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Abstract 

Background 

Modification of attentional biases (ABM) may lead to more adaptive emotion 

perception and emotion regulation. Understanding the neural basis of these effects 

may lead to greater precision for future treatment development. Task-related fMRI 

following ABM training has so far not been investigated in depression. The main aim 

of the RCT was to explore differences in brain activity after ABM training in response 

to emotional stimuli.  

 

Methods  

A total of 134 previously depressed individuals were randomized into 14 days of 

ABM- or a placebo training followed by an fMRI emotion regulation task. Depression 

symptoms and subjective ratings of perceived negativity during fMRI was examined 

between the training groups. Brain activation was explored within predefined areas 

(SVC) and across the whole brain. Activation in areas associated with changes in 

attentional biases (AB) and degree of depression was explored.  

 

Results 

The ABM group showed reduced activation within the amygdala and within the 

anterior cingulate cortex (ACC) when passively viewing negative images compared to 

the placebo group. No group differences were found within predefined SVC’s 

associated with emotion regulation strategies. Response within the temporal cortices 

was associated with degree of change in AB and with degree of depressive symptoms 

in ABM versus placebo.   

 

Limitations 

The findings should be replicated in other samples of depressed patients and in 

studies using designs that allow analyses of within-group variability from baseline to 

follow-up.  

 

Conclusions  

ABM training has an effect on brain function within circuitry associated with 

emotional appraisal and the generation of affective states.  

Clinicaltrials.gov identifier: NCT02931487 
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Introduction 
A number of effective treatments exist for major depressive disorder. However, 
following successful treatment relapse is common with 50-70% of patients 
relapsing within 5 years.1,2 Residual symptoms are among the strongest 
predictors for relapse in recurrent depression.3 Cognitive theories of 
depression posit that biased information processing for emotional stimuli 
plays a key role in development and relapse in depression.4 Despite mixed 
findings, clinically depressed subjects, as well as currently euthymic 
previously depressed subjects, have repeatedly been reported to orient their 
attention toward negative faces rather than neutral or positive faces.5-10 
Attentional biases (AB) and deficits in cognitive control may interfere with 
emotion regulation and mood state. Negative cognitive biases in depression 
are thought to be facilitated by increased influence from subcortical 
emotion processing regions combined with attenuated top-down cognitive 
control.4,11  
 
Computerized ABM procedures aim to implicitly retrain biased attentional 
patterns.12 Although there is debate about the true effect size of ABM in 
depression13,14 some studies have reported reduced depressive symptoms after 
successful modification of AB.15-18 The neural basis of changes in AB, which is 
believed to be the mechanism of change behind symptom improvement after 
ABM training, has so far not been investigated. The functional neurobiology of 
emotion perception distinguishes between structures critical for appraisal, 
generation of affective states and emotion regulation. The amygdala and 
insular cortex are particularly important within a ventral system linked to the 
emotional significance of stimuli, and the production of affective states. The 
ventral ACC plays a main role in automatic regulation of emotional responses. 
A dorsal system includes the dorsal ACC and prefrontal regions and is argued 
to be involved in effortful regulation of affective states and subsequent 
behavior.19,20  
 
The neural effects of a single session ABM in healthy individuals include 
lateral prefrontal cortex reactivity towards emotional stimuli21 indicating 
moderation of the dorsal neurocircuitry in emotion perception. One fMRI 
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study in young women with sub-threshold depression found differences 
between ABM and placebo in measures of spontaneous fluctuations within the 
right anterior insula and right middle frontal gyrus,22 areas critical for 
emotion generation and automatic emotion regulation of emotional responses. 
In a study with clinically depressed participants differences in resting state 
connectivity between ABM and placebo was found within the middle frontal 
gyrus and dorsal ACC, a neural system important for cognitive control over 
emotions, along with changes in a network associated with sustained attention 
to visual information in the placebo group.23 Overall, these early results 
provide some evidence that ABM modifies function in emotional regulatory 
systems although the small study sample sizes and variety of approaches used 
may underpin the absence of  consistent effects across studies.24 
 
