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Abstract

Given the recent controversies in some neuroimaging statistical methods, we compared the most frequently used functional Mag-
netic Resonance Imaging (fMRI) analysis packages: AFNI, FSL and SPM, with regard to temporal autocorrelation modeling. This
process, sometimes known as pre-whitening, is conducted in virtually all task fMRI studies. We employed eleven datasets con-
taining 980 scans corresponding to different fMRI protocols and subject populations. Though autocorrelation modeling in AFNI
was not perfect, its performance was much higher than the performance of autocorrelation modeling in FSL and SPM. The residual
autocorrelated noise in FSL and SPM led to heavily confounded first level results, particularly for low-frequency experimental
designs. Also, we observed very severe problems for scans with short repetition times. The resulting false positives and false
negatives can be expected to propagate to the group level, especially if the group analysis is performed with a mixed effects model.
Our results show superior performance of SPM’s alternative pre-whitening: FAST, over the default SPM’s method. The reliabil-
ity of task fMRI studies would increase with more accurate autocorrelation modeling. Furthermore, reliability could increase if
the analysis packages provided diagnostic plots. This way the investigator would be aware of residual autocorrelated noise in the
GLM residuals. We provide a MATLAB script for the fMRI researchers to check if their analyses might be affected by imperfect
pre-whitening.
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Introduction1

Functional Magnetic Resonance Imaging (fMRI) data is2

known to be positively autocorrelated in time (Bullmore et al.,3

1996). It results from neural sources, but also from scanner-4

induced low-frequency drifts, respiration and cardiac pulsation,5

as well as from movement artefacts not accounted for by motion6

correction (Lund et al., 2006). If this autocorrelation is not ac-7

counted for, spuriously high fMRI signal at one time point can8

be prolonged to the subsequent time points, which increases9

the likelihood of obtaining false positives in task studies. As a10

result, parts of the brain might erroneously appear active dur-11

ing an experiment. The degree of temporal autocorrelation is12

different across the brain (Worsley et al., 2002). In particular,13

autocorrelation in gray matter is stronger than in white matter14

and cerebrospinal fluid, but it also varies within gray matter.15

AFNI (Cox, 1996), FSL (Jenkinson et al., 2012) and16

SPM (Penny et al., 2011), the most popular packages used17

in fMRI research, first remove the signal at very low fre-18

quencies (for example using a high-pass filter), after which19

they estimate the residual temporal autocorrelation and re-20

move it in a process called pre-whitening. In AFNI tempo-21

ral autocorrelation is modeled voxel-wise. For each voxel,22

an autoregressive-moving-average ARMA(1,1) model is esti-23

mated. The ARMA(1,1) estimates are not spatially smoothed.24

For FSL, a Tukey taper is used to smooth the spectral density25
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estimates voxel-wise. These smoothed estimates are then ad- 26

ditionally smoothed within tissue type. Woolrich et al. (2001) 27

showed the appropriateness of the FSL’s method for two fMRI 28

protocols: with repetition time (TR) of 1.5s and of 3s, and with 29

voxel size 4x4x7 mm3. By default, SPM estimates temporal 30

autocorrelation globally as an autoregressive AR(1) plus white 31

noise process (Purdon and Weisskoff, 1998). SPM has an alter- 32

native approach: FAST, but we know of only two studies which 33

have used it (Todd et al., 2016; Bollmann et al., 2018). Boll- 34

mann et al. (2018) explains FAST uses a dictionary of covari- 35

ance components based on exponential covariance functions. 36

In Lenoski et al. (2008) several fMRI autocorrelation model- 37

ing approaches were compared for one fMRI protocol (TR=3s, 38

voxel size 3.75x3.75x4 mm3). The authors found that the 39

use of the global AR(1), of the spatially smoothed AR(1) and 40

of the spatially smoothed FSL-like noise models resulted in 41

worse whitening performance than the use of the non-spatially 42

smoothed noise models. Eklund et al. (2012) showed that in 43

SPM the shorter the TR, the more likely it is to get false posi- 44

tive results in first level (also known as single subject) analyses. 45

It was argued that SPM often does not remove a substantial part 46

of the autocorrelated noise. The relationship between shorter 47

TR and increased false positive rates was also shown in Purdon 48

and Weisskoff (1998) for the case when autocorrelation was not 49

accounted for. 50

In this study we investigated the whitening performance of 51

AFNI, FSL and SPM for a wide variety of fMRI protocols. 52

We analyzed both the default SPM’s method and the alternative 53
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Table 1: Overview of the employed datasets. FCP = Functional Connectomes Project. NKI = Nathan Kline Institute. BMMR = Biomedical Magnetic Resonance.
CRIC = Cambridge Research into Impaired Consciousness. CamCAN = Cambridge Centre for Ageing and Neuroscience. For the Enhanced NKI data, only scans
from release 3 were used. Out of the 46 subjects in release 3, scans of 30 subjects were taken. For the rest, at least one scan was missing. For the BMMR data, there
were 7 subjects at 3 sessions, resulting in 21 scans. For the CamCAN data, 200 subjects were considered only.

