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Abstract

Ant colonies regulate activity in response to changing conditions without using
centralized control. Harvester ant colonies forage in the desert for seeds, and their
regulation of foraging manages a tradeoff between spending and obtaining water.
Foragers lose water while outside in the dry air, but the colony obtains water by
metabolizing the fats in the seeds they eat. Previous work shows that the rate at which
an outgoing forager leaves the nest depends on its recent experience of brief antennal
contact with returning foragers that carry a seed. We examine how this process can
yield foraging rates that are robust to uncertainty and responsive to temperature and
humidity across minutes to hour-long timescales. To explore possible mechanisms, we
develop a low-dimensional analytical model with a small number of parameters that
captures observed foraging behavior. The model uses excitability dynamics to represent
response to interactions inside the nest and a random delay distribution to represent
foraging time outside the nest. We show how feedback of outgoing foragers returning to
the nest stabilizes the incoming and outgoing foraging rates to a common value
determined by the “volatility” of available foragers. The model exhibits a critical
volatility above which there is sustained foraging at a constant rate and below which
there is cessation of foraging. To explain how the foraging rates of colonies adjust to
temperature and humidity, we propose a mechanism that relies on foragers modifying
their volatility after they leave the nest and get exposed to the environment. Our study
highlights the importance of feedback in the regulation of foraging activity and points to
modulation of volatility as a key to explaining differences in foraging activity in response
to conditions and across colonies. Our results present opportunities for generalization to
other contexts and systems with excitability and feedback across multiple timescales.

Author Summary

We investigate the collective behavior that allows colonies of desert harvester ants to 1

regulate foraging activity in response to environmental conditions. We develop an 2

analytical model connecting three processes: 1) the interactions between foragers 3

returning to the nest and available foragers waiting inside the nest, 2) the effect of these 4

interactions on the likelihood of available foragers to leave the nest to forage, and 3) the 5

return of foragers to the nest after finding seeds. We propose a mechanism in which 6

available foragers modify their response to interactions after their first exposure to the 7
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environment. We show how this leads to colony foraging rates that adjust to 8

environmental conditions over time scales from minutes to hours. Our model may prove 9

useful for studying resilience in other classes of systems with excitatory dynamics. 10

Introduction 11

Social insect colonies operate without central control. Colonies maintain coherence and 12

plasticity in the face of perturbation and change, even though individuals have limited 13

and uncertain information on the state of the group and the state of the environment. 14

Collective behaviors are understood to emerge from response of individuals to social 15

interactions and measurements of the local environment [1–4]. The study of social 16

insects provides opportunities to investigate open, fundamental questions on how 17

collective behavior adjusts to different conditions and how small differences in these 18

adjustments can lead to large differences in behavior across groups. 19

The regulation of foraging activity in colonies of the harvester ant (Pogonomyrmex 20

Barbatus) is a well-studied example of collective behavior [5]. Harvester ants live in the 21

hot and dry Southwestern US desert where they forage for seeds scattered by wind and 22

flooding. Foragers do not use pheromone trails; instead, they spread out across selected 23

foraging areas in search of seeds [6]. The regulation of foraging activity manages a 24

tradeoff between spending and obtaining water: foragers lose water while outside in the 25

dry air, but colonies obtain water by metabolizing the fats in the seeds that they 26

eat [7, 8]. 27

Harvester ant colonies regulate the rate at which foragers leave the nest using the 28

incoming rate of successful foragers returning with food [9–13]. When an ant contacts 29

another ant with its antennae, it perceives the other ant’s cuticular hydrocarbon (CHC) 30

profile [9]. Because conditions outside the nest change the chemistry of the cuticular 31

hydrocarbons, CHC profiles are task-specific [14]. In the course of antennal contact, one 32

ant can detect whether another is a forager. An available forager, waiting in the 33

entrance chamber inside the nest, is stimulated to leave the nest by antennal contact 34

with foragers carrying food [11–13]. Because each forager searches until it finds a seed, 35

the rate of interaction serves as a noisy measurement of the current foraging 36

conditions [6, 15]. A higher rate of forager return, which reflects a greater food supply, 37

increases the likelihood that available foragers will leave the nest to forage [12,13,16]. 38

In the integrator model of [13], each available forager inside the nest collects evidence 39

from incoming foragers by integrating its recent experience of antennal contacts. When 40

the integrated stimulus passes a threshold, the available forager is likely to leave the 41

nest; in the absence of interactions the forager is likely to descend from the entrance 42

chamber to the deeper nest [12,16], protecting the colony from the inherently noisy 43

signal that results from limited and uncertain interactions [17]. The integrator model 44

has been used to study regulation of the outgoing foraging rate on short timescales [15]. 45

Colonies regulate their foraging activity on longer timescales, such as from hour to 46

hour, from day to day [18,19], and across years [5, 18,20,21] as colonies grow older and 47

larger. Over timescales from tens of minutes to hours, ants that start as available 48

foragers inside the nest leave the nest to forage, find seeds, return to the nest, and 49

become available foragers again. Thus, the activation of available foragers inside the 50

nest through interactions with incoming foragers is connected in a “closed loop” to the 51

foraging activity outside the nest through feedback of the ants themselves: the stream 52

of foraging ants out of the nest is the input to the foraging activity, and the output of 53

the foraging activity is the stream of foraging ants into the nest (see Fig. 1). However, 54

little is known about the role of feedback in the regulation of foraging activity at the 55

timescale of hours and as foraging activity is adjusted to changing environmental 56

conditions. By mid-day in the summer, temperature is high and humidity is low (Fig. 57
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S1). Foraging activity increases from its start in early morning, often levels off and 58

declines to no activity during the heat of the afternoon.

OPEN LOOP 

CLOSED LOOP 

Foraging

Interactions
Outgoing ForagersIncoming Foragers

NEST  

Response of

available foragers

+1i
int+2i

int i
int j

outt 1−j
outt

)t(s )t(outλ)t(inλ

Fig 1. Diagram of the closed-loop model with two components inside the nest and one
component outside the nest. The “Interactions” component maps the sequence of
incoming foragers λin to a stimulus s to represent the result of interactions of available
foragers inside the nest entrance chamber with returning food-bearing foragers. The
mapping uses a leaky integrator that increases by a fixed magnitude with every
incoming forager and has a natural decay rate. The “Response of available foragers”
component maps s to the sequence of outgoing foragers λout using the nonlinear FN
oscillator dynamics. Each oscillation represents an ant leaving the nest to forage. The
“Foraging” component maps λout to λin using a random time delay with an associated
probability distribution to represent the time an ant spends outside the nest foraging.

59

How a colony regulates foraging in response to environmental conditions, especially 60

temperature and humidity, is ecologically important. Colonies live for 20-30 years. At 61

about five years of age a colony begins to produce reproductives that mate and found 62

offspring colonies [22]. Colonies differ in the regulation of foraging and these differences 63

persist from year to year, including variation in how often colonies are active [18] and in 64

how they respond to changing temperature and humidity conditions [5, 19,21]. How a 65

colony adjusts foraging activity to low humidity and high temperature is crucial for 66

reproductive success: colonies that conserve water are more likely to have offspring 67

colonies [5]. Here we model how colonies adjust to environmental conditions, to provide 68

insight into the ecologically important variation among colonies that underlies the 69

evolution of collective behavior. 70

Previous modeling work has elucidated how the outgoing foraging rate depends on 71

the incoming foraging rate [15], and how individuals assess interaction rate [13]. But we 72

do not know how these are combined to adjust foraging activity across minutes to 73

hours-long timescales, how the adjustments may depend on environmental conditions, or 74

how they may differ from colony to colony. 75

Here we propose a closed-loop model (Fig. 1) to address these questions by 76

examining how a returning forager’s assessment of external conditions provides 77

additional feedback to the colony and in turn adjusts the colony foraging rate. Our 78

model is motivated in part by the frequent use of excitability dynamics to model 79

neurons, and the parallels between ant-to-ant interactions that drive foraging and 80
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neuron-to-neuron interactions that underlie the cognitive abilities of 81

organisms [13,23–26]. Using well-studied excitability dynamics of a weakly interacting 82

collective, we introduce feedback at multiple time-scales and explore general questions 83

concerning stability and responsiveness to a changing environment. 84

Drawing on theory and tools from dynamical and control systems, we study how the 85

incoming and outgoing foraging rates adjust with time at timescales much longer than 86

previously considered [13,15]. We ask how the rates can stably approach a common 87

value even in the presence of disturbance, how adjustments and stability of rates differ 88

under various foraging conditions, and how sensitivities to parameters may explain 89

differences in foraging behavior across colonies. 90

Methods 91

Field Observations of Foraging Activity 92

We performed field observations of red harvester ant colonies at the site of a long term 93

study near Rodeo, New Mexico, USA. Observations were made in August and 94

September of 2015, 2016, and 2017. Foragers leave the nest in streams or trails that can 95

extend up to 20 m from the nest [27]. Each forager leaves the trail to search for seeds, 96

and once it finds food, it returns to the nest [6, 27]. Data on foraging rates were 97

recorded from the beginning of the foraging period in early morning until around noon. 98

We recorded the times at which foragers crossed a line perpendicular to the trail at a 99

distance of about 1 m from the nest entrance, as in previous work (e.g. [15, 21,28]). The 100

timestamps for each forager crossing the line were recorded either manually in real-time 101

with the assistance of an electronic tablet and custom software, or from video 102

recordings, processed with computer vision software (AnTracks Computer Vision 103