No study has investigated ABM-induced changes in emotion processing using 
fMRI in a large clinical sample after multiple training sessions. In this pre-
registered clinical trial (NCT02931487) we used a sample of 134 participants 
previously treated for depression and with various degrees of residual 
symptoms. A main aim was to explore the neural effects of ABM within both 
ventral- and dorsal emotion perception circuitry. We measured fMRI response 
within well-established emotion regulation circuitry, based on previous 
studies in response to emotionally arousing stimuli when participants 
attempted to actively regulate their emotional response. Brain activation in 
response to passive viewing of negative stimuli was explored across the whole 
brain and within the bilateral amygdala. Furthermore, we examined how 
changes in AB, the mechanism by which ABM is believed to work, and 
changes in symptoms differed between ABM as compared to placebo.  
 
Methods and materials  
Participants and Screening procedures: Patients that had been treated for at 
least one previous episode of MDD were randomized into two treatment 
conditions with either a positive ABM- or a closely matched active placebo 
training condition. Block randomization (1:1) was performed at inclusion to 
ensure equal numbers of participants and similar characteristics for the two 
groups. Participants were invited to be part of the fMRI study immediately 
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after training and preferably within one week after ABM training. The current 
clinical trial (NCT02931487) is an extension of a larger double-blinded 
randomized clinical trial (RCT)(NCT02658682) including 321 patients with a 
history of depression. A total of 136 eligible participants between 18-65 years 
old were enrolled for fMRI.  
 
The main recruitment site was an outpatient clinic in the Department of 
Psychiatry, Diakonhjemmet Hospital in Oslo. Participants were also recruited 
from other clinical sites and via social media. Individuals diagnosed with 
current- or former neurological disorder, psychosis, bipolar spectrum 
disorders, substance use disorders, attention deficit disorder, or head trauma 
were excluded via pre-screening. Informed consent was obtained before 
enrolment. The procedure was approved by The Regional Ethical Committee 
for Medical and Health Research for Southern Norway (2014/217/REK sør-
øst D). 
 
Inclusion criteria were individuals that had experienced more than one 
depressive episode fulfilling the Mini International Neuropsychiatric 
Interview (M.I.N.I 6.0.0) A1a (depressed mood) and/or A2a (loss of interest 
or pleasure) criteria, more than 5 positive items on A3 and filling the A5 
criterion (DSM 296.30-296.36 Recurrent/ ICD-10 F33.x). To assess both 
clinically- and self-rated of symptoms Beck Depression Inventory (BDI-II)25 
and Hamilton Rating Scale for Depression (HDRS)26 were administered.  
 
Attentional bias modification procedure: The ABM task was a computerized 
visual dot-probe procedure developed by Browning and coworkers.15 A 
fixation cross was initially displayed followed by two images (the stimuli) 
presented concurrently on the top and bottom of the computer screen. 
Following stimulus onset, a probe (one or two dots) immediately appeared on 
the same location as one of the image stimuli and remained on the screen 
until the participant responded. The types of stimuli were pictures of 
emotional faces of three valences; positive (happy), neutral, or negative (angry 
and fearful). A single session of the task involved 96 trials with equal numbers 
of the three stimulus pair types. In addition, equal numbers of trials were 
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randomly presented for 500- or 1000 ms before the probe was displayed. In 
each trial of the task, stimuli from two valences were displayed, in one of the 
following pairing types: positive-neutral, positive-negative, and negative-
neutral. In the ABM condition, probes were located behind positive stimuli in 
87 % of the trials (valid trials), as opposed to 13% with probes located behind 
the more negative stimuli (invalid trials). Consequently, participants should 
implicitly learn to deploy their attention toward positive stimuli, and in this 
way develop a more positive AB when completing the task. The neutral ABM 
placebo condition was otherwise identical, except the location of the probe, 
which was located behind the positive (valid trials) stimuli in 50% of the trials. 
Participants completed two sessions (96 trials) of ABM daily during the course 
of fourteen days (28 sessions in total) on identical notebook computers (14" 
HP EliteBook 840, 1600x900, 8GB, Intel Core i5-4310U), which were set up 
and used exclusively for ABM-training.  
 