Study Experiment Place Design No. Field TR Voxel No. Time
subjects [T] [s] size [mm] voxels points

FCP resting state Beijing N/A 198 3 2 3.1x3.1x3.6 64x64x33 225
resting state Cambridge, US N/A 198 3 3 3x3x3 72x72x47 119

NKI resting state Orangeburg, US N/A 30 3 1.4 2x2x2 112x112x64 404
resting state Orangeburg, US N/A 30 3 0.645 3x3x3 74x74x40 900

CRIC resting state Cambridge, UK N/A 73 3 2 3x3x3.8 64x64x32 300
neuRosim resting state (simulated) N/A 100 NA 2 3.1x3.1x3.6 64x64x33 225

NKI checkerboard Orangeburg, US 20s off+20s on 30 3 1.4 2x2x2 112x112x64 98
checkerboard Orangeburg, US 20s off+20s on 30 3 0.645 3x3x3 74x74x40 240

BMMR checkerboard Magdeburg 12s off+12s on 21 7 3 1x1x1 182x140x45 80
CRIC checkerboard Cambridge, UK 16s off+16s on 70 3 2 3x3x3.8 64x64x32 160

CamCAN sensorimotor Cambridge, UK event-related 200 3 1.97 3x3x4.44 64x64x32 261

one: FAST. Furthermore, we analyzed the resulting specificity-54

sensitivity trade-offs in first level fMRI results. The main part of55

the paper compares the pre-whitening approaches from AFNI,56

FSL and SPM for boxcar experimental designs. Supplementary57

material includes analysis of an event-related design dataset, as58

well as a group level comparison of SPM’s default method with59

FAST. We observed better whitening performance for AFNI and60

SPM tested with option FAST than for FSL and SPM. Imperfect61

pre-whitening heavily confounded first level analyses.62

Data63

In order to explore a range of parameters that may affect64

autocorrelation, we investigated 11 fMRI datasets (Table 1).65

These included resting state and task studies, healthy subjects66

and a patient population, different TRs, magnetic field strengths67

and voxel sizes. We also used anatomical MRI scans, as they68

were needed for the registration of brains to the MNI (Montreal69

Neurological Institute) atlas space. FCP (Biswal et al., 2010),70

NKI (Nooner et al., 2012) and CamCAN data (Shafto et al.,71

2014) are publicly shared anonymized data. Data collection at72

the respective sites was subject to their local institutional review73

boards (IRBs), who approved the experiments and the dissem-74

ination of the anonymized data. For the 1,000 Functional Con-75

nectomes Project (FCP), collection of the Beijing data was ap-76

proved by the IRB of State Key Laboratory for Cognitive Neu-77

roscience and Learning, Beijing Normal University; collection78

of the Cambridge data was approved by the Massachusetts Gen-79

eral Hospital partners IRB. For the Enhanced NKI Rockland80

Sample, collection and dissemination of the data was approved81

by the NYU School of Medicine IRB. For the analysis of an82

event-related design dataset, which can be found in Supplemen-83

tary material, we used the CamCAN dataset (Cambridge Cen-84

tre for Ageing and Neuroscience, www.cam-can.org). Ethical85

approval for the study was obtained from the Cambridgeshire 286

(now East of England - Cambridge Central) Research Ethics87

Committee. The study from Magdeburg (“BMMR checker- 88

board”) (Hamid et al., 2015) was approved by the IRB of the 89

Otto von Guericke University, and the scans have not been 90

made public yet. The study of Cambridge Research into Im- 91

paired Consciousness (CRIC) was approved by the Cambridge 92

Local Research Ethics Committee (99/391), and the scans have 93

not been made public yet. In all studies all subjects or their 94

consultees gave informed written consent after the experimental 95

procedures were explained. One rest dataset consisted of simu- 96

lated data generated with the neuRosim package in R (Welvaert 97

et al., 2011). Simulation details can be found in Supplementary 98

material. 99

Methods 100

For AFNI, FSL and SPM analyses, the preprocessing, brain 101

masks, brain registrations to the 2 mm isotropic MNI atlas 102

space, and multiple comparison corrections were kept consis- 103

tent (Fig. 1). This way we limited the influence of possible 104

confounders on the results. In order to investigate whether our 105

results are an artefact of the comparison approach used for as- 106

sessment, we compared AFNI, FSL and SPM by investigating 107

(1) the power spectra of the GLM residuals, (2) the spatial dis- 108

tribution of significant clusters, (3) the average percentage of 109

significant voxels within the brain mask, and (4) the positive 110

rate: proportion of subjects with at least one significant cluster. 111

The power spectrum represents the variance of a signal that is 112

attributable to an oscillation of a given frequency. When calcu- 113

lating the power spectra of the GLM residuals, we considered 114

voxels in native space using the same brain mask for AFNI, FSL 115

and SPM. For each voxel, we normalized the time series to have 116

variance 1 and calculated the power spectra as the square of the 117

discrete Fourier transform. 118

Apart from assuming dummy designs for resting state data 119

as in Eklund et al. (2012, 2015, 2016), we also assumed wrong 120

(dummy) designs for task data, and we used resting state scans 121
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Figure 1: The employed analyses pipelines. The noise models used by AFNI, FSL and SPM were the only relevant difference (marked in a red box).