Systems, Mountain View, CA). In some cases we used both tablet and video to ensure 104

that both data collection methods provided similar results. 105

We denote by tini , i ∈ N, the sequence of times incoming foragers cross the line and 106

by toutj , j ∈ N, the sequence of times outgoing foragers cross the line. Sequences of 107

incoming and outgoing foragers are represented as sums of infinitesimally narrow, 108

idealized spikes in the form of Dirac-delta functions: 109

λin(t) =
n∑

i=1

δ(t− tini ), λout(t) =
m∑
j=1

δ(t− toutj ), (1)

where n and m are the indices of the last incoming and outgoing forager, respectively, 110

before time t. We estimated the instantaneous incoming and outgoing foraging rates, in 111

units of ants/sec, using a sliding window filter with window ∆t = 300 sec: 112

rin(t) =

∫ ∞
−∞

w(τ)λin(t− τ) dτ, rout(t) =

∫ ∞
−∞

w(τ)λout(t− τ) dτ (2)

where 113

w(t) =

{
1/∆t if −∆t/2 ≤ t ≤ ∆t/2

0 otherwise.
(3)

Model 114

We propose a low-dimensional model with a small number of parameters that has 115

sufficiently rich dynamics to capture the range of observed foraging behavior across 116

minute to hour-long timescales and yet retains tractability for analysis. We use the 117
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model to systematically investigate the effects of model parameters and environmental 118

conditions, notably temperature and humidity, on foraging rates. 119

Our model has three components as shown in Fig. 1: 1) the Interactions component 120

models the accumulation of evidence by available foragers inside the nest entrance 121

chamber from their interactions with incoming foragers carrying food, 2) the Response 122

of available foragers component models the activation of available foragers to leave the 123

nest to forage in response to accumulated evidence, and 3) the Foraging component 124

models the collecting of seeds outside the nest by active foragers. We assume the total 125

number of foragers N (active foragers outside the nest plus available foragers inside the 126

nest) remains constant throughout the foraging day, although this assumption can be 127

relaxed in a generalization of the model. 128

Interactions 129

We use leaky-integrator dynamics to model the stimuli s that the group of available 130

foragers inside the nest entrance chamber experience from their interactions with 131

returning food-bearing foragers: 132

ds

dt
= − s

τ
+ kλin. (4)

The continuous-time signal s increases by a fixed amount k with every incoming forager 133

in λin and decays exponentially back to zero with a time constant of τ . 134

The leaky-integrator dynamics work as an evidence accumulator that gradually 135

forgets past evidence. These dynamics have been used to model chemical synapses [29] 136

and have been used as the integrate-and-fire neuronal model when there is no reset 137

boundary [30–32]. 138

Response of Available Foragers 139

We first consider a homogeneous colony and model the scalar activation state v of 140

available foragers in the nest entrance chamber as the fast timescale variable in the 141

FitzHugh-Nagumo (FN) equations [33,34] often used to model neuronal excitability: 142

ε1ε2
dv

dt
= v − v3/3− cu− 0.35 + s (5)

143

ε1
du

dt
= v − cu. (6)

The FN equations describe nonlinear oscillator dynamics with the stimulus s of Eq. (4) 144

as the input. Oscillations result from a balance between positive feedback in v (first 145

term on the right of Eq. (5)) and negative feedback in the slow timescale variable u. We 146

refer to the parameter c, which scales the negative feedback and modulates the frequency 147

of oscillations, as the volatility of the available foragers. The parameter ε2 defines the 148

time separation between the dynamics of the fast and slow states, and the parameter ε1 149

defines the time separation between the FN dynamics and the stimulus dynamics (4). 150

The constant 0.35 is chosen so that the threshold input required to elicit oscillations is 151

lower than k, the magnitude by which s increases with every incoming forager. 152

The activation dynamics (Eqs. (5) and (6)) of the available foragers yield three 153

qualitatively distinct dynamical regimes, determined by the magnitude of input s. In 154

the first regime, the system remains in a resting state for low values of s. This reflects 155

the situation in which there are In the second regime, which takes place when 156

s ≥ b1 > 0, the system is in an excited state with relaxation oscillations in v. This 157

reflects the situation in which incoming foragers are sufficiently frequent to stimulate 158

the available foragers. The transition from resting to oscillatory behavior as s increases 159
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corresponds to a Hopf bifurcation and b1 is the corresponding bifurcation point. The 160

oscillations appear as short-lived spikes, and we define each spike for which v increases 161

above 0.75 as a forager leaving the nest. The shortest possible time between foragers 162

leaving the nest is determined by the volatility c (see SI Appendix 1). 163

In the third regime, corresponding to very large values of s ≥ b2 > b1, there are no 164

oscillations and the system is fixed in a saturation state. The transition from oscillatory 165

to saturated regime is a second Hopf bifurcation with bifurcation point b2. We associate 166

the saturated state of the FN model with conditions under which high instantaneous 167

incoming rates lead to a decrease in the instantaneous outgoing rate. These conditions 168

include 1) overcrowding effects, which reduce the percentage of interactions experienced 169

by each available forager relative to the incoming foraging rate, 2) the limited size of the 170

nest entrance tunnel, which constrains how many foragers can enter and leave the nest 171

in a short amount of time, and 3) the difference in timescales between the high outgoing 172

rates, in seconds, and the time required, in minutes, for foragers to move from the 173

deeper chambers of the nest up to the entrance chamber [12,16]. 174

Foraging 175

We treat the process of foraging for seeds outside the nest as a random time delay. We 176

model the interval between the time that a forager leaves the nest and the time when it 177

returns with food as a chi-square random variable X, with parameter D representing 178

the mean foraging time in minutes. The distribution of foraging times F (X,D) is 179

F (X,D) = 1− Γ(D/2, X/2)

Γ(X/2)
, (7)

where Γ(X) and Γ(a,X) are the Gamma function and the upper incomplete Gamma 180

function, respectively. This right-skewed distribution is based on field observations of 181

the duration of foraging trips, measured as the total time elapsed from when a forager 182

leaves the nest to when it returns with food [6]. For D = 2, F (X, 2) = 1− e−X/2. 183

Our model for the foraging process is equivalent to a queueing system [35] in which 184

arriving customers, represented by outgoing foragers λout, that find a seed after a given 185

random service time. The number of servers in the foraging process queue is assumed to 186

be infinite because foragers do not need to wait before they start looking for a seed (i.e., 187

before receiving the service). 188

Proposed Mechanism for Response to Environmental Conditions 189

We propose a mechanism for colony response to environmental conditions, illustrated in 190

Fig. 2, in which the volatility of a forager changes after it has been on a foraging trip 191

and exposed to the conditions outside the nest. The proposed mechanism is based on 192

measurements showing that the temperature and humidity inside the nest remain 193

constant throughout the foraging activity period (see Fig. S1). This means that 194

foragers have no information about conditions outside until they leave the nest. 195

As a first approximation, the model changes the volatility of each forager after it 196

leaves the nest to forage for the first time. Available foragers that have not yet been 197

outside the nest, and are therefore uninformed about the current temperature and 198

humidity outside the nest, have volatility cu. Available foragers that have been outside 199

at least once to forage, and are therefore informed about the current temperature and 200

humidity, have volatility ci. The values of cu and ci can be any positive real numbers, 201

and these values, which represent an average uninformed and an average informed 202

available forager in the colony, respectively, can vary across colonies and across days. 203

Further, ci is introduced explicitly to depend on conditions such as humidity and 204

temperature outside the nest. For example, the hotter and drier it is outside, the smaller 205
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Fig 2. Block diagram of proposed mechanism for response of colony to environmental
conditions. The available foragers inside the nest comprise two sets: fu corresponds to
those that have not yet left the nest and so are uninformed about the conditions outside
the nest, and fi corresponds to those informed during a previous foraging trip. The
response of each set to s is represented by a different FN model, distinguished by the
volatility parameter cu for the uninformed and ci for the informed. The outputs of these
two oscillator dynamics are weighted probabilistically using thinning to get an outgoing
stream of foragers λout(t).

the ci, and the foragers become less volatile and thus less likely to make subsequent 206

foraging trips. The cooler and more humid it is outside, the larger the ci, and the 207

foragers become more volatile and thus more likely to make subsequent foraging trips. 208

Let fu be the set of nu uninformed available foragers that have not yet left the nest 209

during the day and thus have no information about the environmental conditions and fi 210

the set of ni informed available foragers that have been exposed to the environmental 211

conditions during one or more previous foraging trips that day. We assume that once a 212

forager becomes informed, it remains informed for the rest of the foraging day. The ants 213

in fu have volatility cu and the ants in fi have volatility ci. Let xu = nu/(nu + ni) and 214

xi = ni/(nu + ni) be the fraction of available foragers that are uninformed and 215

informed, respectively, where we assume that nu + ni > 0. Then xu + xi = 1. 216

Initially, xi = 0 and the colony is completely uninformed (xu = 1). As foragers 217

return to the nest after their first trip, xi begins to increase and can continue to 218

increase until xi = 1 (xu = 0), when all N foragers have been outside the nest at least 219

once. How many minutes (or hours) it takes for xi to transition from 0 to 1 depends on 220

N , D, and the changing foraging rates. To model the changing foraging rates, we use 221

two sets of FN oscillator dynamics: one to represent the response to s of the uninformed 222

ants in fu with volatility cu and a second to represent the response to s of informed 223

ants in fi with volatility ci. Let the corresponding sequences of output from the two 224

oscillator dynamics be λfi and λfu , respectively. We define the sequence of outgoing 225

foragers λout as a probabilistic sum of λi and λu, using a method called thinning [36]: 226

Every event in λi is kept in λout with probability xi, and every event in λu is kept in 227

λout with probability 1− xi. When xi = 0 the foraging rate is determined by cu, and 228

when xi = 1 the foraging rate is determined by ci. When 0 < xi < 1, the effective c will 229
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be a nonlinear combination of cu and ci. The higher the effective c, the higher the 230

outgoing foraging rate. 231

Here foragers adjust their volatility only once after their first foraging trip outside. 232

