


Fig. S2 Additional field observations of foraging rates. Incoming foraging rate rin (blue),
outgoing foraging rate rout (red), and difference between number of incoming and outgoing foragers
(green) versus time of day. A) Colony 863 September 5, 2015 reaches a QSS at a high rate; compare
to Fig. 4E when on the much hotter and drier day, September 1, 2015, Colony 863 returned to the
nest early. B) Colony D19 August 08, 2016 returned to the nest early; the day was very hot and
dry. C) Colony 859 August 20, 2017; the transient starts late in the morning. The day was cool
and humid. D) Colony 1107 August 16, 2017; the transient is slow. The day was dry. E) Colony
1017 August 23, 2016; the initial transient is more like a burst of outgoing foragers. The day was
dry. F) Colony 1015 August 18, 2016; another initial burst of outgoing foragers. The day was very
dry.
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Daily Average At 11 am
Figure Date Temperature Humidity Temperature Humidity
3A, 3B Aug. 20, 2016 25.9C 57% 24.8C 57%
4A, 4B Aug. 27, 2015 25.3C 58% 27.5C 52%
4C, 4D Aug. 31, 2015 26.8C 53% 28.8C 45%
4E, 4F Sept. 1, 2015 25.2C 53% 27.5C 52%
S1A Sept. 5, 2015 22.6C 77% 23.3C 77%
S1B Aug. 8, 2016 29.7C 48% 39.9C 43%
S1C Aug. 20, 2017 23.0C 71% 22.7C 73%
S1D Aug. 16, 2017 26.0C 48% 27.4C 41%
S1E Aug. 23, 2016 24.1C 43% 28.8C 36%
S1F Aug. 18, 2016 25.5C 27% 31.2C 23%

Table S1 Temperature and relative humidity in Rodeo, New Mexico. Average temper-
ature, average relative humidity, temperature at 11 am, and relative humidity at 11 am in Rodeo,
New Mexico, USA for days with data plotted in Fig 3, Fig. 4, and Fig. S2. Data collected by the
Citizen Weather Observer Program station E8703 and accessed through Weather Underground [1].
The station is located 1.7 miles from the study site.
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Fig. S3 Open Loop Model. A) Poisson sequence of incoming foragers λin. B) Stimulus signal
s associated with λin. C) FN output for input s. D) Sequence of outgoing foragers λout obtained
by thresholding FN output from below at 0.75.
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Fig S4. Probability density function for the stimulus function. Each curve represents
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represent the size of the oscillatory region in the F-N system (b1, b2) for different values of volatility
c. For all curves, k = 0.3, τ = 0.41.
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Fig. S5 Period of FN Limit Cycle when s=0.35 Blue dots represent numerical simulations
for the period of the FN limit cycle. The red curve represents the analytical approximation in SI
Appendix 1. In both cases we set s = 0.35.
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Fig. S6 Additional simulations of the closed loop system with the adaptation mech-
anism. Plots resemble observed foraging behaviors in Fig. S2. Qualitative comparisons can be
made between A here and Fig. S2C, between B here and Fig. S2D, and between C here and in Fig.
S2E and F. A) cu = 0.9, ci = 2.2, N = 500, D = 5. Setting cu < ci where cu is close to c∗ results
in a long period before the rates ramp up. B) cu = 1, ci = 1, N = 1000, D = 15. Setting the mean
foraging trip time D to be large results in long lasting transients. C) cu = 0.7, ci = 0.9, N = 1000,
D = 7. Setting the initial λin equal to sequence from the first 5 minutes of λin for Colony 1017 on
Aug. 23, 2016 (see Fig. S2E) yields the behavior that follows an initial burst of foragers.
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SI Appendix 1
Effect of volatility on the frequency of oscillations in the FN: Here we use results from [2]
Chapter III, Theorem 3 to obtain an asymptotic expansion for the period of the limit cycle TLC
as ε2 goes to zero. We show that the period of the FN limit cycle is inversely proportional to c by
computing the leading term in the expansion.