simulated using the neuRosim package in R (Welvaert et al.,122

2011). We treated such data as null data. For null data, the123

positive rate is the familywise error rate, which was employed124

in Eklund et al. (2012, 2015, 2016). We use the term “signif-125

icant voxel” to denote a voxel that is covered by one of the126

clusters returned by the multiple comparison correction.127

All the processing scripts needed to fully replicate our128

study are at https://github.com/wiktorolszowy/fMRI_129

temporal_autocorrelation. We used AFNI 16.2.02, FSL 130

5.0.10 and SPM 12 (v7219). 131

Preprocessing 132

Slice timing correction was not performed, as for some 133

datasets the slice timing information was not available. In each 134

of the three packages we performed motion correction, which 135

resulted in 6 parameters that we considered as confounders in 136
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the consecutive statistical analysis. Furthermore, in each of the137

three packages we conducted high-pass filtering with frequency138

cut-off of 1/100 Hz. We performed registration to MNI space139

only within FSL. For AFNI and SPM, the results of the multi-140

ple comparison correction were registered to MNI space using141

transformations generated by FSL. First, anatomical scans were142

brain extracted with FSL’s brain extraction tool (BET) (Smith,143

2002). Then, FSL’s boundary based registration (BBR) was144

used for registration of the fMRI volumes to the anatomical145

scans. The anatomical scans were aligned to 2 mm isotropic146

MNI space using affine registration with 12 degrees of freedom.147

The two transformations were then combined for each subject148

and saved for later use in all analyses, including in those started149

in AFNI and SPM. Gaussian spatial smoothing was performed150

in each of the packages separately.151

Statistical analysis152

For analyses in each package, we used the canonical hemo-153

dynamic response function (HRF) model, also known as the154

double gamma model. It is implemented the same way in155

AFNI, FSL and SPM: the response peak is set at 5 seconds156

after stimulus onset, while the post-stimulus undershoot is set157

at around 15 seconds after onset. This function was combined158

with each of the assumed designs using the convolution func-159

tion. To account for possible response delays and different slice160

acquisition times, we used in the three packages the first deriva-161

tive of the double gamma model, also known as the temporal162

derivative. We did not incorporate physiological recordings to163

the analysis pipeline, as these were not available for most of the164

datasets used.165

We estimated the statistical maps in each package sepa-166

rately. AFNI, FSL and SPM use Restricted Maximum Like-167

lihood (ReML), where autocorrelation is estimated given the168

residuals from an initial Ordinary Least Squares (OLS) model169

estimation. The ReML procedure then pre-whitens both the170

data and the design matrix, and estimates the model. We con-171

tinued the analysis with the statistic maps corresponding to the172

t-test with null hypothesis being that the full regression model173

without the canonical HRF explains as much variance as the174

full regression model with the canonical HRF. All three pack-175

ages produced brain masks. The statistic maps in FSL and SPM176

were produced within the brain mask only, while in AFNI the177

statistic maps were produced for the entire volume. We masked178

the statistic maps from AFNI, FSL and SPM using the inter-179

sected brain masks from FSL and SPM. We did not confine the180

analyses to a gray matter mask, because autocorrelation is at181

strongest in gray matter (Worsley et al., 2002). In other words,182

false positives caused by imperfect pre-whitening can be ex-183

pected to occur mainly in gray matter. By default, AFNI and184

SPM produced t-statistic maps, while FSL produced both t- and185

z-statistic maps. In order to transform the t-statistic maps to z-186

statistic maps, we extracted the degrees of freedom from each187

analysis output.188

Next, we performed multiple comparison correction in FSL189

for all the analyses, including for those started in AFNI and190

SPM. First, we estimated the smoothness of the brain-masked191

4-dimensional residual maps using the smoothest function192