We find that even with this adjustment at first exposure, the model provides the range 233

of foraging behavior observed. However, the model can be generalized and predictions 234

refined by allowing for adjustments on subsequent foraging trips, and by allowing for 235

other kinds of adjustments. For example, more than two sets of available foragers with 236

different values of volatility can be used to model effects of repeated exposures to the 237

environment, changing conditions on successive trips, or decay of information about the 238

external environment over time. A decrease in N (total number of foragers outside and 239

available inside the nest) can be used to model active foragers that return to the deeper 240

nest after exposure to hot and dry outside conditions [12]. 241

Results 242

Observations of Regulation of Foraging in Red Harvester Ants 243

Observations of instantaneous foraging rates computed from the 2015, 2016, and 2017 244

data show that across colonies and days, the incoming and outgoing foraging rates rin(t) 245

and rout(t), where t is time of day, undergo a transient early in the foraging period 246

followed by an equilibration to a near-equal value, i.e., rin(t) ≈ rout(t), during the 247

middle part of the foraging period. 248

The equilibration of the incoming and outgoing foraging rates to a near-equal value 249

lasts for intervals from tens of minutes to several hours, and so we refer to it as a quasi 250

steady-state (QSS). We show the data for two colonies in Fig. 3. We plot the incoming 251

rate rin (blue) and the outgoing rate rout (red) computed from the data for Colony 1357 252

(Fig. 3A) and Colony 1317 (Fig. 3B) versus time of day on August 20, 2016. For Colony 253

1357, the rates equilibrate to a near-equal value early in the day, i.e., between 8:00 and 254

8:30 am. This is followed by a couple of dynamic adjustments, but then by 9:30 am 255

until just before noon, when all the ants returned to the nest, the incoming and 256

outgoing rates were very closely equilibrated at a QSS rate of around 0.25 ants/sec. 257

Colony 1317 also was observed to reach a QSS. Its incoming and outgoing rates 258

equilibrate to a near equal value shortly after 10:00 am, which lasts until just before 259

noon, when all the ants return to the nest. Colonies vary greatly in foraging rate [21], 260

and that was true of these two as well. For Colony 1317, the QSS rate is approximately 261

0.65 ants/sec, more than twice the QSS rate for Colony 1357 on the same day. 262

We show data for two other colonies in Fig. 4. Fig. 4A and C show rin (blue) and 263

rout (red) versus time of day for a single colony, Colony 664, on two different days: 264

August 27, 2015 and August 31, 2015. In each plot, the rates can be seen to come to a 265

near-equal value sometime after 10:30 am. We plot in green the difference between 266

number of incoming and number of outgoing foragers versus the time of day. The rates 267

are at a QSS when the green curve is approximately horizontal. These data show, as 268

has been observed previously [37], that a given colony varies in foraging rate from day 269

to day, demonstrating that foraging is regulated by processes other than the number of 270

available foragers. From Fig. 4A and C it can be seen that Colony 664 reaches a QSS 271

rate on August 27, 2015 that is more than twice the QSS rate it reaches on August 27, 272

2015. We note that August 27, 2015 was slightly cooler and more humid than August 273

31, 2015. On August 27 the average temperature and humidity were 25.3 C and 58% 274

while on August 31 they were 26.8 C and 53%. Moreover, at 11am on August 27, they 275

were 27.5 C and 52% while at 11am on August 31, they were 28.8 C and 45%. Fig. 4E 276

shows the data for Colony 863 on September 1, 2015, which were recorded manually. No 277

QSS is observed, i.e., the ants go out but then return to the nest by 11:00 am without 278
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Fig 3. Plots of incoming foraging rate rin (blue) and outgoing foraging rate rout (red)
versus time of day on August 20, 2016 for A) Colony 1357 and B) Colony 1317. The
quasi steady-state (QSS) where incoming and outgoing rates equilibrate to a near-equal
value can be observed for both colonies. The QSS rate for Colony 1317 is more than
twice as great as it is for Colony 1357.

maintaining a steady-state of foragers outside of the nest. Colony 863 did reach a QSS 279

at a reasonably high foraging rate at 11:00 am on September 5, 2015 (see Fig. S2A). 280

These observations are consistent with measurements showing that September 1, 2015 281

was much hotter and drier than September 5, 2015. On September 1 the average 282

temperature and humidity were 25.2 C and 53% while on September 5 they were 22.6 C 283

and 77%. See Table S1 of the SI for more details. 284

Fig. 3 and Fig. 4 are representative of observations that suggest the equilibration of 285

incoming and outgoing foraging rates to a near-equal rate to be an important feature in 286

the regulation of foraging in red harvester ant colonies. Further, the equilibrated rate, 287

and the possibility of early cessation of foraging, depend on factors that differ among 288

colonies (Fig. 3) and from day to day (Fig. 4). We examine the transient in foraging 289

rates further in Fig. 4. Early in the foraging day, both rin and rout increase rapidly 290

with rout increasing more rapidly than rin. This leads to a rapid increase in the number 291

of active foragers outside the nest. The rapid increase in both rates is followed by a 292

decrease in rout to the equilibrated near-equal value of the QSS (Fig. 4A and C) or to 293

an early return of the ants to the nest (Fig. 4E). 294

Input-output plots show the relation between incoming and outgoing foraging rates 295

Fig. 4B, D, and F. These figures show the same data as Fig. 4A, C, and E, respectively, 296

but plot rout(t) versus rin(t) with time of day t in hours indicated by the color scale. 297

The transient in rates during the early part of the foraging day appear as curved 298

trajectories above the diagonal, because rout(t) is typically higher than rin(t). In 299

Fig. 4B and D, the curve rises and then falls to the QSS value where the trajectory then 300

equilibrates around a point on the diagonal corresponding to equal incoming and 301

outgoing rates. This rise and fall of the curve in the input-output plot is typical, even 302

when the trajectory returns to the origin as in the case of Fig. 4F. 303

The data shown in Figs 3 and 4 as well as in Fig. S2 are representative of the data 304

collected in 2015, 2016, and 2017. Temperature and humidity for these data sets are 305

given in Table S1 of the SI. Fig. S2B shows another example of a very early cessation of 306

foraging. Fig. S2C and D show two different examples of long transients. Fig. S2E and 307

F show two examples of a burst in the outgoing foraging rate at the start of the foraging 308

day. See SI Appendix 2 for details. 309
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Fig 4. Plots of foraging rate data. Time series plots show incoming foraging rate rin
(blue), outgoing foraging rate rout (red), and difference between the number of incoming
and outgoing foragers (green) versus time of day. Input-output plots show rout(t) versus
rin(t) with the color scale representing time of day t. A) and B) Colony 664 on August
27, 2015. C) and D) Colony 664 on August 31, 2015. E) and F) Colony 863 on
September 1, 2015.

Model Dynamics 310

Foraging Dynamics Inside the Nest 311

Given a sequence of incoming ants λin, our open-loop model of foraging dynamics inside 312

the nest (Fig. 1) predicts a corresponding sequence of outgoing ants λout. We find an 313

analytic approximation for the mapping from mean incoming foraging rate r̄in to mean 314

outgoing foraging rate r̄out, parametrized by volatility c. To do so, we assume λin is a 315

Poisson process with (constant) mean incoming rate r̄in; this is justified for observations 316

of incoming and outgoing sequences of foragers for short periods of time [15]. 317

We assign model parameter values to be k = 0.3, τ = 0.41, ε1 = 0.2, and ε2 = 0.05, 318

which allow for rich dynamical behavior. While the qualitative behavior is unchanged 319

for different values of ε2 � 1, very high or low values of k and/or τ yield dynamics in 320
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which the stimulus s is either too low or too high to produce oscillations. So the values 321

for k and τ are selected to balance their opposing effects on s. 322

For very low r̄in, r̄out is low because s is low and the FN system remains in the 323

resting state with occasional short-lasting periods of oscillatory behavior (Fig. S3). For 324

very high r̄in, r̄out is also low because s is high and the FN system remains most of the 325

time in the saturated state. In contrast, r̄out is high for r̄in that yields an s that keeps 326

the FN system inside the oscillating region. In the oscillating region, r̄out is equal to the 327

frequency of the oscillations, which is inversely proportional to the volatility c as we 328

show in SI Appendix 1. The oscillating region is given by the range of s between the FN 329

bifurcation points b1 and b2, computed as b1,2 = 0.35∓ 1
3 (1− cε)3/2. As the volatility c 330

increases, the size of the oscillating region decreases (Fig S4). 331

To get an expression for the natural frequency of the oscillations in the FN, we 332

compute an asymptotic approximation for its period TLC(s, c) as ε2 goes to zero, see SI 333

Appendix 1 and Fig. S5. Under the assumption of a Poisson incoming rate, the process 334

s is ergodic (see SI Appendix 3). Thus, over sufficiently long periods of time, suitable 335

time statistics converge to ensemble statistics, allowing us to approximate the fraction 336

of time that s spends in the oscillating region using p(s, r̄in), the probability density 337

function of s at steady-state. We compute p(s, r̄in) in SI Appendix 4 as a piecewise 338

function where the piecewise elements satisfy recurrence equations and depend on k and 339

τ . From this we can construct an analytical expression for r̄out as a function of both r̄in 340

and c (see SI Appendix 3): 341

r̄out =

∫ b2(c)

b1(c)

p(s, r̄in)

TLC(s, c)
ds. (8)

In Fig. 5A we plot r̄out versus r̄in using Eq. (8) for different values of c. The 342

resulting open-loop input-output curves, which we call nest I/O curves show that the 343

analytic mapping from r̄in to r̄out depends nonlinearly on c. The increasing steepness of 344

the curve at low r̄in becomes more pronounced for higher c because the frequency of 345

oscillations is proportional to c. Similarly, the decreasing steepness of the curves for 346

high r̄in also becomes more pronounced for higher c. This is because as c increases b2 347

decreases, causing the FN to saturate at lower r̄in values. The maximum value of r̄out 348

takes place at the r̄in that yields an s that keeps the FN system inside the oscillating 349

region. Because of this, the maximum r̄out must be less than or equal to the natural 350

frequency of the oscillations at the given value of c. 351
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Fig 5. A) Analytical approximations for the nest I/O curves. B) Simulated nest I/O
curves for different values of c. Each pair of error bars correspond to 10 simulation
trials, each 5 minutes long, with a constant incoming rate r̄in and constant volatility c.
The dashed black line represents points at which r̄in = r̄out.