MRI Scan acquisition: Scanning was conducted on a 3T Philips Ingenia 
whole-body scanner, with a 32 channel Philips SENSE head coil (Philips 
Medical Systems). Functional images were obtained with a single-shot T2* 
weighted echo planar imaging sequence (repetition time (TR): 2000 ms; slice 
echo time (TE): 30 ms; field of view (FOV): 240x240x117; imaging matrix: 
80x80; flip angle 90°, 39 axial slices, interleaved at 3 mm thickness, no gap, 
voxel size 3x3x3 mm). The scanning session consisted of 340 volumes, 
synchronized to the onset of the experiment. Slice orientation was adjusted to 
be 45° relative to the line running from the anterior to posterior commissure. 
A T1-weighted anatomical image with a voxel size of 1x1x1 mm was recorded 
for registration of the functional images (TR: 8.5 ms; TE: 2.3 ms; FOV: 
256x256x184; flip angle: 7°;184 sagittal slices).  
 
fMRI Experimental procedure: The study used a modified emotion regulation 
experiment. Participants were scanned as they were viewing sequences of 
negative and neutral images while carrying out instructions either to down-
regulate their emotional responses using a reappraisal strategy, or to simply 
allow themselves to attend to the pictures without trying to influence their 
emotional reactions. After each image the participants provided a rating of the 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 25, 2018. ; https://doi.org/10.1101/322842doi: bioRxiv preprint 

https://doi.org/10.1101/322842


 7 

intensity of their emotional state using a visual analogue scale (VAS) ranging 
from neutral to negative. Stimuli were selected from the International 
Affective Picture System 27 and the Emotional Picture Set.28 Negative and 
positive pictures were counterbalanced concerning their normative valence 
and arousal ratings (see Supplemental information for more detail). Each trial 
started with a fixation cross followed by a written instruction, (“Attend” or 
“Regulate”). The instruction was presented for 2000 ms. A negative or neutral 
image was presented for 6000 ms, followed by a rating screen time-locked to 
6000 ms. Between stimuli there was a temporal jitter randomized from 2000-
8000 ms (mean ISI; 3,700 ms) to optimize statistical efficiency in the event 
related design.29 The task consisted of blocks of 18 trials with a 20 second 
null-trial between the two blocks. The procedure was completed in two 
independent runs during the scanning session, 72 trials in total. In each block 
12 items were neutral and 24 items were negative, giving three 
counterbalanced experimental conditions; AttendNeutral, AttendNegative, 
RegulateNegative. The stimulus-order in each block was interspersed pseudo-
randomly from 12 unique lists. The total duration of one single functional 

scanning run was ∼11 minutes, and total scan time~22 minutes. Stimuli were 

presented using E-Prime 2.0 software (Psychology Software Tools). An MRI 
compatible monitor for fMRI was placed at the end of the scanner behind the 
participants’ head. Participants watched the monitor using a mirror placed at 
the head coil. Responses were collected with a response grip with two 
response buttons. Physiological data (heart and respiration curves) were 
recorded at 1000 Hz using a clinical monitoring unit digitized together with 
scanner pulses.  
 
Training and instruction procedures: A written protocol with detailed 
instructions was used to introduce the emotion regulation experiment. The 
protocol was dictated for each participant by the researcher outside the MRI- 
scanner in order to standardize the verbal instructions. The fMRI experiment 
had three in-scanner exercise trials before scan start in order to make 
participants familiar with the instructions, timing, response buttons and VAS 
scale. The training procedure was repeated before the second run of the 
experiment.  
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Symptom change and subjective ratings of negativity: Changes in self-rated 
and clinician rated symptoms were analyzed in PASW 25.0 (IBM) using a 
repeated measures ANOVA with intervention (ABM versus placebo training) 
as a fixed factor. Symptoms at baseline and at two weeks follow-up (time) 
were the dependent variable. To investigate self-reported emotional reactivity 
(VAS scores) during fMRI a factor based on the three experimental conditions 
AttendNeutral, AttendNegative, RegulateNegative was added as factor and 
analyzed in a repeated measures ANOVA.  
 