in FSL. Knowing the DLH parameter, which describes image 193

roughness, and the number of voxels within the brain mask 194

(VOLUME), we then ran the cluster function in FSL on the 195

z-statistic maps using a cluster defining threshold of 3.09 and 196

significance level of 5%. This is the default multiple compar- 197

ison correction in FSL. Finally, we applied previously saved 198

MNI transformations to the binary maps which were showing 199

the location of the significant clusters. 200

Results 201

Whitening performance of AFNI, FSL and SPM 202

To investigate the whitening performance resulting from 203

the use of noise models in AFNI, FSL and SPM, we plotted 204

the power spectra of the GLM residuals. Fig. 2 shows the 205

power spectra averaged across all brain voxels and subjects for 206

smoothing of 8 mm and assumed boxcar design of 10s of rest 207

followed by 10s of stimulus presentation. The statistical infer- 208

ence in AFNI, FSL and SPM relies on the assumption that the 209

residuals after pre-whitening are white. For white residuals, the 210

power spectra should be flat. However, for all the datasets and 211

all the packages, there was some visible structure. The strongest 212

artefacts were visible for FSL and SPM at low frequencies. At 213

high frequencies, power spectra from FAST were closer to 1 214

than power spectra from the other methods. Fig. 2 does not 215

show respiratory spikes which one could expect to see. This 216

is because the figure refers to averages across subjects. We ob- 217

served respiratory spikes when analyzing power spectra for sin- 218

gle subjects (not shown). Importantly, for the “BMMR checker- 219

board” dataset analyzed both with the default SPM’s method 220

and with FAST, there was a small peak at frequency 1/24 Hz, 221

which was the true design frequency. For AFNI and FSL, this 222

peak was higher. As the assumed design was a wrong design, 223

a low power spectrum at the true design frequency suggests too 224

strong pre-whitening, during which negative autocorrelations 225

can be introduced. 226

Resulting specificity-sensitivity trade-offs 227

In order to investigate the impact of the whitening perfor- 228

mance on first level results, we analyzed the spatial distribution 229

of significant clusters in AFNI, FSL and SPM. Fig. 3 shows 230

an exemplary axial slice in the MNI space for 8 mm smooth- 231

ing. It was made through the imposition of subjects’ bina- 232

rized significance masks on each other. Scale refers to the per- 233

centage of subjects within a dataset where significant activa- 234

tion was detected at the given voxel. The x-axis corresponds 235

to four assumed designs. Resting state data was used as null 236

data. Thus, low numbers of significant voxels were a desir- 237

able outcome, as this was suggesting high specificity. Task 238

data with assumed wrong designs was used as null data too. 239

Thus, clear differences between the true design (indicated with 240

red boxes) and the wrong designs were a desirable outcome. 241

For FSL and SPM, often the relationship between lower as- 242

sumed design frequency (“boxcar40” vs. “boxcar12”) and an 243

increased number of significant voxels was visible, in particu- 244

lar for the resting state datasets: “FCP Beijing”, “FCP Cam- 245

bridge” and “CRIC”. For null data, significant clusters in AFNI 246
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Figure 2: Power spectra of the GLM residuals in native space averaged across brain voxels and across subjects for the assumed boxcar design of 10s of rest followed
by 10s of stimulus presentation (“boxcar10”). The dips at 0.05 Hz are due to the assumed design period being 20s (10s + 10s). For some datasets, the dip is not
seen as the assumed design frequency was not covered by one of the sampled frequencies. The frequencies on the x-axis go up to the Nyquist frequency, which is
0.5/TR. If after pre-whitening the residuals were white (as it is assumed), the power spectra would be flat. AFNI and SPM’s alternative method: FAST, led to best
whitening performance (most flat spectra). For FSL and SPM, there was substantial autocorrelated noise left after pre-whitening, particularly at low frequencies.
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were scattered primarily within gray matter. For FSL and SPM,247