In Fig. 5B we show the nest I/O curves obtained by simulating the open-loop system 352
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for different constant Poisson incoming rates at a fixed volatility. We measured the 353

resulting mean outgoing rate in each case. We set λin to a five-minutes-long Poisson 354

process, and, in each of 10 simulation trials, we recorded the output λout. We computed 355

the mean outgoing foraging rate r̄out by dividing the total number of outgoing foragers 356

in the trial by the 300 seconds that the trial lasted. We used the average of the 10 trials 357

as a point estimate for r̄out as a function of r̄in given the volatility parameter c. We 358

constructed nest I/O curves by repeating this point estimation process for twelve 359

different values of r̄in ∈ [0.1, 5] while keeping c constant. 360

The simulated I/O curves in Fig. 5B are in good agreement with the analytical I/O 361

curves in Fig. 5A. The fact that there is good agreement between the simulation curves 362

computed from short 5-minute-long input sequences and the analytical curves derived 363

under the assumption of an infinite time period suggest that our analytical 364

approximation is also valid across short timescales. We make use of this in our analysis 365

of the closed-loop model dynamics. 366

The points at which the nest I/O curves in Fig. 5 intersect the black dashed diagonal 367

line correspond to r̄in = r̄out, which are predictive of the (quasi) steady-state solutions 368

at an equal incoming and outgoing foraging rate observed in the data. Fig. 5 suggests 369

that for sufficiently high values of c, the equal foraging rate is positive and bounded 370

away from zero, capturing a nontrivial steady-state foraging rate as in Fig. 3 and 371

Fig. 4B and D. However, Fig. 5 suggests that for low values of c, the equal foraging rate 372

is nearly zero, capturing a steady-state with negligible foraging as in Fig. 4F. 373

To understand first consider that, because k > b1, every incoming forager elicits at 374

least one oscillation in the FN output and so at low r̄in, r̄out is equal to or larger than 375

r̄in. At high c values, the frequency of oscillations in the FN is high and a single 376

incoming forager will elicit more than one oscillation, resulting in nest I/O curves with 377

an initial slope higher than one and an intersection with the diagonal line at a single 378

point away from the origin. In contrast, for low c values, a single incoming forager will 379

elicit exactly one oscillation, resulting in nest I/O curves with an initial slope of one, 380

i.e., the curve lies on the diagonal line close to the origin and intersects nowhere else. 381

We can approximate the value of c above which a single incoming forager results in 382

more than one outgoing forager, guaranteeing an isolated nontrivial intersection of the 383

nest I/O curve with the diagonal line. For b1 < k < b2, it can be shown that the 384

number of oscillations caused by a single incoming forager is at most (−τ log b1/k)/TLC . 385

We numerically solved this expression for c using the asymptotic expansion of TLC 386

described in SI Appendix 1 and found that for c > c∗ = 0.5287 the FN oscillates at 387

least two times per every incoming forager. Therefore, c > c∗ is a sufficient condition for 388

the nest I/O curve to lie above the diagonal line at low r̄in and to intersect the diagonal 389

line at an isolated point, corresponding to a nontrivial steady-state foraging rate. 390

Foraging Dynamics Outside the Nest 391

Given a sequence of outgoing foragers λout with rate rout, the foraging dynamics outside 392

the nest predicts a corresponding delayed sequence of incoming foragers λin with rate 393

rin. We use results from queueing theory to find analytic expressions relating rout to rin 394

and the expected number of active foragers outside the nest. 395

To facilitate the analysis we assume that λout is a non-homogeneous Poisson process 396

(i.e., a Poisson process with time-varying rate) [15]. Applying known results for queues 397

with a non-homogeneous Poisson distribution of arrival times [38] we obtain the 398

following three results: 399

1. Let Q(t) represent the number of active foragers outside the nest, then, for each 400
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time t′ = t/60 where t is seconds, Q(t′) has a Poisson distribution with mean 401

E[Q(t′)] =

∫ ∞
0

rout(t
′ − ξ)(1− F (ξ,D)) dξ. (9)

2. The output process describing how foragers leave the queueing system, that is, the 402

process λin describing how foragers return to the nest, is a non-homogeneous 403

Poisson process with mean 404

E[λin(t)] =

∫ t

0

rin(ξ) dξ. (10)

3. rin is related to rout by 405

rin(t′) =

∫ ∞
0

rout(t
′ − ξ) dF (ξ,D) = E[rout(t

′ −X)]. (11)

Eqs. (7) and (9) show how the active number of foragers outside the nest depends on 406

the history of outgoing foragers. Eq. (10) shows that if the outgoing foraging process is 407

a non-homogeneous Poisson process, then the incoming foraging process is also a 408

non-homogeneous Poisson process. And Eq. (11) shows how the incoming foraging rate 409

rin depends on the history of the outgoing foraging rate rout. 410

At steady-state, the outgoing foraging rate is constant, i.e., rout(t) = r∗, and 411

Eq. (11) reduces to rin = rout = r∗, i.e., the incoming foraging rate is also constant and 412

equal to the outgoing foraging rate. Moreover, Eq. (9) reduces to 413

EQ = routE[X] = r∗D, (12)

i.e., the mean number of active foragers outside the nest is given by the steady-state 414

foraging rate r∗ multiplied by the average foraging trip time D. 415

The relaxation time for the queue output process to reach steady-state can be 416

analyzed by considering the step-function arrival rate rout(t
′) = 0 for t′ < 0 and 417

rout(t
′) = r∗ for t′ ≥ 0. Then, from Eq. (11), rin(t′) = r∗

∫ t′

0
dF (ξ,D) = r∗F (t′, D) for 418

t′ ≥ 0. The difference between the queue input and output rates as a function of time is 419

||rout(t′)− rin(t′)|| = r∗
Γ(D/2, t′/2)

Γ(t′/2)
(13)

for t′ ≥ 0. For D = 2, the right-hand side of Eq. (13) simplifies to r∗e−t
′/2 and the 420

foraging queue converges exponentially in time towards a steady-state where the input 421

and output rates are equal. 422

Closed-loop Model Dynamics 423

In our model, outgoing foragers from the nest go out to forage, return to the nest as 424

incoming foragers after finding a seed, and then go back out to forage again if 425

sufficiently excited (Fig. 1). Here we show that adding the feedback connection from 426

outgoing to incoming foragers to the open-loop dynamics in the nest yields long-term 427

dynamics with a stable and attracting fixed-point where the incoming and outgoing 428

rates are equal and robust to small perturbations in rates. When the volatility c is 429

above c∗, the critical value studied above, the steady-state foraging rate is nontrivial, 430

whereas if c is well below c∗, the steady-state foraging rate is negligible. 431

For the dynamics inside the nest, we have shown that c parametrizes a family of nest 432

I/O curves, described by Eq. (8), which map r̄in to r̄out. For c� c∗, the nest I/O curve 433
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always has slope less than or equal to 1, such that it lies on or below the diagonal line 434

where rin = rout. For c > c∗, the nest I/O curve has initial slope greater than 1 and 435

then intersects the diagonal line rin = rout at a nontrivial point. For the dynamics 436

outside the nest, we have shown that the mapping from rout(t) to rin(t) is described by 437

a time delay given by Eq. (11). 438

We study the closed-loop model dynamics for timescales ranging from tens of 439

minutes to hours by investigating the behavior of a discrete iterated mapping 440

rn = Gc(rn−1) where rn represents the mean foraging rate at time step n, and where 441

the time in between steps is given by the time delay from rout(t) to rin(t) introduced by 442

the foraging outside the nest. The mapping Gc : R≥0 → R≥0 is defined by the 443

c-dependent nest I/O curves shown in Fig. 5. Gc describes the process by which the 444

incoming foraging rate becomes the outgoing foraging rate through the dynamics of 445

forager activation inside the nest, which then becomes the incoming foraging rate at a 446

later time. 447

When Gc lies below (above) the diagonal line where rin = rout, the average number 448

of outgoing foragers per every incoming forager is less (greater) than one, and iterations 449

of Gc decrease (increase) r (Fig. 6). For c > c∗, Gc has one unstable fixed point at the 450

origin and one attractive stable fixed point where rin = rout. For c� c∗, Gc has a 451

small interval of fixed points close to the origin. Thus, the closed-loop model dynamics 452

evolve in time towards either a finite steady-state foraging rate rin = rout = r∗ (Fig. 6, 453

c = 2 and c = 5) or to negligible foraging (Fig. 6, c = 0.1). 454
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Fig 6. Model dynamics illustrating response of foraging rates to environmental
conditions. Red, purple, and blue curves show closed-loop trajectories of rout(t) versus
rin(t) for fixed volatility c equal to 5.0, 2.0, and 0.1, respectively. Initially, all available
foragers are uninformed about the environment and have volatility cu = 5.0. The darker
gray dashed curve shows the dynamics in the case when foragers exposed to the
environment reduce their volatility to ci = 2.0, as might happen on a moderately hot
and dry day. The lighter gray dashed curve shows the dynamics in the case when
foragers exposed to the environment reduce their volatility to ci = 0.1, as might happen
on a very hot and dry day.

The robustness of the steady-state rates to small perturbations in λin results from 455

the balance between positive feedback from incoming ants activating a larger number of 456

outgoing ants, and negative feedback from saturation effects. The magnitude of the 457

steady-state and the variance around it are positively correlated to the mean and 458

variance of s, both of which increase with c for fixed rin (see SI Appendix 3). The 459

magnitude depends on c, k, and τ , given by Eq. (8), which can be numerically solved to 460

find how the QSS foraging rate changes with c (Fig. 7A). 461
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Fig 7. A. Analytical magnitude of the quasi steady-state (QSS) foraging rate obtained
from numerically solving Eq. (8). B. Closed-loop model simulations for 7 different values
of volatility c. The initial sequence of incoming foragers for all simulations was set equal
to the first 11 minutes of the initial sequence of incoming foragers from Colony 859 on
August 20, 2017 which has a mean incoming rate of 0.01 ants/sec. The total time for all
simulations was 3 hours. The mean foraging time was set to 10 minutes (D = 10).