fMRI analyses: Whole brain analysis used the AttendNegative > 
AttendNeutral contrast to tests whether ABM influences overall brain activity 
in response passive viewing of emotional stimuli. Clinician-rated (HRSD) 
symptoms at baseline was demeaned and used as covariate. Spatial smoothing 
FWHM was set to 5 mm. Featquery was used for FEAT result interrogation. 
Mean local percent signal change was extracted to explore individual 
distribution within significant clusters from FEAT. Interaction analysis was 
performed in order to test whether areas within the brain respond differently 
in ABM versus placebo in relation to AB and symptom change.  
 
Small volume correction (SVC’s) used regions from a recent meta-analysis on 
neuroimaging and emotion regulation.30 This meta-analysis is comprised of 
48 neuroimaging studies of reappraisal where the majority of studies involved 
downregulation of negative affect. Buhle et al30 reported seven clusters related 
to emotion regulation consistently found within prefrontal cognitive control 
areas when contrasted to passive viewing of negative images. The clusters 
were situated in left and right middle frontal gyrus, right inferior frontal gyrus, 
right medial frontal gyrus, left and right superior temporal lobe, and left 
middle temporal gyrus (See Supplemental). The bilateral amygdala, but no 
other brain regions was reported for the opposite contrast comparing negative 
viewing to emotion regulation. Brain activation derived from passive viewing 
of negative images as compared to passive viewing of neutral images was not 
included in the results from the meta-analysis.30  
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Binary spheres with a 5 mm radius based on MNI coordinates of peak voxels 
were used for the predefined regions. Two single masks were created for the 
emotion regulation contrast (RegulateNegative > AttendNegative, 
AttendNegative > RegulateNegative). The seven cortical spheres and the two 
subcortical spheres respectively were combined into two single binary SVC’s. 
Z- threshold was set to 2.3 and cluster p-threshold was .05. Mean local 
percent signal change was extracted from the two SVC’s to explore individual 
distribution within significant clusters from FEAT. Again, clinician-rated 
(HRSD) symptoms at baseline was demeaned and used as covariate also in the 
SVC analysis.  
 
fMRI data preprocessing and noise reduction: The FMRIB Software Library 
version (FSL version 6.00) (www.fmrib.ox.ac.uk/fsl)31,32 was used to pre-
process and analyze fMRI data. FMRI data processing was carried out using 
FEAT (FMRI Expert Analysis Tool) Version 6.00, part of FSL (FMRIB's 
Software Library, www.fmrib.ox.ac.uk/fsl). In conjunction with FEAT FSL-
PNM, 34 EVs were applied to regress out physiological noise from pulse and 
respiration.33 Registration to high resolution structural and/or standard space 
images was carried out using FLIRT.34,35 Registration from high resolution 
structural to standard space was then further refined using FNIRT nonlinear 
registration.36 All registrations were manually inspected to ensure proper 
alignment. Time-series statistical analysis was carried out using FILM with 
local autocorrelation correction.37 Linear registration was conducted with 12 
DOF. Z (Gaussianised T/F) statistic images were thresholded using clusters 
determined by Z>2.3 and a (corrected) cluster significance threshold of 
P=0.05.38 Two participants were excluded from the analyses due to signal loss 
caused by a technical problem with the head coil. Time series from each 
subjects’ two first level runs were combined using an intermediate fixed effect 
model in FEAT before submission to second level analysis. A total of 134 
participants, 64 from the ABM group and 70 from the placebo group were 
included in the intermediate - and the higher level FEAT analysis at group 
level.   
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Results 
Sample characteristics 
  

Table 1 shows means, standard deviations together with F-values and Chi-square tests respectively. 
MDE=Major Depressive Episodes according to M.I.N.I. SSRI= any current usage of an antidepressant 
belonging to the Selective Serotonin Reuptake Inhibitors.  ISCED= International Standard Classification 
of Education. P-values from Pearson Chi-Square test is presented for dichotomous variables. 