The limit cycle of the FN is comprised of four components: two fast components that stretch
along the v direction between the crest and valley of the cubic nullcline, and two slow components
that stretch along the sides of the cubic nullcline. Because it takes much longer to traverse the
slow components of the limit cycle than the fast components of the cycle, the period can be
approximated by the time it takes trajectories to traverse the two slow components. These slow
components are proportional to the length of the sides of the cubic nullcline, which we show are
proportional to c.

Theorem 1. The limit cycle of the FN system

ε1ε2
dv

dt
= v − v3/3− cu− 0.35 + s

ε1
du

dt
= v − cu

has the asymptotic representation:

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+O(ε2),

as ε2 → 0, where C1 and C2 are constants and where

T0 =
3ε1
c

{∫ −1

−2

(v2 − 1)

(3z − v3)
dv +

∫ 1

2

(v2 − 1)

(3z − v3)
dv

}
.

Proof. By Chapter III, Theorem 3 of [2], the limit cycle of the FN model has the asymptotic
representation

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+ C3ε2 +O(ε

4/3
2 ).

Or, equivalently,

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+O(ε2).

Let time be scaled by 1/ε1 and let z = s− 0.35, leading to the new system

ε2
dv

dt
= v − v3/3− cu+ z

du

dt
= v − cu

The critical manifold of this fast-slow system is M0 := {(v, u) ∈ R2|u = (v − v3/3 + z)/c}. In the
limit ε2 → 0, the slow manifold is equal to the critical manifold. Let Ψ0 denote the limit cycle in
this limit.

Using the description of M0 as a graph u = h(v), the dynamics of the system on the slow flow
can be written as

du

dt
= z − v3/3.

We get a second expression for du/dt by differentiating M0 with respect to t

du

dt
=
v2 − 1

c

dv

dt
.

Equating the two expressions we obtain

dv

dt
=
c(3z − v3)

3(v2 − 1)
.
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Multiplying both sides by dt and integrating over Ψ0,

T0 =
3

c

∫
Ψ0

(v2 − 1)

(3z − v3)
dv.

In Ψ0, the fast components of the orbit take place instantaneously and the time taken to complete
the orbit is equal to the time taken to traverse the slow components. The slow components of
the trajectory take place on the slow manifold between v ∈ [−2,−1] and v ∈ [1, 2], yielding the
expression

T0 =
3ε1
c

{∫ −1

−2

(v2 − 1)

(3z − v3)
dv +

∫ 1

2

(v2 − 1)

(3z − v3)
dv

}
.

where time has been scaled back to its original form. This expression is inversely proportional
to c. Furthermore, this integral has a short closed form solution when the slow components are
symmetric (i.e. z = 0, or s = 0.35),

T0 = 2
3ε1
c

∫ −1

−2

(1− v2)

v3
dv =

−9 + 8 log 8

4c
.

We compute the constants C1 and C2 by applying formulas 7.9 and 7.10 of [2] Chapter III,
Theorem 3. When s 6= 0.35, the flow along the system is not symmetric and the asymptotic
representation is

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+O(ε2),

where
C11 =

3.37214|1− 3z| Sgn(1/3− z)
(−8/9 + z(−7/3 + z))(c/ε21)1/3

,

C12 =
ε1(−2 + 6z + |1− 3z|)

2(1− 3z)2
,

C21 =
3.37214|1 + 3z| Sgn(1/3 + z)

(−8/9 + z(−7/3 + z))(c/ε21)1/3
,

C22 =
ε1(−2− 6z + |1 + 3z|)

2(1 + 3z)2
.

and Sgn represents the sign function.
When s = 0.35, z = 0 and the asymptotic representation becomes

TLC = T0 + (C11 + C12)ε
2/3
2 + (C21 + C22)ε2 ln

1

ε2
+O(ε2)

where
C1 =

3.79366ε1
c1/3

and
C2 =

−ε1
2
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SI Appendix 2
Additional field observations of foraging rates: Here we present additional details for the
field observations of foraging rates shown in Fig. S2.

Panel A of Fig. S2 shows the foraging rates for Colony 863 on September 5, 2015. The rates
increase before reaching a QSS at around 10:30 am. The same colony on September 1, 2015 did
not exhibit a QSS and had stopped foraging by 11 am (Fig. 4E). These observations are consistent
with measurements showing that September 5, 2015 was a particularly cool and humid day while
September 1, 2015 was much hotter and drier (see Table S1).