As shown in Fig. 7B, simulations of the closed-loop model validate the predictions of 462

the iterated mapping model. We initialize the foraging dynamics by setting λin from 463

t = 0 to t = 60(D + 1) to be equal to the first D + 1 minutes of the initial sequence of 464

incoming foragers for Colony 859 on August 20, 2017, which has the very low mean 465

incoming rate of 0.01 ants/sec during the first 15 minutes (panel C, Fig. S2). 466

Closed-loop Dynamics with Response to Environmental Conditions 467

For Poisson sequences of incoming foragers, the mean outgoing foraging rate of the 468

colony is given as the weighted sum of the outputs of the uninformed and informed: 469

r̄out = xu

∫ b2(cu)

b1(cu)

p(s, r̄in)

TLC(s, cu)
ds+ xi

∫ b2(ci)

b1(ci)

p(s, r̄in)

TLC(s, ci)
ds. (14)

The closed-loop dynamics can still be studied as an iterated mapping, but we allow 470

the mapping to evolve in time, Gc = Gc(t), from an initial mapping Gc(t0) = Gcu with 471

volatility cu to a final mapping Gc(∞) = Gci with volatility ci. We illustrate in Fig. 6) 472

for cu = 5.0 and ci = 2.0 and for cu = 5.0 and ci = 0.1. The dynamics first evolve along 473

Gcu (red), but as xi increases, the dynamics shift increasingly to Gci , and the trajectory 474

on the plot of rout(t) versus rin(t) moves towards the ci curve. In the case ci = 2.0, the 475

trajectory converges to the fixed point associated with c = 2.0 (darker gray dashed 476

curve). In the case ci = 0.1, the trajectory converges to the only fixed point of Gci , 477

which is the origin, leading to a cessation of foraging (lighter gray dashed curve). 478

Fig. 8 shows the resulting time-series and input-output plots for three different 479

simulations of the model with the mechanism for response to environmental conditions. 480

The simulations are distinguished by the set of four parameters: cu, ci, N , and D. The 481

simulated trajectories qualitatively resemble the trajectories from the field observations 482

shown in Fig. 4. We set the initial sequence of incoming foragers as in Fig. 7B. 483

Fig. 8A and B show the results for cu = 3, ci = 0.9, N = 500, and D = 5. In this 484

case, cu is much higher than ci, leading to a system with an overshoot behavior in which 485

the outgoing foraging rate increases more rapidly than the incoming rate and then 486

decreases before settling around a steady-state where the rates are approximately equal 487
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Fig 8. Simulations of the closed-loop model with the adaptation mechanism. Plots are
of the same form as in Fig. 4, and qualitative comparisons can be made between A and
B here and Fig. 4A and B, between C and D here and Fig. 4C and D, and between E
and F here and Fig. 4E and F. A) and B) cu = 3, ci = 0.9, N = 500, D = 5. C) and D)
cu = 3, ci = 0.75, N = 200, D = 5. E) and F) cu = 5, ci = 0.02, N = 600, D = 15.

to 0.7 ants/sec. This is qualitatively similar to the observations of Colony 664 on August 488

27, 2015 of Fig. 4A and B. The net number of foragers outside the nest at steady-state 489

fluctuates with low variability at around 230, close to the prediction given by Eq. (12). 490

Fig. 8C and D show the results for cu = 3, ci = 0.75, N = 200, and D = 5. This case 491

simulates the same colony as in Fig. 8A and B but on a hotter and drier day, when the 492

total number of ants N that engage in foraging may be reduced and the volatility of the 493

informed ants ci may be reduced. The overshoot behavior is followed by the foraging 494

rates settling around a steady-state of about 0.25 ants/sec. This is qualitatively similar 495

to the observations of Colony 664 on August 31, 2015 of Fig. 4C and D. 496

Fig. 8E and F show the simulation results for cu = 5, ci = 0.02, N = 600, D = 15. 497

In this case, ci is close to zero, leading to a colony that goes out to forage but then 498

returns to the nest without sustained foraging. This is qualitatively similar to the 499

observations of Colony 664 on August 27, 2015 of Fig. 4E and F. 500

The time it takes for the colony to transition from fully uninformed to fully informed 501
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is dictated by cu, ci, D, N , and the initial condition for rin and rout. For low values of 502

cu, the outgoing foraging rate at the start of the day is low and the corresponding rate 503

at which foragers become informed is low too. If ci is high, the colony will spend a long 504

time at a low rate before the number of informed foragers is sufficiently high to increase 505

the foraging rates. We show a simulation of high ci in Fig. S6A, which can be compared 506

with the data from Colony 859 on August 20, 2017, plotted in Fig. S2C. 507

Low values of ci can cause long transients. Once a critical number of foragers has 508

become informed, it will be difficult for the remaining foragers to become informed since 509

the colony behaves as an informed colony with low volatility. High D and N can also 510

result in long transients because the time it takes for the colony to transition into a fully 511

informed state depends on how many available foragers there are and on how long it 512

takes for informed foragers to return to the nest. High D increases the capacity of the 513

foraging queue, requiring higher numbers of active foragers at steady-state (see 514

Eq. (12)). We show a simulation of high D and N in Fig. S6B, which can be compared 515

with the data from Colony 1107 on August 16, 2017, plotted in Fig. S2D. 516

The initial conditions also affect the length of the transient. For an initially high 517

value of rout, the number of active foragers increases very rapidly, reducing the time it 518

takes for the colony to reach the informed state with foraging rates that reach a QSS. 519

We show a simulation for an initially high value of rout in Fig. S6C, which can be 520

compared to data from Colony 1017 on August 23, 2016 and Colony 1015 on August 18, 521

2016, plotted in Fig. S2E and F. 522

Discussion 523

We have derived and analyzed a low dimensional analytical model of foraging dynamics 524

that requires only a small number of parameters to qualitatively capture a wide range of 525

transient and steady-state features observed in the foraging rates of red harvester ant 526

colonies. The model is distinguished from previous work in that it accounts for how 527

incoming and outgoing rates, to and from the nest, change over long timescales, from 528

tens of minutes to hours. Importantly, the long timescales allow for a model-based 529

investigation into how a colony, with no centralized control and little individual 530

information about the state of the colony or environment, can regulate its foraging rates 531

to be robust to small disturbances and responsive to temperature and humidity outside 532

the nest across minutes to hour-long timescales. Further, because the model is 533

analytically tractable, it can be used to systematically derive predictions of foraging 534

behavior as a function of critical model parameters and to explain variation in foraging 535

activity among colonies in response to changing conditions. 536

Our model and analysis highlight the importance of feedback in the regulation of 537

foraging activity. Previous work isolates the open-loop dynamics inside the nest, which 538

maps incoming ants to outgoing ants on very short timescales. We address the minutes 539

to hour-long timescales by examining analytically the closed-loop dynamics that connect 540

the foraging activity outside the nest to the activation of foragers inside the nest 541

through feedback generated by the ants themselves and their interactions with others. 542

The stream of foraging ants out of the nest is the input to the foraging activity, and the 543

output of the foraging activity is the stream of foraging ants into the nest. 544

Using analytical tools from dynamics and control theory, we show how the incoming 545

and outgoing foraging rates first undergo a transient in which the outgoing rate exceeds 546

the incoming rate, how the incoming and outgoing rates then stably approach a 547

common value that is lower than the peak outgoing rate, and how the rates remain 548

equilibrated at a quasi steady-state, despite disturbances, until mid-day when foraging 549

rates go to zero. We show further how the transient and quasi steady-state rates differ 550

under different foraging conditions, and how sensitivities to a small number of 551
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parameters can explain differences among colonies in the regulation of foraging. 552

To examine the underlying mechanisms that help explain changes over minute to 553

hour-long timescales and differences over colonies in foraging rates, we isolate the 554

parameter c in our model, which we call “volatility”, and we explore its role in foraging 555

dynamics. Volatility approximates the average sensitivity of available foragers in the 556

nest to interactions with returning foragers: the higher the c the fewer interactions 557

needed to activate available foragers to go out and forage. The relationship between c 558

and the activation of foragers is nonlinear, and the subtleties of our model reflect some 559

of the complexities of the system. We use analytical predictions to show how c 560

determines three important features of the foraging model dynamics (see Fig. 7): 1) the 561

initial transient in incoming and outgoing foraging rates, parametrized by c, 2) the 562

equilibration of incoming and outgoing foraging rates to a stable, and thus robust, quasi 563

steady-state rate, parametrized by c, and 3) the prediction of an early cessation of 564

foraging or no foraging at all if c� c∗, a critical volatility value c∗. 565

The behavior of different colonies on the same day or the same colony on different 566

days thus correspond in the model to different values of volatility c. Lower values of c 567

are consistent with hotter and drier days, because lower c means that available foragers 568

are less volatile and thus less likely to go out and forage. Higher values of c are 569

consistent with cooler and more humid days, because higher c means that available 570

foragers are more volatile and thus more likely to go out and forage. 571

Because the temperature and humidity inside the nest remain relatively constant 572

over the foraging day (Fig. S1), it is likely that foragers learn about the current outside 573

conditions only after they have been on a foraging trip and thus exposed to the 574

environment. To account for this in our model of a single colony on a single day, we 575

implement two volatility terms cu and ci to distinguish between the volatility of 576

“uninformed” available foragers in the nest who have yet to go on a foraging trip and the 577

volatility of “informed” available foragers in the nest who have already been outside the 578

nest on at least one foraging trip (Fig. 2). The result is a transition from the foraging 579

activity of ants with volatility cu to the foraging activity of ants with volatility ci, which 580

can last from minutes to hours as each of the total N ants goes out at a different time 581

on its first foraging trip and returns to the nest after foraging for an average of D 582

minutes (Fig. 6). 583

We show that over a range of values for the four parameters cu, ci, N , and D, the 584

model describes the range of transient and quasi steady-state foraging rate behaviors 585

observed in the data collected for red harvester colonies in August and September of 586