 
Symptom change after ABM: There was a statistically significant effect of the 
intervention (time) for rater-evaluated depression as measured by the change 
in HRSD, with lower symptoms of depression in the ABM group 
[F(1,132)=4.277, η²=.03, p=.04]. The means and standard deviations at 
baseline in ABM was (9.56 (6.38)) and placebo (7.53 (4.69)) and changed to 
(7.93 (5.90)) and (7.77 (5.76)) at two weeks follow-up. No statistically 
significant effect was found for self-reported symptoms as measured by the 
BDI-II [F(1,132)=2.048, p=.15]. The means and standard deviations at 
baseline in ABM was (17.12 (11.62)) and placebo (12.09 (8.66)) and changed to 
(13.25 (12.04)) and (9.82 (8.72)) at two weeks follow-up. There was a general 
symptom improvement in both the ABM and placebo group as measured by 
the BDI-II from baseline to post training [F(1,132)=29.775, η²=.18, p<.001].  
This is in accordance with the results from the sample in which this smaller 
cohort of subjects is drawn.39 
 
Subjective ratings of perceived negativity: We found a statistically significant 
difference between self-reported emotional reactivity measured by VAS scores 
during the fMRI experiment between task conditions. The repeated measures 

  
Placebo (n=70) 

 
ABM (n=64) 

 
Value 

 
Sig.  

     
Age 39,2 (13.4) 38,6 (12.8) .077 .782 

Gender (females) 46 55 
 

3.068 .080 

Education Level (ISCED) 5,92 (1,2) 5,86 (1,2)  .081 .776 

Medication (SSRI) 25 23 .087 .768 

Number of previous MDE 4,4 (5,1) 4,6 (7,1)  .048 .827 

Days between ABM and fMRI 6.9 (8.7) 6.6 (7.2) .041 .840 

Baseline symptoms: 
HRSD 
BDI-II       

 
7,63 (4,76) 
12,09 (8,66) 

 
9,36 (6,15) 
17,40 (11,50)  

 
3.592 
9.150 

 
.060 
.003 ** 
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ANOVA showed that mean VAS scores were lowest when viewing neutral 
images (M=8.2(7.8)) followed by when patients were encouraged to regulate 
negative experience towards negative images (M=40.8 (16.9)), and highest for 
the passive viewing of negative images (62.0(15.3)) [F(1,133)=.074, η²=.93, 
p<.001]. A post hoc test showed that the differences between the passive and 
regulate viewing conditions for negative stimuli was large and statistically 
significant [F(1,133)=202.81, η²=.60, p<.001]. VAS ratings did not differ 
between ABM and placebo [F(1,133)=.993, p=.64].  
 
Effects of ABM from whole brain analyses: Passive viewing of negative 
images revealed greater placebo activation in a cluster within the pregenual 
ACC, the paracingulate – and the medial cortex bilaterally, extending to the 
right frontal orbital cortex and the frontal pole compared to ABM. The peak 
activation for the cluster was found in the left frontal medial cortex (MNI 
coordinates x y z =-16 36 -10, Z=3.86, p<.001) (Figure 1.) 

 
Figure 1 shows cluster activation (Z>2.3) for Placebo over ABM for negative images (left), together with 
distribution of individual percentage signal changes over significant clusters (right). 
 
Effects of ABM within predefined SVCs: Analyses masked across predefined 
emotion regulation circuitry revealed more activation placebo as compared to 
ABM within the right- (MNI x y z = -18 -6 -20, size=8, Z=2.89, p=.03) and left 
amygdala (MNI x y z = 28 0 -16, size= 3, Z = 2.55, p=.04) for the passive 
viewing contrast (AttendNegative > AttendNeutral) (Figure 2).  
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Figure 2 shows amygdala mean activation (left) for placebo and ABM (red) and peak voxels where 
placebo had more activation compared to ABM for negative images (yellow) and distribution of 
individual percentage signal changes over significant clusters (right).  
 