Panel B of Fig. S2 shows the data for Colony D19 on August 8, 2016 (from video recording)
and provides an example of a very early cessation of foraging where both outgoing and incoming
rates reached zero well before 11:00 am, similar to Colony 863 on September 1, 2015 (Fig. 4E).
Both August 8, 2016 and September 1, 2015 were very hot and dry days (see Table S1).

Panel C of Fig. S2 show the data for Colony 859 on August 20, 2017 (from manual recording)
and provides an example where the initial transient took a long time before ramping up. The
initial transient for Colony 859 on August 20, 2017 remained at around 0.01 ants/sec from 10 am
to 11:15 am before increasing to about 0.4 ants/sec by 12:30 pm. August 20, 2017 was a cool and
humid day (see Table S1). Colonies might prefer different ranges of temperature and humidity;
on cool and humid days, colonies that prefer warmer temperatures might forage at slightly later
times of the day than colonies that prefer more cool temperatures.

Panel D of Fig. S2 show the data for Colony 1107 on August 16, 2017 (from manual recording)
and provides a different example of a slow transient; it takes from 8 am to 10:30 am for the
foraging rates to increase from 0.3 ants/sec to around 0.9 ants/sec. During this period the number
of foragers outside the nest reaches almost 2000. In this case August 16, 2017 was not a particularly
cool or humid day (see Table S1). The long transient and large number of active foragers suggests
that the average time it took a forager to find a seed was long. Long foraging trip times can result
in slow transients and high number of active foragers because when foragers take a long time to
find a seed, it takes longer for foragers to return to the nest and interact with available foragers
who then become active foragers. As well, when the average foraging trip times is long, more
foragers might be required to cover larger and less dense foraging areas.

Panel E and F of Fig. S2 show the data for Colony 1017 on August 23, 2016 (from manual
recording) and for Colony 1015 on August 18, 2016 and provide two examples of a burst in the
outgoing foraging rate at the start of the foraging day that rapidly increases the number of active
foragers outside the nest; it takes from 7:30 am to 7:45 am for Colony 1017 on August 23, 2016
to increase the number of active foragers from 0 to 800 and it takes from 7:15 am to 7:30 am for
Colony 1015 on August 18, 2016 to increase the number of active foragers by 600. In both cases,
the foraging rates reach a QSS that lasts tens of minutes. Both August 23 and August 18, 2016
were very dry days (see Table S1).

The burst kick starts the foraging process very rapidly and appears to be different from the
mechanism that activates available foragers to leave the nest through interactions between incoming
successful foragers and the available foragers. The rapid increase in the number of active foragers
outside the nest might be advantageous on hot and dry days on which there will be only a short
period of time in the early morning with acceptable foraging conditions.
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SI Appendix 3
Analytical Approximation for r̄out in terms of r̄in and c

Under the assumption that λin is a Poisson process with constant rate r̄in, Eq. (4) is equivalent
to a Poisson shot noise process with exponential decay:

s(t) = s(0)h(t) +

N(t)∑
i=1

k h(t− ti)

where ti are the jump times of the Poisson process, and

h(t) =

{
e−t/τ , t ≥ 0

0, t < 0.

The mean and variance of this random process for an initial condition s(0) = 0 are given by
r̄inτk(1 − e−t/τ ) and 1

2 r̄inτk
2(1 − e−2t/τ ) respectively [3]. Shot noise processes are Markovian

and it can be shown that for finite jump sizes, k < ∞, s is ergodic [4], meaning that as t → ∞,
s(t) converges in total variation to a unique stationary probability distribution π(s) for any initial
condition s(0). In other words, s has the property that time averages converge in time to statistical
averages. The ergodicity of s allows us to find an asymptotic expression as t→∞ for the expected
fraction of time that any single outcome of the random process spends in a region (b1, b2) by looking
at its stationary probability density function.

Let Sf = {tf ∈ [t0, t0 +T ] | b1 < s < b2} be the set of all times over the time interval [t0, t0 +T ]
for which the stimulus is in the (b1, b2) region. Then Sf ⊆ S where S = {t ∈ [t0, t0 + T ]}. We
define 1Sf

: S → {0, 1} to be the indicator function associated with the subset Sf

1Sf
(t) =

{
1 t ∈ Sf
0 otherwise.