2015, 2016, and 2017. In each of the data sets plotted in Fig. 3 and Fig. 4, the outgoing 587

foraging rate initially increases faster than the incoming foraging rate and then the two 588

rates equilibrate at a quasi-steady state. In Fig. 4 B, D, and F, this behavior is 589

described by outgoing-vs-incoming rate curves that initially rise above the diagonal line 590

before converging onto the diagonal line where the rates are equal and lower than the 591

maximum outgoing rate during the transient. That our model explains the shapes of 592

these curves, and distinguishes the three different cases of Fig. 4 only through different 593

values of the four parameters can be seen in the model simulations of Fig. 8. Fig. 4 B 594

and D show the curves for foraging rate data corresponding to the same colony on two 595

different days, the second day warmer and drier than the first. The simulations shown 596

in Fig. 8 B and D recover the two differently shaped curves of Fig. 4 B and D, 597

respectively, only by using different values of ci and N that are consistent with the 598

different environmental conditions. The data in Fig. 4 F show a colony discontinuing its 599

foraging after the initial transient and the shape of this curve is recovered in the model 600

simulation Fig. 8 F. Similar comparisons can be made for the data curves plotted in Fig. 601

S2 and the model simulation curves plotted in Fig. S6. 602

The model represents the case in which foragers make an adjustment to their 603
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volatility only after their first foraging trip. To include more variability within a colony 604

the model can be generalized to M > 2 groups of available foragers in the nest, 605

distinguished by M values of volatility c1, . . . , cM . For example, the generalization can 606

be used to account for foragers that make adjustments to how they respond to 607

interactions in the nest after subsequent foraging trips due to repeated exposure or 608

changing temperature and humidity. The generalization can also be used to account for 609

decay of information for those foragers who stay in the nest for a long period after a 610

foraging trip, or to represent foragers that return to the deeper nest after exposure to 611

hot and dry outside conditions. 612

Our biologically informed, low-dimensional, and simply parameterized model allows 613

for systematic exploration of mechanisms and sensitivities that can explain collective 614

behavior and guide further theoretical and experimental investigations. Our use of 615

well-studied excitability dynamics opens the way for comparison with other complex 616

systems, such as neuronal networks, that are driven by excitable dynamics. The model 617

together with our analysis based on dynamics and control theory contribute to a better 618

understanding of the role of feedback across multiple timescales in the emergence of 619

adaptive collective behavior in complex systems. 620
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Supporting Information

Fig. S1 Humidity and temperature at surface of desert soil and inside the
nest entrance chamber. Humidity and temperature readings recorded on the surface
of the desert soil (blue) and inside the nest entrance chamber (red). Temperature and
humidity ibutton sensors were placed outside but close to the nest entrance on the
desert soil, unshaded, and inside in the nest in an excavated hole, which had been
uncovered by excavation and then covered with glass on top and shaded. The humidity
and temperature outside the nest change significantly throughout the morning hours
while the humidity and temperature inside the nest entrance chamber remain relatively
constant. The measured moderate rise in temperature inside the nest is likely due to
the light coming into the nest entrance chamber through the glass. A) Humidity on
August 29, 2014 (Colony E). B) Temperature on August 29, 2014 (Colony E). C)
Humidity on August 31, 2015 (Colony 10). D) Temperature on August 31, 2015 (Colony
10). E) Humidity on September 1, 2015 (Colony 10). F) Temperature on September 1,
2015 (Colony 10).

Fig. S2 Additional field observations of foraging rates. Incoming foraging
rate rin (blue), outgoing foraging rate rout (red), and difference between number of
incoming and outgoing foragers (green) versus time of day. A) Colony 863 September 5,
2015 reaches a QSS at a high rate; compare to Fig. 4E when on the much hotter and
drier day, September 1, 2015, Colony 863 returned to the nest early. B) Colony D19
August 08, 2016 returned to the nest early; the day was very hot and dry. C) Colony
859 August 20, 2017; the transient starts late in the morning. The day was cool and
humid. D) Colony 1107 August 16, 2017; the transient is slow. The day was dry. E)
Colony 1017 August 23, 2016; the initial transient is more like a burst of outgoing
foragers. The day was dry. F) Colony 1015 August 18, 2016; another initial burst of
outgoing foragers. The day was very dry.

Table S1 Temperature and relative humidity in Rodeo, New Mexico.
Average temperature, average relative humidity, temperature at 11 am, and relative
humidity at 11 am in Rodeo, New Mexico, USA for days with data plotted in Fig 3,
Fig. 4, and Fig. S1. Data collected by the Citizen Weather Observer Program station
E8703 and accessed through Weather Underground [39]. The station is located 1.7 miles
from the study site.

Fig. S3 Open Loop Model. A) Poisson sequence of incoming foragers λin. B)
Stimulus signal s associated with λin. C) FN output for input s. D) Sequence of
outgoing foragers λout obtained by thresholding FN output from below at 0.75.

Fig S4. Probability density function for the stimulus function. Each curve
represents the PDF p of the stimulus function s for different values of incoming rate rin.
The gray rectangles represent the size of the oscillatory region in the F-N system (b1, b2)
for different values of volatility c. For all curves, k = 0.3, τ = 0.41.

Fig. S5 Period of FN Limit Cycle when s=0.35 Blue dots represent numerical
simulations for the period of the FN limit cycle. The red curve represents the analytical
approximation in SI Appendix 1. In both cases we set s = 0.35.

Fig. S6 Additional simulations of the closed-loop system with the
adaptation mechanism. Plots resemble observed foraging behaviors in Fig. S2.
Qualitative comparisons can be made between A here and Fig. S2C, between B here
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and Fig. S2D, and between C here and in Fig. S2E and F. A) cu = 0.9, ci = 2.2,
N = 500, D = 5. Setting cu < ci where cu is close to c∗ results in a long period before
the rates ramp up. B) cu = 1, ci = 1, N = 1000, D = 15. Setting the mean foraging
trip time D to be large results in long lasting transients. C) cu = 0.7, ci = 0.9,
N = 1000, D = 7. Setting the initial λin equal to sequence from the first 5 minutes of
λin for Colony 1017 on Aug. 23, 2016 (see Fig. S2E) yields the behavior that follows an
initial burst of foragers.

SI Appendix 1

Effect of volatility on the frequency of oscillations in the FN

SI Appendix 2

Additional field observations of foraging rates

SI Appendix 3

Analytical Approximation for r̄out in terms of r̄in and c

SI Appendix 4

Probability Density Function of s(t)
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Supporting Information
Regulation of Harvester Ant Foraging as a Closed-Loop

Excitable System
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Fig. S1 Humidity and temperature at surface of desert soil and inside the nest
entrance chamber. Humidity and temperature readings recorded on the surface of the desert
soil (blue) and inside the nest entrance chamber (red). Temperature and humidity ibutton sensors
were placed outside but close to the nest entrance on the desert soil, unshaded, and inside in the
nest in an excavated hole, which had been uncovered by excavation and then covered with glass on
top and shaded. The humidity and temperature outside the nest change significantly throughout
the morning hours while the humidity and temperature inside the nest entrance chamber remain
relatively constant. The measured moderate rise in temperature inside the nest is likely due to
the light coming into the nest entrance chamber through the glass. A) Humidity on August 29,
2014 (Colony E). B) Temperature on August 29, 2014 (Colony E). C) Humidity on August 31,
2015 (Colony 10). D) Temperature on August 31, 2015 (Colony 10). E) Humidity on September
1, 2015 (Colony 10). F) Temperature on September 1, 2015 (Colony 10).

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2018. ; https://doi.org/10.1101/322974doi: bioRxiv preprint 

https://doi.org/10.1101/322974
http://creativecommons.org/licenses/by/4.0/


07AM 08AM 09AM 10AM
0 0

1000

0.4

0.8

1.2

1.6

2

500

250

750

F
o

ra
g

in
g

 R
a

te
 (

a
n

ts
/s

e
c
)

07AM 08AM 09AM 10AM
0 -250

250

750

0.4

0.8

1.2

1.6

2

0

500

06AM 08AM 10AM
0 -400

800

1400

0.2

0.4

0.6

0.8

1

200

08AM 09:30AM 11:30AM 1PM
0 0

1250

0.2

0.4

0.6

0.8

1

1000

500

250

750

F
o

ra
g

in
g

 R
a

te
 (

a
n

ts
/s

e
c
)

Time of Day

10AM 11AM 12PM
0 0

500

750

0.2

0.4

0.6

0.8

1

250

08AM 09AM 11AM
0 0

1500

2000

0.3

0.6

0.9

1.2

1.5

1000

500

10AM

F
o

ra
g

in
g

 R
a

te
 (

a
n

ts
/s

e
c
)

Time of Day

A B

C

F

D

E

Fig. S2 Additional field observations of foraging rates. Incoming foraging rate rin (blue),
outgoing foraging rate rout (red), and difference between number of incoming and outgoing foragers
(green) versus time of day. A) Colony 863 September 5, 2015 reaches a QSS at a high rate; compare
to Fig. 4E when on the much hotter and drier day, September 1, 2015, Colony 863 returned to the
nest early. B) Colony D19 August 08, 2016 returned to the nest early; the day was very hot and
dry. C) Colony 859 August 20, 2017; the transient starts late in the morning. The day was cool
and humid. D) Colony 1107 August 16, 2017; the transient is slow. The day was dry. E) Colony
1017 August 23, 2016; the initial transient is more like a burst of outgoing foragers. The day was
dry. F) Colony 1015 August 18, 2016; another initial burst of outgoing foragers. The day was very
dry.
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Daily Average At 11 am
Figure Date Temperature Humidity Temperature Humidity
3A, 3B Aug. 20, 2016 25.9C 57% 24.8C 57%
4A, 4B Aug. 27, 2015 25.3C 58% 27.5C 52%
4C, 4D Aug. 31, 2015 26.8C 53% 28.8C 45%
4E, 4F Sept. 1, 2015 25.2C 53% 27.5C 52%
S1A Sept. 5, 2015 22.6C 77% 23.3C 77%
S1B Aug. 8, 2016 29.7C 48% 39.9C 43%
S1C Aug. 20, 2017 23.0C 71% 22.7C 73%
S1D Aug. 16, 2017 26.0C 48% 27.4C 41%
S1E Aug. 23, 2016 24.1C 43% 28.8C 36%
S1F Aug. 18, 2016 25.5C 27% 31.2C 23%