No differences between ABM and placebo was found for the emotion 
regulation contrasts. Across both groups the regulate contrast 
(RegulateNegative > AttendNegative) revealed activation within two SVC’s in 
the left inferior frontal gyrus (MNI x y z = -30 -2 -54, size=75, Z=10.5, p=.01) 
and right middle frontal gyrus (MNI x y z = 60 26 6, size=29, Z=5.48, p=.04). 
The opposite contrast (AttendNegative > RegulateNegative) revealed 
increased bilateral amygdala activation in both the ABM- and placebo group. 
The largest cluster was found within the left amygdala (MNI x y z = -18 0 -14, 
size=75, Z=7.93; p<.01) and a smaller cluster was found within the right 
amygdala (MNI x y z = 26, -2, -16, size=13, Z=4.05, p=.02) (supplemental 
Figure1).  
 
Interaction with degree of attentional biases and symptom change: 
 Two distinct clusters were associated with the interaction between the passive 
viewing of negative images (AttendNegative > AttendNeutral), the 
intervention and degree of AB change (MNI x y z = 54 -24 8, size=1061; 
Z=4.05, p<.001) and (MNI x y z =-50 0 10, size=547, Z=3.44; p=.02).  
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Figure 3 shows areas activated in association to the interaction between AB and the intervention (left).  
The scatter plot (right) shows the regression lines and individual distribution in the ABM and the 
placebo condition. 

An interaction between passive viewing (AttendNegative > AttendNeutral), 
the intervention, and degree of symptom change (HRSD) were found within 
the right planum temporale and insular cortex (MNI x y z = 50 -10 18, 
size=872; Z=5.28, p<.001) (Figure 4).  

 
Figure 4 shows areas activated in association to the interaction between HRSD and the intervention 
(left).  The scatter plot (right) shows the regression lines and individual distribution in the ABM and the 
placebo condition. 
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Discussion 
Our results revealed intervention dependent fMRI changes after two weeks of 
ABM within areas consistently associated with emotional appraisal and the 
generation of affective states, areas within a circuitry known to be altered in 
depression.4,19,20 The placebo group showed more pronounced activation for 
negative images within the amygdala, in midline structures, and in the 
pregenual ACC. Analysis of the mechanism of change showed that degree of 
changes in AB was linearly linked to activity in the insular cortex bilaterally. 
Symptom improvement after ABM was linearly associated with activation in 
the right insular cortex, areas involved in the generation of affective states.19  
 
Analyses within predefined areas associated with effortful emotion regulation 
revealed activation within the left inferior frontal gyrus and right middle 
frontal gyrus across groups.30 The amygdala was also more activated during 
passive viewing versus active regulation of negative stimuli, but did not differ 
between the ABM and placebo group. In line with these results, we found no 
differences between ABM and placebo training as measured by subjective 
ratings (VAS) of perceived negativity. This is consistent with the primary 
outcomes from the clinical trial that found an ABM effect restricted to blinded 
clinician-rated, but not self-rated symptoms.40 Together, the results may 
imply that the early effects of ABM are restricted to changes in emotion 
generation and appraisal, as opposed to more conscious forms of emotion 
regulation linked to the dorsal system.  
 
A considerable number of meta-analyses using functional connectivity in 
depression have shown altered activity in areas that distinguished ABM and 
placebo in the current study including the insula and ACC.41-43 In a study by 
Horn et al44 increased connectivity between pregenual ACC and insula was 
found in severely depressed patients compared to mildly depressed patients 
and healthy controls. Functional connectivity in the insula has been associated 
with abnormal interoceptive activity45 and fronto-insular connectivity has 
been linked to maladaptive rumination46 in depression. Midline brain 
structures including the pregenual ACC has been linked to self-referential 
processing,47 hopelessness,48 anhedonia49 and impaired emotion processing50 
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as well as with in studies of functional connectivity  and depression. Notably, 
the ACC and insula are together with the amygdala core areas of the salience 
network, which determines the significance of external stimuli. The salience 
network has been hypothesized to play a role in switching between task 
positive- and negative networks51,52 and may well play a role in symptom 
improvement after ABM as found in this study.  
 