Let Tf be the amount of time that s is between b1 and b2:

Tf =

∫ t0+T

t0

1Sf
(t) dt.

From the ergodic properties of s, and by the strong law of large numbers,

lim
T→∞

1

T

∫
T

1Sf
(s) ds =

∫ b2

b1

p(s) ds

where p(s) is the density associated with π(s), i.e. the stationary probability density function
(PDF) of s:

π(s) =

∫ s

0

p(y) dy.

The PDF (see SI Appendix 4) is given as a piecewise function pi(s) for (i − 1)k ≤ s < ik where
the piecewise elements satisfy recurrence equations that depend on r̄in, τ , and k.

Let b1 and b2 be the FN bifurcation values of the input to the FN that takes the system from
quiescence into the oscillatory regime and from this regime into saturation respectively:

b1,2 = 0.35∓ 1

3
(1− cε)3/2.

The size of the oscillatory region is given by the difference between b2 and b1 and it decreases with
increasing volatility c (see SI Fig S4). For constant s where b1 ≤ s ≤ b2, the output rate is a
constant given by the oscillation frequency of the FN when driven by a constant input s.

For s not constant, the FN transitions between quiescence, oscillatory behavior, and saturation
as s varies. For ε1 � 1, the FN dynamics are much faster than the dynamics of s, and the number
of foragers leaving the nest in a given time period [t0, t0 + T ] is proportional to Tf , the amount of
time spent by s in the oscillatory region.

For T →∞, nonlinear effects in the oscillations become negligible and the mean outgoing rate
becomes

r̄out = lim
T→∞

1

T

∫
T

fε2(s) · 1Sf
(s) ds
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where fε2 is the mean oscillation frequency of the FN when the driving input is constant and equal
to s. We approximate fε2 = 1/TLC through the asymptotic representation [2]:

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+O(ε2),

where T0, C1, and C2 are given in SI Appendix 1 to obtain an approximate expression for how r̄out
changes as a function of both r̄in and c:

r̄out =

∫ b2

b1

p(s, r̄in)

TLC(s, c)
ds.

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2018. ; https://doi.org/10.1101/322974doi: bioRxiv preprint 

https://doi.org/10.1101/322974
http://creativecommons.org/licenses/by/4.0/


SI Appendix 4
Probability Density Function of s(t)

Here we find an analytical description of the probability density function of the stimulus function
s(t) under the assumption that the incoming rate is a Poisson process. Under this assumption s(t)
takes the form of a Poisson shot-noise process. Before we state our results, we state a result by
Gilbert and Pollak. 1959 [5]:

Lemma 1. The amplitude distribution function Fs(ξ) = Pr[s(t) ≤ ξ] for the shot noise process

s(t) =

N(t)∑
i=−∞

h(t− ti)

where h(t) is called the impulse shape function, satisfies the integral equation

sFs(s) =

∫ s

−∞
Fs(x) dx+ r̄in

∫ ∞
−∞

Fs(s− h(t)) h(t) dt.

Proof. We refer the reader to [5] for the proof.

Theorem 2. The steady-state probability density function of the shot-noise process with exponential
decay with impulses arriving with rate r̄in

s(t) =

N(t)∑
i=1

k h(t− ti)

where

h(t) =

{
e−t/τ , t ≥ 0

0, t < 0.

is given as a piecewise function pi(s) for (i− 1)k ≤ s < ik where the piecewise elements satisfy the
recurrence equations :

pn(s) = pn−1(s) + αsr̄inτ−1(−r̄inτ)n−1gn(s, r̄in, k, τ)

gn(s, r̄in, k, τ) =

∫ s

(n−1)k

(x− k)r̄inτ−1x−r̄inτgn−1(x− k, r̄in, k, τ)dx

with

α =
(keγ)−r̄inτ

Γ(r̄inτ)
sr̄inτ−1, p0(s) = 0, g1(s, r̄in, k, τ) = 1

where γ = 0.5772... is Euler’s constant and Γ is the gamma function.