Table S1 Temperature and relative humidity in Rodeo, New Mexico. Average temper-
ature, average relative humidity, temperature at 11 am, and relative humidity at 11 am in Rodeo,
New Mexico, USA for days with data plotted in Fig 3, Fig. 4, and Fig. S2. Data collected by the
Citizen Weather Observer Program station E8703 and accessed through Weather Underground [1].
The station is located 1.7 miles from the study site.
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Fig. S3 Open Loop Model. A) Poisson sequence of incoming foragers λin. B) Stimulus signal
s associated with λin. C) FN output for input s. D) Sequence of outgoing foragers λout obtained
by thresholding FN output from below at 0.75.
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Fig S4. Probability density function for the stimulus function. Each curve represents
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represent the size of the oscillatory region in the F-N system (b1, b2) for different values of volatility
c. For all curves, k = 0.3, τ = 0.41.

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2018. ; https://doi.org/10.1101/322974doi: bioRxiv preprint 

https://doi.org/10.1101/322974
http://creativecommons.org/licenses/by/4.0/


0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

c

F
N

 l
im

it
 c

y
c
le

 p
e

ri
o

d

Fig. S5 Period of FN Limit Cycle when s=0.35 Blue dots represent numerical simulations
for the period of the FN limit cycle. The red curve represents the analytical approximation in SI
Appendix 1. In both cases we set s = 0.35.
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Fig. S6 Additional simulations of the closed loop system with the adaptation mech-
anism. Plots resemble observed foraging behaviors in Fig. S2. Qualitative comparisons can be
made between A here and Fig. S2C, between B here and Fig. S2D, and between C here and in Fig.
S2E and F. A) cu = 0.9, ci = 2.2, N = 500, D = 5. Setting cu < ci where cu is close to c∗ results
in a long period before the rates ramp up. B) cu = 1, ci = 1, N = 1000, D = 15. Setting the mean
foraging trip time D to be large results in long lasting transients. C) cu = 0.7, ci = 0.9, N = 1000,
D = 7. Setting the initial λin equal to sequence from the first 5 minutes of λin for Colony 1017 on
Aug. 23, 2016 (see Fig. S2E) yields the behavior that follows an initial burst of foragers.
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SI Appendix 1
Effect of volatility on the frequency of oscillations in the FN: Here we use results from [2]
Chapter III, Theorem 3 to obtain an asymptotic expansion for the period of the limit cycle TLC
as ε2 goes to zero. We show that the period of the FN limit cycle is inversely proportional to c by
computing the leading term in the expansion.

The limit cycle of the FN is comprised of four components: two fast components that stretch
along the v direction between the crest and valley of the cubic nullcline, and two slow components
that stretch along the sides of the cubic nullcline. Because it takes much longer to traverse the
slow components of the limit cycle than the fast components of the cycle, the period can be
approximated by the time it takes trajectories to traverse the two slow components. These slow
components are proportional to the length of the sides of the cubic nullcline, which we show are
proportional to c.

Theorem 1. The limit cycle of the FN system

ε1ε2
dv

dt
= v − v3/3− cu− 0.35 + s

ε1
du

dt
= v − cu

has the asymptotic representation:

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+O(ε2),

as ε2 → 0, where C1 and C2 are constants and where

T0 =
3ε1
c

{∫ −1

−2

(v2 − 1)

(3z − v3)
dv +

∫ 1

2

(v2 − 1)

(3z − v3)
dv

}
.

Proof. By Chapter III, Theorem 3 of [2], the limit cycle of the FN model has the asymptotic
representation

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+ C3ε2 +O(ε

4/3
2 ).

Or, equivalently,

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+O(ε2).

Let time be scaled by 1/ε1 and let z = s− 0.35, leading to the new system

ε2
dv

dt
= v − v3/3− cu+ z

du

dt
= v − cu

The critical manifold of this fast-slow system is M0 := {(v, u) ∈ R2|u = (v − v3/3 + z)/c}. In the
limit ε2 → 0, the slow manifold is equal to the critical manifold. Let Ψ0 denote the limit cycle in
this limit.

Using the description of M0 as a graph u = h(v), the dynamics of the system on the slow flow
can be written as

du

dt
= z − v3/3.

We get a second expression for du/dt by differentiating M0 with respect to t

du

dt
=
v2 − 1

c

dv

dt
.

Equating the two expressions we obtain

dv

dt
=
c(3z − v3)

3(v2 − 1)
.
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Multiplying both sides by dt and integrating over Ψ0,

T0 =
3

c

∫
Ψ0

(v2 − 1)

(3z − v3)
dv.

In Ψ0, the fast components of the orbit take place instantaneously and the time taken to complete
the orbit is equal to the time taken to traverse the slow components. The slow components of
the trajectory take place on the slow manifold between v ∈ [−2,−1] and v ∈ [1, 2], yielding the
expression

T0 =
3ε1
c

{∫ −1

−2

(v2 − 1)

(3z − v3)
dv +

∫ 1

2

(v2 − 1)

(3z − v3)
dv

}
.

where time has been scaled back to its original form. This expression is inversely proportional
to c. Furthermore, this integral has a short closed form solution when the slow components are
symmetric (i.e. z = 0, or s = 0.35),

T0 = 2
3ε1
c

∫ −1

−2

(1− v2)

v3
dv =

−9 + 8 log 8

4c
.

We compute the constants C1 and C2 by applying formulas 7.9 and 7.10 of [2] Chapter III,
Theorem 3. When s 6= 0.35, the flow along the system is not symmetric and the asymptotic
representation is

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+O(ε2),

where
C11 =

3.37214|1− 3z| Sgn(1/3− z)
(−8/9 + z(−7/3 + z))(c/ε21)1/3

,

C12 =
ε1(−2 + 6z + |1− 3z|)

2(1− 3z)2
,

C21 =
3.37214|1 + 3z| Sgn(1/3 + z)

(−8/9 + z(−7/3 + z))(c/ε21)1/3
,

C22 =
ε1(−2− 6z + |1 + 3z|)

2(1 + 3z)2
.

and Sgn represents the sign function.
When s = 0.35, z = 0 and the asymptotic representation becomes

TLC = T0 + (C11 + C12)ε
2/3
2 + (C21 + C22)ε2 ln

1

ε2
+O(ε2)

where
C1 =

3.79366ε1
c1/3

and
C2 =

−ε1
2

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2018. ; https://doi.org/10.1101/322974doi: bioRxiv preprint 

https://doi.org/10.1101/322974
http://creativecommons.org/licenses/by/4.0/


SI Appendix 2
Additional field observations of foraging rates: Here we present additional details for the
field observations of foraging rates shown in Fig. S2.

Panel A of Fig. S2 shows the foraging rates for Colony 863 on September 5, 2015. The rates
increase before reaching a QSS at around 10:30 am. The same colony on September 1, 2015 did
not exhibit a QSS and had stopped foraging by 11 am (Fig. 4E). These observations are consistent
with measurements showing that September 5, 2015 was a particularly cool and humid day while
September 1, 2015 was much hotter and drier (see Table S1).

Panel B of Fig. S2 shows the data for Colony D19 on August 8, 2016 (from video recording)
and provides an example of a very early cessation of foraging where both outgoing and incoming
rates reached zero well before 11:00 am, similar to Colony 863 on September 1, 2015 (Fig. 4E).
Both August 8, 2016 and September 1, 2015 were very hot and dry days (see Table S1).

Panel C of Fig. S2 show the data for Colony 859 on August 20, 2017 (from manual recording)
and provides an example where the initial transient took a long time before ramping up. The
initial transient for Colony 859 on August 20, 2017 remained at around 0.01 ants/sec from 10 am
to 11:15 am before increasing to about 0.4 ants/sec by 12:30 pm. August 20, 2017 was a cool and
humid day (see Table S1). Colonies might prefer different ranges of temperature and humidity;
on cool and humid days, colonies that prefer warmer temperatures might forage at slightly later
times of the day than colonies that prefer more cool temperatures.

Panel D of Fig. S2 show the data for Colony 1107 on August 16, 2017 (from manual recording)
and provides a different example of a slow transient; it takes from 8 am to 10:30 am for the
foraging rates to increase from 0.3 ants/sec to around 0.9 ants/sec. During this period the number
of foragers outside the nest reaches almost 2000. In this case August 16, 2017 was not a particularly
cool or humid day (see Table S1). The long transient and large number of active foragers suggests
that the average time it took a forager to find a seed was long. Long foraging trip times can result
in slow transients and high number of active foragers because when foragers take a long time to
find a seed, it takes longer for foragers to return to the nest and interact with available foragers
who then become active foragers. As well, when the average foraging trip times is long, more
foragers might be required to cover larger and less dense foraging areas.

Panel E and F of Fig. S2 show the data for Colony 1017 on August 23, 2016 (from manual
recording) and for Colony 1015 on August 18, 2016 and provide two examples of a burst in the
outgoing foraging rate at the start of the foraging day that rapidly increases the number of active
foragers outside the nest; it takes from 7:30 am to 7:45 am for Colony 1017 on August 23, 2016
to increase the number of active foragers from 0 to 800 and it takes from 7:15 am to 7:30 am for
Colony 1015 on August 18, 2016 to increase the number of active foragers by 600. In both cases,
the foraging rates reach a QSS that lasts tens of minutes. Both August 23 and August 18, 2016
were very dry days (see Table S1).