many significant clusters were found in the posterior cingulate248

cortex, while most of the remaining significant clusters were249

scattered within gray matter across the brain. False positives in250

gray matter occur due to the stronger positive autocorrelation251

in this tissue type compared to white matter (Worsley et al.,252

2002). For the task datasets: “NKI checkerboard TR=1.4s”,253

“NKI checkerboard TR=0.645s”, “BMMR checkerboard” and254

“CRIC checkerboard” tested with the true designs, the majority255

of significant clusters were located in the visual cortex. This re-256

sulted from the use of visual experimental designs for the fMRI257

task. For the impaired consciousness patients (“CRIC”), the258

registrations to MNI space were imperfect, as the brains were259

often deformed.260

Additional comparison approaches261

The above analysis referred to the spatial distribution of sig-262

nificant clusters on an exemplary axial slice. As the results can263

be confounded by the comparison approach, we additionally in-264

vestigated two other comparison approaches: the percentage of265

significant voxels and the positive rate. Supplementary mate-266

rial, Fig. S1 shows the average percentage of significant voxels267

across subjects in 10 datasets for smoothing of 8 mm and for 16268

assumed boxcar experimental designs. As more designs were269

considered, the relationship between lower assumed design fre-270

quency and an increased percentage of significant voxels in FSL271

and SPM (discussed before for Fig. 3) was even more appar-272

ent. This relationship was particularly interesting for the “CRIC273

checkerboard” dataset. When tested with the true design, the274

percentage of significant voxels for AFNI, FSL, SPM and FAST275

was similar: 1.2%, 1.2%, 1.5% and 1.3%, respectively. How-276

ever, AFNI and FAST returned much lower percentages of sig-277

nificant voxels for the assumed wrong designs. For the assumed278

wrong design “40”, FSL and SPM returned a higher percentage279

of significant voxels than for the true design: 1.4% and 2.2%,280

respectively. Results for AFNI and FAST for the same design281

showed only 0.3% and 0.4% of significantly active voxels. For282

the “BMMR checkerboard” dataset tested with the true design,283

SPM and FAST resulted in a much lower percentage of signif-284

icant voxels than AFNI and FSL. The average percentage of285

significant voxels across subjects for this dataset tested with the286

true design was 31.5% for AFNI, 36.7% for FSL, 6.7% for SPM287

and 7.6% for FAST, respectively. This agrees with Fig. 3. For288

this dataset, the brain mask was limited mainly to the occipi-289

tal lobe and the percentage relates to the field of view that was290

used. For this dataset, the power spectrum at the true design291

was much lower for SPM and FAST than for AFNI and FSL292

(Fig. 2). This suggests negative autocorrelations were intro-293

duced during pre-whitening for the assumed true design. This294

led to a decrease in perceived activation.295

Overall, at an 8 mm smoothing level, AFNI and FAST out-296

performed FSL and SPM showing a lower average percentage297

of significant voxels in tests with the wrong design: on average298

across 10 datasets and across the wrong designs, the average299

percentage of significant voxels was 0.4% for AFNI, 1% for300

FSL, 1.9% for SPM and 0.3% for FAST.301

As multiple comparison correction depends on the smooth- 302

ness level of the residual maps, we also checked the correspond- 303

ing differences between AFNI, FSL and SPM. The residual 304

maps seemed to be similarly smooth. At an 8 mm smoothing 305

level, the average geometric mean of the estimated FWHMs of 306

the Gaussian distribution in x-, y-, and z-dimensions across the 307

10 datasets and across the 16 assumed designs was 10.8 mm for 308

AFNI, 10.3 mm for FSL, 11.7 mm for SPM and 11.5 mm for 309

FAST. Nonetheless, we also investigated the percentage of vox- 310

els with z-statistic above 3.09. This value is the 99.9% quantile 311

of the standard normal distribution and is often used as the clus- 312

ter defining threshold. For null data, this percentage should be 313

0.1%. The average percentage across the 10 datasets and across 314

the wrong designs was 0.5% for AFNI, 1.2% for FSL, 2.1% for 315

SPM and 0.4% for FAST. 316

Supplementary material, Figs. S2-S3 show the positive rate 317

for smoothing of 4 and 8 mm. The general patterns resemble 318

those already discussed for the percentage of significant vox- 319

els, with AFNI and FAST consistently returning lowest posi- 320

tive rates (familywise error rates) for resting state scans and 321

task scans tested with wrong designs. For task scans tested 322

with the true designs, the positive rates for the different pre- 323

whitening methods were similar. The black horizontal lines 324

show the 5% false positive rate, which is the expected pro- 325

portion of scans with at least one significant cluster if in real- 326

ity there was no experimentally-induced signal in the subject’s 327

brain. The dashed horizontal lines are the confidence inter- 328

vals for the proportion of false positives. These were calcu- 329

lated knowing that variance of a Bernoulli(p) distributed ran- 330

dom variable is p(1 − p). Thus, the confidence intervals were 331

0.05 ±
√

0.05 · 0.95/n, with n denoting the number of subjects 332

in the dataset. 333

Since smoothing implicitly affects the voxel size, we con- 334

sidered different smoothing kernel sizes. We chose 4, 5 and 335

8 mm, as these are the defaults in AFNI, FSL and SPM. No 336

smoothing was also considered, as for 7T data this preprocess- 337

ing step is sometimes avoided (Walter et al., 2008; Polimeni 338

et al., 2017). With a wider smoothing kernel, the percentage 339

of significant voxels increased (not shown), while the posi- 340

tive rate decreased. Differences between AFNI, FSL, SPM and 341

FAST discussed above for the four comparison approaches and 342

smoothing of 8 mm were consistent across the four smoothing 343

levels. 344

Discussion 345

In the case of FSL and SPM for the datasets “FCP Bei- 346

jing”, “FCP Cambridge”, “CRIC RS” and “CRIC checker- 347

board”, there was a clear relationship between lower assumed 348

design frequency and an increased percentage of significant 349

voxels. Purdon and Weisskoff (1998) showed that this relation- 350

ship exists when positive autocorrelation is not removed from 351

the data. This phenomenon is caused by the spurious signal 352

spillage. If during the assumed activation period the noise pro- 353

cess spuriously takes high values and the assumed design fre- 354

quency is high, due to the residual positive autocorrelation we 355
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Figure 3: Spatial distribution of significant clusters in AFNI (left), FSL (middle) and SPM (right) for different assumed experimental designs. Scale refers to the
percentage of subjects where significant activation was detected at the given voxel. The red boxes indicate the true designs (for task data). Resting state data was
used as null data. Thus, low numbers of significant voxels were a desirable outcome, as it was suggesting high specificity. Task data with assumed wrong designs
was used as null data too. Thus, large positive differences between the true design and the wrong designs were a desirable outcome. The clearest cut between the
true and the wrong/dummy designs was obtained with AFNI’s noise model. FAST performed similarly to AFNI’s noise model (not shown).

can expect higher signal values during the beginning of the as-356

sumed rest period. Thus, it will be difficult to distinguish the357

assumed activation period from the assumed rest period, and358

the spuriously high signal during the former period will likely359

not result in detected significance. On the other hand, if such a360

spuriously high signal occurs in the middle of a long assumed 361

activation period, there will be enough time for the signal to re- 362

turn to its baseline level, so that there will be a larger difference 363

between the mean signal during the assumed activation period 364

and the mean signal during the assumed rest period. As a result, 365
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detection of significant activation will be more likely.366