Proof. For a Poisson shot noise process in with impulse shape function:

h(t) =

{
e−t/τ , t ≥ 0

0, t < 0,

the integral equation in Lemma 1 can be rewritten as

sps(s) = r̄inτ

∫ k

0

ps(s− ξ) dxi = r̄inτ

∫ s

s−k
ps(x) dx.

where p(s) = dFs/ds be the density function of s.
Differentiating with respect to s, we obtain

s
dps
ds

+ ps(s)[1− r̄inτ ] = −r̄inτps(s− k). (1)

When 0 ≤ s ≤ k, ps(s− k) = 0, and

s
dps
ds

+ ps(s)[1− r̄inτ ] = 0.
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Picking ps(s) = α sr̄inτ−1 satisfies the equation above, so we have obtained a solution for ps(s)
when 0 ≤ s ≤ k. For larger values of s, the differential equation Eq. (1) may be converted to an
integral form

ps(s) = sr̄inτ−1

[
α− r̄inτ

∫ s

k

ps(x− k)x−r̄inτ dx
]
.

Since the integrand is known for x < 2k, we can determine ps(s) for s < 2k. This in turn enables
us to integrate further to get ps(s) for s < 3k, etc. Let m = r̄inτ , then the results for the first
three jump regions pi, i = 1, 2, 3 are given by

p1(s) = α sm−1

p2(s) = p1(s)− α sm−1m

∫ s

k

(x− k)m−1x−m dx

p3(s) = p2(s) + α sm−1m2

∫ s

k

(x− k)m−1x−m
∫ x−k

k

(ξ − k)m−1ξ−mdξ dx

We now show by induction that p(s) satisfies the recurrence equations

pn(s) = pn−1(s) + αsm−1(−m)n−1gn(s)

gn(s) =

∫ s

(n−1)k

(x− k)m−1x−mgn−1(x− k) dx

with p0 = 0, g1(s) = 1. For n = 1,

p1(s) = p0(s) + αsm−1(−m)0g1(s) = αsm−1

as expected. Now, assume that for n = j

pj(s) = pj−1(s) + αsm−1(−m)j−1gj(s)

gj(s) =

∫ s

(j−1)k

(x− k)m−1x−mgj−1(x− k) dx

Then, for n = j + 1

pj+1(s) = sm−1

[
α−m

∫ s

k

pj(x− k)x−m dx
]

= sm−1sm−1α− sm−1m

∫ s

k

x−m(pj−1(x− k) dx

+ sm−1α(x− k)m−1(−m)j−1gj(x− k)) dx

= sm−1

[
α−m

∫ s

k

x−mpj−1(x− k) dx
]

+ αsm−1(−m)j
∫ s

k

(x− k)m−1x−mgj(x− k)) dx

= sm−1

[
α−m

∫ s

k

x−mpj−1(x− k) dx
]

+ αsm−1(−m)jgj+1(s)

= pj(s) + αsm−1(−m)jgj+1(s).

Finally, the constant α must be determined by the condition∫ ∞
0

ps(s) ds = 1.

To compute the constant, we first note that the characteristic equation of s is given by

C(ζ) = exp

[
−r̄in

∫ ∞
−∞

(1− exp[−ζFs(t)]) dt
]

(see [3] for derivation). The characteristic function is the Laplace transform p̂ of ps,

p̂(ζ) = exp

[
−r̄inτ

∫ ζk

0

1− e−y

y
dy

]
.

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2018. ; https://doi.org/10.1101/322974doi: bioRxiv preprint 

https://doi.org/10.1101/322974
http://creativecommons.org/licenses/by/4.0/


Using partial integration, this can be rewritten as

p̂(ζ) = exp

[
−r̄inτ(1− e−ζk) log ζk + r̄inτ

(∫ ∞
0

e−y log y dy −
∫ ∞
s

e−y log y dy
)]

= (ζk)−r̄inτe−r̄inτγ(1 +O[e−ζk(1−ε)]) for any ε > 0.

Thus, for 0 ≤ s ≤ k,

c =
(keγ)−r̄inτ

Γ(r̄inτ)
sr̄inτ−1

where γ = 0.5772... is Euler’s constant and Γ is the gamma function.
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