The burst kick starts the foraging process very rapidly and appears to be different from the
mechanism that activates available foragers to leave the nest through interactions between incoming
successful foragers and the available foragers. The rapid increase in the number of active foragers
outside the nest might be advantageous on hot and dry days on which there will be only a short
period of time in the early morning with acceptable foraging conditions.
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SI Appendix 3
Analytical Approximation for r̄out in terms of r̄in and c

Under the assumption that λin is a Poisson process with constant rate r̄in, Eq. (4) is equivalent
to a Poisson shot noise process with exponential decay:

s(t) = s(0)h(t) +

N(t)∑
i=1

k h(t− ti)

where ti are the jump times of the Poisson process, and

h(t) =

{
e−t/τ , t ≥ 0

0, t < 0.

The mean and variance of this random process for an initial condition s(0) = 0 are given by
r̄inτk(1 − e−t/τ ) and 1

2 r̄inτk
2(1 − e−2t/τ ) respectively [3]. Shot noise processes are Markovian

and it can be shown that for finite jump sizes, k < ∞, s is ergodic [4], meaning that as t → ∞,
s(t) converges in total variation to a unique stationary probability distribution π(s) for any initial
condition s(0). In other words, s has the property that time averages converge in time to statistical
averages. The ergodicity of s allows us to find an asymptotic expression as t→∞ for the expected
fraction of time that any single outcome of the random process spends in a region (b1, b2) by looking
at its stationary probability density function.

Let Sf = {tf ∈ [t0, t0 +T ] | b1 < s < b2} be the set of all times over the time interval [t0, t0 +T ]
for which the stimulus is in the (b1, b2) region. Then Sf ⊆ S where S = {t ∈ [t0, t0 + T ]}. We
define 1Sf

: S → {0, 1} to be the indicator function associated with the subset Sf

1Sf
(t) =

{
1 t ∈ Sf
0 otherwise.

Let Tf be the amount of time that s is between b1 and b2:

Tf =

∫ t0+T

t0

1Sf
(t) dt.

From the ergodic properties of s, and by the strong law of large numbers,

lim
T→∞

1

T

∫
T

1Sf
(s) ds =

∫ b2

b1

p(s) ds

where p(s) is the density associated with π(s), i.e. the stationary probability density function
(PDF) of s:

π(s) =

∫ s

0

p(y) dy.

The PDF (see SI Appendix 4) is given as a piecewise function pi(s) for (i − 1)k ≤ s < ik where
the piecewise elements satisfy recurrence equations that depend on r̄in, τ , and k.

Let b1 and b2 be the FN bifurcation values of the input to the FN that takes the system from
quiescence into the oscillatory regime and from this regime into saturation respectively:

b1,2 = 0.35∓ 1

3
(1− cε)3/2.

The size of the oscillatory region is given by the difference between b2 and b1 and it decreases with
increasing volatility c (see SI Fig S4). For constant s where b1 ≤ s ≤ b2, the output rate is a
constant given by the oscillation frequency of the FN when driven by a constant input s.

For s not constant, the FN transitions between quiescence, oscillatory behavior, and saturation
as s varies. For ε1 � 1, the FN dynamics are much faster than the dynamics of s, and the number
of foragers leaving the nest in a given time period [t0, t0 + T ] is proportional to Tf , the amount of
time spent by s in the oscillatory region.

For T →∞, nonlinear effects in the oscillations become negligible and the mean outgoing rate
becomes

r̄out = lim
T→∞

1

T

∫
T

fε2(s) · 1Sf
(s) ds
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where fε2 is the mean oscillation frequency of the FN when the driving input is constant and equal
to s. We approximate fε2 = 1/TLC through the asymptotic representation [2]:

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+O(ε2),

where T0, C1, and C2 are given in SI Appendix 1 to obtain an approximate expression for how r̄out
changes as a function of both r̄in and c:

r̄out =

∫ b2

b1

p(s, r̄in)

TLC(s, c)
ds.
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SI Appendix 4
Probability Density Function of s(t)

Here we find an analytical description of the probability density function of the stimulus function
s(t) under the assumption that the incoming rate is a Poisson process. Under this assumption s(t)
takes the form of a Poisson shot-noise process. Before we state our results, we state a result by
Gilbert and Pollak. 1959 [5]:

Lemma 1. The amplitude distribution function Fs(ξ) = Pr[s(t) ≤ ξ] for the shot noise process

s(t) =

N(t)∑
i=−∞

h(t− ti)

where h(t) is called the impulse shape function, satisfies the integral equation

sFs(s) =

∫ s

−∞
Fs(x) dx+ r̄in

∫ ∞
−∞

Fs(s− h(t)) h(t) dt.

Proof. We refer the reader to [5] for the proof.

Theorem 2. The steady-state probability density function of the shot-noise process with exponential
decay with impulses arriving with rate r̄in

s(t) =

N(t)∑
i=1

k h(t− ti)

where

h(t) =

{
e−t/τ , t ≥ 0

0, t < 0.

is given as a piecewise function pi(s) for (i− 1)k ≤ s < ik where the piecewise elements satisfy the
recurrence equations :

pn(s) = pn−1(s) + αsr̄inτ−1(−r̄inτ)n−1gn(s, r̄in, k, τ)

gn(s, r̄in, k, τ) =

∫ s

(n−1)k

(x− k)r̄inτ−1x−r̄inτgn−1(x− k, r̄in, k, τ)dx

with

α =
(keγ)−r̄inτ

Γ(r̄inτ)
sr̄inτ−1, p0(s) = 0, g1(s, r̄in, k, τ) = 1

where γ = 0.5772... is Euler’s constant and Γ is the gamma function.

Proof. For a Poisson shot noise process in with impulse shape function:

h(t) =

{
e−t/τ , t ≥ 0

0, t < 0,

the integral equation in Lemma 1 can be rewritten as

sps(s) = r̄inτ

∫ k

0

ps(s− ξ) dxi = r̄inτ

∫ s

s−k
ps(x) dx.

where p(s) = dFs/ds be the density function of s.
Differentiating with respect to s, we obtain

s
dps
ds

+ ps(s)[1− r̄inτ ] = −r̄inτps(s− k). (1)

When 0 ≤ s ≤ k, ps(s− k) = 0, and

s
dps
ds

+ ps(s)[1− r̄inτ ] = 0.

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2018. ; https://doi.org/10.1101/322974doi: bioRxiv preprint 

https://doi.org/10.1101/322974
http://creativecommons.org/licenses/by/4.0/


Picking ps(s) = α sr̄inτ−1 satisfies the equation above, so we have obtained a solution for ps(s)
when 0 ≤ s ≤ k. For larger values of s, the differential equation Eq. (1) may be converted to an
integral form

ps(s) = sr̄inτ−1

[
α− r̄inτ

∫ s

k

ps(x− k)x−r̄inτ dx
]
.

Since the integrand is known for x < 2k, we can determine ps(s) for s < 2k. This in turn enables
us to integrate further to get ps(s) for s < 3k, etc. Let m = r̄inτ , then the results for the first
three jump regions pi, i = 1, 2, 3 are given by

p1(s) = α sm−1

p2(s) = p1(s)− α sm−1m

∫ s

k

(x− k)m−1x−m dx

p3(s) = p2(s) + α sm−1m2

∫ s

k

(x− k)m−1x−m
∫ x−k

k

(ξ − k)m−1ξ−mdξ dx

We now show by induction that p(s) satisfies the recurrence equations

pn(s) = pn−1(s) + αsm−1(−m)n−1gn(s)

gn(s) =

∫ s

(n−1)k

(x− k)m−1x−mgn−1(x− k) dx

with p0 = 0, g1(s) = 1. For n = 1,

p1(s) = p0(s) + αsm−1(−m)0g1(s) = αsm−1

as expected. Now, assume that for n = j

pj(s) = pj−1(s) + αsm−1(−m)j−1gj(s)

gj(s) =

∫ s

(j−1)k

(x− k)m−1x−mgj−1(x− k) dx

Then, for n = j + 1

pj+1(s) = sm−1

[
α−m

∫ s

k

pj(x− k)x−m dx
]

= sm−1sm−1α− sm−1m

∫ s

k

x−m(pj−1(x− k) dx

+ sm−1α(x− k)m−1(−m)j−1gj(x− k)) dx

= sm−1

[
α−m

∫ s

k

x−mpj−1(x− k) dx
]

+ αsm−1(−m)j
∫ s

k

(x− k)m−1x−mgj(x− k)) dx

= sm−1

[
α−m

∫ s

k

x−mpj−1(x− k) dx
]

+ αsm−1(−m)jgj+1(s)

= pj(s) + αsm−1(−m)jgj+1(s).

Finally, the constant α must be determined by the condition∫ ∞
0

ps(s) ds = 1.

To compute the constant, we first note that the characteristic equation of s is given by

C(ζ) = exp

[
−r̄in

∫ ∞
−∞

(1− exp[−ζFs(t)]) dt
]

(see [3] for derivation). The characteristic function is the Laplace transform p̂ of ps,

p̂(ζ) = exp

[
−r̄inτ

∫ ζk

0

1− e−y

y
dy

]
.
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Using partial integration, this can be rewritten as

p̂(ζ) = exp

[
−r̄inτ(1− e−ζk) log ζk + r̄inτ

(∫ ∞
0

e−y log y dy −
∫ ∞
s

e−y log y dy
)]

= (ζk)−r̄inτe−r̄inτγ(1 +O[e−ζk(1−ε)]) for any ε > 0.

Thus, for 0 ≤ s ≤ k,

c =
(keγ)−r̄inτ

Γ(r̄inτ)
sr̄inτ−1

where γ = 0.5772... is Euler’s constant and Γ is the gamma function.
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