An interesting case was the checkerboard experiment con-367

ducted with impaired consciousness patients, where FSL and368

SPM found a higher percentage of significant voxels for the de-369

sign with the assumed lowest design frequency than for the true370

design. As this subject population was unusual, one might sus-371

pect weaker or inconsistent response to the stimulus. However,372

positive rates for this experiment for the true design were all373

around 50%, substantially above other assumed designs.374

Compared to FSL and SPM, the use of AFNI’s and FAST375

noise models for task datasets resulted in larger differences be-376

tween the true design and the wrong designs in the first level377

results. This occurred because of more accurate autocorrelation378

modeling in AFNI and in FAST. In our analyses FSL and SPM379

left a substantial part of the autocorrelated noise in the data and380

the statistics were biased. For none of the pre-whitening ap-381

proaches were the positive rates around 5%, which was the sig-382

nificance level used in the cluster inference. This is likely due to383

imperfect cluster inference in FSL. High familywise error rates384

in first level FSL analyses were already reported in Eklund et al.385

(2015). In our study the familywise error rate following the use386

of AFNI’s and FAST noise models was consistently lower than387

the familywise error rate following the use of FSL’s and SPM’s388

noise models. Opposed to the average percentage of significant389

voxels, high familywise error rate directly points to problems390

in the modeling of many subjects.391

The highly significant responses for the NKI datasets are in392

line with Eklund et al. (2012), where it was shown that for fMRI393

scans with short TR it is more likely to detect significant activa-394

tion. The NKI scans that we considered had TR of 0.645s and395

1.4s, in both cases much shorter than the usual repetition times.396

Such short repetition times are now possible due to multiband397

sequences (Larkman et al., 2001). The shorter the TR, the398

higher the correlations between adjacent time points (Purdon399

and Weisskoff, 1998). If positive autocorrelation in the data400

is higher than the estimated level, then false positive rates will401

increase. The study of Eklund et al. (2012) only referred to402

SPM. In addition to the previous study, we observed that the403

familywise error rate for short TRs was substantially lower in404

FSL than in SPM, though still much higher than for resting405

state scans at TR=2s (“FCP Beijing” and “CRIC RS”). FSL406

models autocorrelation more flexibly than SPM, which seems407

to be confirmed by our study. For short TRs, AFNI’s perfor-408

mance deteriorated too, as autocorrelation spans more than one409

TR (Bollmann et al., 2018) and an ARMA(1,1) noise model can410

only partially capture it.411

Apart from the different TRs, we analyzed the impact of spa-412

tial smoothing. If more smoothing is applied, the signal from413

gray matter will be often mixed with the signal from white mat-414

ter. As autocorrelation in white matter is lower than in gray mat-415

ter (Worsley et al., 2002), autocorrelation in a primarily gray416

matter voxel will likely decrease following stronger smoothing.417

The observed relationships of the percentage of significant vox-418

els and of the positive rate from the smoothing level can be sur-419

prising, as random field theory is believed to account for differ-420

ent levels of data smoothness. The relationship for the positive421

rate (familywise error rate) was already shown in Eklund et al.422

(2012, 2015). More about the impact of smoothing and spatial 423

resolution can be found in Geissler et al. (2005); Weibull et al. 424

(2008); Mueller et al. (2017). We considered smoothing only 425

as a confounder. Importantly, for all four levels of smoothing, 426

AFNI and FAST outperformed FSL and SPM. 427

Compared to FSL, the use of SPM resulted in a lower per- 428

centage of significant voxels for the “FCP Cambridge” and 429

“BMMR checkerboard” datasets. These were the only datasets 430

with TR of more than 2 seconds. For the “FCP Cambridge” 431

dataset, a lower percentage of significant voxels was a desirable 432

result, as the dataset was used as null data. However, compared 433

to AFNI and FSL, SPM was less sensitive in detecting activa- 434

tion in the primary visual cortex for the “BMMR checkerboard” 435

dataset. Because the autocorrelation modeling approach in 436

SPM has little flexibility, in case of long TR, where the correla- 437

tions between adjacent time points become smaller, SPM might 438

introduce negative autocorrelations during pre-whitening. For 439

boxcar designs, this lowers the statistics and increases false neg- 440

ative rates (Lenoski et al., 2008). Surprisingly, compared to 441

AFNI and FSL, for the “BMMR checkerboard” dataset tested 442

with the true design, the use of FAST also led to a lower per- 443

centage of significant voxels. 444

Our results confirm Lenoski et al. (2008) insofar as our study 445

also showed best performance of a method that did not involve 446

spatial smoothing of the autocorrelation parameters. Interest- 447

ingly, in Eklund et al. (2015) AFNI, FSL and SPM were already 448

compared in the context of first level fMRI analyses. AFNI re- 449

sulted in substantially lower false positive rates than FSL and 450

slightly lower false positive rates than SPM. We also observed 451

lowest false positive rates for AFNI. Opposed to Eklund et al. 452

(2015), which compared the packages in their entirety, we com- 453

pared the packages only with regard to pre-whitening. It is 454

possible that pre-whitening is the most crucial single difference 455

between AFNI, FSL and SPM, and that the relationships de- 456

scribed in Eklund et al. (2015) would look completely different 457

if AFNI, FSL and SPM employed the same pre-whitening. For 458

one dataset, Eklund et al. (2015) also observed that SPM led to 459

worst whitening performance. 460

We did not perform slice timing correction, but to account 461

for different slice acquisition times we employed the temporal 462

derivative. The differences in first level results between AFNI, 463

FSL and SPM which we observed could have been smaller 464

if physiological recordings had been modeled. The modeling 465

of physiological noise is known to improve whitening perfor- 466

mance, particularly for short TRs (Lund et al., 2006; Bollmann 467

et al., 2018). Unfortunately, cardiac and respiratory signals are 468

not always acquired in fMRI studies. Even less often are the 469

physiological recordings incorporated to the analysis pipeline. 470

How to explain pre-whitening problems in FSL and SPM? 471

FSL provided a benchmarking paper of its pre-whitening ap- 472

proach (Woolrich et al., 2001). The study employed data cor- 473

responding to two fMRI protocols. For one protocol TR was 474

1.5s, while for the other protocol TR was 3s. For both proto- 475

cols, the voxel size was 4x4x7 mm3. These were large voxels. 476

We suspect that the FSL’s pre-whitening approach could have 477

been overfitted to this data. 478
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Friston et al. (2000) and Lenoski et al. (2008) showed that479

