial is that the cortical population representing more
evidence, here the blue population (top), has a greater activity than the population rep-
resenting less evidence, the red population, at the time of decision. Moreover, for both
correct and error trials, the difference between the activities at the decision time must be
greater than a predefined bound ¢ = 4 Hz. Otherwise, the subject forgoes the decision
and escapes, (opts out). B, Top, average pulvinar firing rates as a function of difficulty
(easy, medium, hard) and trial type (correct,black; error,pink; escape,cyan), color coded
as in A. Bottom, behavioral choice (left) and normalized pulvinar activities (right) as a
function of difficulty and trial type. C, Simulated unilateral lesion to the pulvinar, i.e.,
no feedback to the cortex, causes an increase in escape frequency with respect to con-
trol. D, In a reaction-time version of the random-dot discrimination task, a lesion to the
pulvinar causes a speed-accuracy tradeoff, more noticeable at low coherence levels.

tical areas. There is recent evidence from multi-unit activity and local field potentials
in the macaque of enhanced coupling between two cortical regions and between cortex
and pulvinar at particular frequencies during tasks that engage attention (Saalmann et al.,
2012; Zhou et al., 2016). It is not clear what aspect of the connectivity or the dynam-
ics gives rise to the preferential coupling at these frequencies and importantly, how this
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Figure 7: Thalamic gating of gamma and alpha oscillations across cortical areas (see also Zhou
et al. (2016); Saalmann et al. (2012)). A, Schematic of a distributed pulvino-cortical
circuit with laminar structure. The model is composed of two reciprocally connected
cortical modules (here V4 and IT) and the pulvinar that both receives projections and
projects to the cortical modules. The transthalamic projection targets layer IV in the
cortical area 2, which is then relayed to the superficial layers. B, After a lesion to the
pulvinar, the power measured from the V4 population activity exhibits an increase in
low-frequency oscillations. C, The two cortical areas are coherent at gamma frequencies
and this coherence is decreased after lesioning the pulvinar. D, The coherence effects
observed in C extend to Granger causality, which in addition measures directionality.
Control and pulvinar lesion scenarios are shown in solid and dashed lines, respectively.
Inset shows that the hierarchical distance between the cortical areas decreases after a
pulvinar lesion.
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Parameter Description Task/Figure Value
Cortical circuit parameters
Ts NMDA synaptic time constant All figures 60 ms
Th AMPA synaptic time constant All figures 2 ms
1y, base current All figures 0.334 nA
a,b,d,~y (cortical) FI curve params All figures 270 Hz/nA, 108 Hz, 0.154, 0.641
Ji g2 local structure All figures 0.34,0.4 nA
JE2, g2 local structure All figures 0.03, 0.04 nA
JIL 2 long-range tone All figures 0.2588, 0.2588 nA
JI2,J2 long-range tone All figures 0.0, 0.0 nA
Cortico-thalamic and thalamo-cortical projections
Jexe =W - by, b, = 0.28 nA
w € {wip, Wp1, Wy, Wy} excitatory cortico-pulvinar weight Figs 2, 3, 4 {0.2,1.8,0.1,1.8}
Jinh = Cinh - W - by, inhibitory cortico-pulvinar weight Figs 2,3, 4 cinh = —0.81
Pulvinar circuit parameters
Tp pulvinar synaptic time constant All figures 2 ms
I, pulvinar base current All figures (except confidence) 0.334 nA
by, dy (thalamic) FI curve params All figures 112 Hz, 0.2
Cortical external input parameters
1. external input for attention and conflict Instructed, choice, Desimone, conflict / Fig 2, 4 0.011, 0.0156 nA

[target/distractor
ttargeta tdistractor
Trises Tdecay» Atarget

Target/distractor amplitude
target and distractor onset
rise/decay time constants and transient amplitude

WM switch and regimes / Fig 3
WM switch and regimes / Fig 3
DM conflict / Fig 4

0.11 nA
30, 800 ms
13, 14 ms, 0.115 nA

Pulvinar confidence parameters

Jll’ Ib
Cconf
I,
bconf
Oconf» dT
Aconfv Tperansient
TF»> TD> Tthexes Tthinn> AF> Ps Joxcs Jinn

local structure, base current
diff.input/up-down ratio
applied current
pulvinar base current
noise amplitude, decision time
pulvinar transient amplitude and decay
facilitation, depression, excitation, inhibition,
amount of fac., release prob., exc./inh. weights

confidence (Fig 5, 6)
confidence (Fig 5, 6)
confidence (Fig 5, 6)
confidence (Fig 5, 6)
confidence (Fig 5, 6)
confidence (Fig 5, 6)
confidence (Fig 5, 6)

0.35nA, 0.3335 nA
[2,5,8]
0.007 nA
0.35nA
0.004 nA, 640 ms
0.38 nA, 30 ms
500, 600, 4, 20 (ms),
0.35,0.45, 2.85, -2.6 (nA)

Table 1: Parameters for numerical simulations


https://doi.org/10.1101/322560
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/322560; this version posted May 16, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A
Gy G I ) w G
1
B
80
Cx1
40
0 T 0 T 1
80 — 80

Firing rate (Hz)
N
o )
“ I
N
o S
h

Pul 40

0 : 0 :
1000 1000
Time (ms)

Figure S1: (Related to Fig. 1) Pulvino-cortical pathways interact within different thalamocorti-
cal motifs. A, Three possible architectures connecting pulvinar to cortex: concurrent
(left),independent (center), competing (right). B, For the “competing” architecture
in A,, right, there is a tradeoff depending on which of the two pulvinar populations,
green or orange, is activated: either a strengthening of a local cortical representation
(left, green population active) or propagation of that representation to the next corti-
cal area (right, orange population active). If the strength of recurrent connections is
a proxy for noise correlation structure (Helias et al., 2014), this intra-pulvinar com-
petition scenario is consistent with a increase (decrease) of noise correlations across
(within) cortical areas as a result of attention (Ruff and Cohen, 2016), here modeled as
a bias to a pulvinar population. Furthermore, we suggest that the cortical area whose
representation was strengthened will have precedence over the control of subcorti-
cal motor centers via projections from layer V axons. This proposal is distinct from
- although not necessarily incompatible with - another hypothesis of motor control
whereby corticothalamic projections arising from layer V are efference copies relayed
to higher cortical areas to monitor impending actions (Sherman and Guillery, 2013;
Sherman, 2016)
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Figure S2: (Related to Fig. 7) Temporal and spectral profiles of the pulvino-cortical circuit before
and after pulvinar lesions. A, Power spectrum for superficial (left) and deep (right)
layers for cortical area 1 in control and pulvinar-lesion conditions. B, Example os-
cillatory firing-rate traces for superficial and deep layers in cortical area 1. C, The
directed asymmetry index (DAI) for the functional connections between cortical area
1 and cortical area 2 is obtained by normalizing Granger-causality profiles in Fig. 7D.
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Figure S3: (Related to Fig.3, 4, and 7) Pulvinar gain modulates hierarchical distance between two
cortical areas. A, Two instantiations of the thalamocortical model: non-linear model for
2AFC tasks (top, see also Fig. 1) and laminar model for oscillatory coupling between
areas (bottom) B, Both intrinsic timescale difference (green) as well as oscillation-
based hierarchical distance (blue) increase as a function of pulvinar gain.
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