The insula and the amygdala are among core brain areas that respond 
preferentially to negative stimuli in healthy individuals, and activation in the 
insula and ACC has repeatedly been reported across a range of experiments 
using emotional tasks with cognitive demand and mental imagery.53,54 Neural 
responses to negative stimuli within the amygdala, insula and ACC are found 
to be more pronounced in depressed patients versus healthy controls.55  Ma 56 
describes an emotional circuit including the insula, bilateral amygdala and 
ACC affected by antidepressant medication by decreasing activity towards 
negative- and increasing activity towards positive stimuli. Antidepressants 
have been hypothesized to work by remediating negative affective biases, i.e. 
targeting the same mechanism as when applying an ABM procedure.57-59 
Similarly, the moderation of awareness towards negative stimuli via ABM (the 
mechanism of change) may alter automatic emotional vigilance and arousal 
towards negative stimuli. These moderations may lead to altered 
parasympathetic responses via circuitry involving the amygdala and ACC. The 
translation of these changes into improved subjective mood may take some 
time as the individual learns to respond to this new and more positive social 
and emotional perspective of the world. However, neural correlates of early 
changes in the processing of emotional stimuli might be a marker of a process 
leading to symptom improvement. This model is consistent with cognitive 
theories of depression4,60 which the ABM procedure builds on. Accordingly, 
studies on cognitive behavioral therapy (CBT) shows that pregenual ACC is 
positively correlated with the degree of symptom improvement.61-66 Moreover, 
given that that the pregenual ACC is believed to play an important role in 
downregulation of limbic hyperreactivity20,67,68 the group difference found in 
this study may reflect more adaptive emotion processing after ABM. 
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Worldwide, there is a pressing demand for evidence-based treatments in 
mental health. It has been argued that psychotherapy research does not 
provide explanations for how or why even the most commonly used 
interventions produce change.69 In a recent statement from the Lancet 
Psychiatry’s Commission on treatments research in tomorrow’s science the 
authors argue that there is an acute need to improve treatment and thus 
clinical trials should focus not only on efficacy, but also on identification of the 
underlying mechanisms through which treatments operate.70 The current 
study is addressing such mechanisms by targeting changes in AB, which is 
believed to be the mechanism, that translate into symptom improvement after 
ABM.  
 
The current study is based on an RCT with a larger sample of patients that 
found an ABM effect on clinician-rated symptoms. It uses a well validated 
emotion perception task and follows a stringent pre-registered research 
protocol which represents a strength. This study exploits the link between a 
psychological mechanism, clinical measures and underlying brain function 
measured by fMRI, thus the results should have translational potential. The 
current trial is the largest study that has investigated changes in emotion 
processing using fMRI after ABM training.   
 
Limitations 
A key limitation related to the research design is that fMRI assessment after 
ABM does not allow statistical modeling of within-individual variance from 
baseline to follow-up. There is an unexpected difference in symptom degrees 
at baseline that could be associated with group differences in brain activation. 
Adding symptom degree as a covariate in the fMRI analysis will regress out 
variance related to this particular variable. The sample consist of patients with 
previous depression and various degrees of residual symptoms, and needs to 
be replicated in studies with other patient groups. Brain activation related to 
ABM may also be conditionally mediated by multiple biological- and 
environmental factors outside the scope of this study.  
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Conclusion 
This study demonstrates alterations in brain circuitry linked to passive 
viewing, but not conscious regulation of emotional stimuli and represent the 
first experimental evidence of an ABM effect using task fMRI.  
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