pre-whitening with a global noise model can result in profound480

bias. SPM’s default is a global noise model. However, SPM’s481

problems could be partially related to the estimation procedure.482

Firstly, the estimation is approximative as it uses a Taylor ex-483

pansion (Friston et al., 2002). Secondly, the estimation is based484

on a subset of the voxels. Only voxels with p < 0.001 follow-485

ing inference with no pre-whitening are selected. This means486

that the estimation strongly depends both on the TR and on the487

experimental design (Purdon and Weisskoff, 1998).488

Impact on group studies489

If the second level analysis is performed with a random490

effects model, the standard error maps are not used. Thus,491

random effects models like the summary statistic approach in492

SPM should not be affected by imperfect pre-whitening (Fris-493

ton et al., 2005). On the other hand, residual positive autocor-494

related noise decreases the signal differences between the acti-495

vation blocks and the rest blocks. This is particularly relevant496

for event-related designs (see Supplementary material). Bias497

from confounded coefficient maps can be expected to propa-498

gate to the group level. In Supplementary material we showed499

that pre-whitening indeed confounds group analyses performed500

with a random effects model. However, more relevant is the501

case of mixed effects analyses, for example when using 3dMEMA502

in AFNI (Chen et al., 2012) or FLAME in FSL (Woolrich et al.,503

2004). These approaches additionally employ standard error504

maps, which are also confounded by imperfect pre-whitening.505

Bias in mixed effects fMRI analyses resulting from non-white506

noise at the first level was already reported in Bianciardi et al.507

(2004). We postulate that more accurate autocorrelation mod-508

eling at the subject level can substantially improve fMRI relia-509

bility both at the subject level and at the group level.510

What is the best null data for fMRI methods validation studies?511

For resting state data treated as task data, it is possible to512

observe activation both in the posterior cingulate cortex and513

in the frontal cortex, since these regions belong to the default514

mode network (Raichle et al., 2001). In fact, in Supplemen-515

tary Figure 18 in Eklund et al. (2016) the spatial distribution516

plots of significant clusters indicate that the significant clusters517

appear mainly in the posterior cingulate cortex, even though518

the assumed design for that analysis was a randomized event-519

related design. The rest activity in these regions can occur at520

different frequencies and can underlie different patterns (Stark521

and Squire, 2001). Thus, resting state data is not perfect null522

data for task fMRI analyses, especially if one uses an approach523

where a subject with one small cluster in the posterior cingu-524

late cortex enters an analysis with the same weight as a subject525

with a number of large clusters spread throughout the entire526

brain. Task fMRI data is not perfect null data either, as an as-527

sumed wrong design might be confounded by the underlying528

true design. For simulated data, a consensus is needed how529

to model autocorrelation, spatial dependencies, physiological530

noise, scanner-dependent low-frequency drifts and head mo-531

tion. Some of the current simulation toolboxes (Welvaert and532

Rosseel, 2014) enable the modeling of all these aspects of fMRI 533

data, but as the later analyses might heavily depend on the spe- 534

cific choice of parameters, more work is needed to understand 535

how the different sources of noise influence each other. In our 536

study, results for simulated resting state data were substantially 537

different compared to acquired real resting state scans. In par- 538

ticular, the percentage of significant voxels for the simulated 539

data was much lower, indicating that the simulated data did 540

not appropriately correspond to the underlying brain physiol- 541

ogy. Considering resting state data where the posterior cingu- 542

late cortex and the frontal cortex are masked out could be an 543

alternative null. Because there is no perfect fMRI null data, 544

we used both resting state data with assumed dummy designs 545

and task data with assumed wrong designs. Results for both 546

approaches coincided. 547

Conclusions 548

Using data corresponding to a wide variety of fMRI proto- 549

cols, we showed that AFNI and SPM tested with option FAST 550

had the best whitening performance, followed by FSL and 551

SPM. Pre-whitening in FSL and SPM left substantial resid- 552

ual autocorrelated noise in the data, primarily at low frequen- 553

cies. Though the problems were most severe for short repetition 554

times, all considered fMRI protocols were affected. We showed 555

that the residual autocorrelated noise led to heavily confounded 556

first level results. Low-frequency boxcar designs were affected 557

the most. Due to better whitening performance, it was much 558

easier to distinguish the assumed true experimental design from 559

the assumed wrong experimental designs with AFNI and FAST 560

than with FSL and SPM. This suggests superior specificity- 561

sensitivity trade-off resulting from the use of AFNI’s and FAST 562

noise models. The differences between AFNI, FSL and SPM 563

were large and consistent across four different comparison ap- 564

proaches and across 11 datasets. The resulting false positives 565

and false negatives can be expected to propagate to the group 566

level, especially if the group analysis is performed with a mixed 567

effects model. Results derived from FSL could be made more 568

robust if a different autocorrelation model was applied. How- 569

ever, currently there is no alternative pre-whitening approach in 570

FSL. For SPM, our findings support more widespread use of the 571

FAST method. Unfortunately, although the vast majority of task 572

fMRI analyses is conducted with linear regression, the popular 573

analysis packages do not provide diagnostic plots. For old ver- 574

sions of SPM, the external toolbox SPMd generated them (Luo 575

and Nichols, 2003). It provided a lot of information, which 576

paradoxically could have limited its popularity. We believe that 577

task fMRI analyses would strongly benefit if AFNI, FSL and 578

SPM provided some basic diagnostic plots. This way the inves- 579

tigator would be aware, for example, of residual autocorrelated 580

noise in the GLM residuals. We provide a MATLAB script 581

(GitHub: plot_power_spectra_of_GLM_residuals.m) for 582

the fMRI researchers to check if their analyses might be af- 583

fected by imperfect pre-whitening. 584
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Supplementary material716

Simulation717

We used the neuRosim package to simulate 100 resting state718

scans. The neuRosim simulations account for white noise, tem-719

poral noise, low-frequency scanner-induced noise, physiologi-720

cal noise, task-related noise and spatial noise. Spatial noise721

captures spatial relationships in the data: that time series from722

voxels next to each other tend to be similar. The user specifies723

the weights of different noises. We arbitrarily chose a weight724

of 25% corresponding to white noise, a weight of 50% corre-725

sponding to temporal noise and a weight of 25% corresponding726

to spatial noise. For several other tested weights, we could not727

detect significant activation in any of the 100 simulated scans.728

neuRosim provides AR(m) models to account for temporal au-729

tocorrelation. The same model, i.e. with the same parameters,730

is used for each voxel. We decided to generate the temporally731

autocorrelated noise with the help of an AR(1) model. For the732

simulation procedure, a 3-dimensional baseline image must be733

provided by the user. The voxel-wise means in the simulated734

scans are equal to this baseline image. We chose a subject from735

the “FCP Beijing” dataset, subject ID “sub98617”, as the base-736

line subject. The baseline image used for the simulation was737

the average of the real scan over time. Scanning parameters are738

shown in Table 1. The number of time points was also chosen739

as in “FCP Beijing”. For the real “FCP Beijing” scan, we arbi-740

trarily chose a cuboidal region of interest, where we calculated741

the average parameter of voxel-wise AR(1) models. In the sim-742

ulation procedure it was not possible to directly use the AR(1)743

parameter from the real “FCP Beijing” scan, as white noise and744

spatial noise influence the effective value of the parameter of745

the AR(1) model. That is why we found a parameter for the746

neuRosim’s AR(1) model so that the resulting average AR(1)747

parameter in the simulated scans in the same cuboidal region of748

interest was very similar.749

Impact on event-related design studies750

In order to check if differences in autocorrelation model-751

ing in AFNI, FSL and SPM lead to different first level re-752

sults for event-related design studies, we analyzed the Cam-753

CAN dataset. The task was a sensorimotor one with visual and754

audio stimuli. The design included the stimulus m-sequence755

described in Buračas and Boynton (2002). Supplementary ma-756

terial, Fig. S4 shows (1) power spectra of the GLM residuals757

in native space averaged across brain voxels and across sub-758

jects for the assumed true design (“E1”), (2) average percentage759

of significant voxels for three wrong designs and the true de-760

sign, (3) positive rate for the same four designs, and (4) spatial761

distribution of significant clusters for the assumed true design762

(“E1”). Only smoothing of 8 mm was considered. The dummy763

event-related design (“E2”) consisted of relative stimulus onset764

times generated from a uniform distribution with limits 3s and765

6s. The stimulus duration times were 0.1s.766

For the assumed low-frequency design (“B2”), AFNI’s auto-767

correlation modeling led to the lowest familywise error rate as768

residuals from FSL and SPM again showed a lot of signal at low769

frequencies. However, residuals from SPM tested with option770

FAST were similar at low frequencies to AFNI’s residuals. As a 771

result, the familywise error rate was similar to AFNI. For high 772

frequencies, power spectra from SPM tested with option FAST 773

were more closely around 1 than power spectra correspond- 774

ing to the standard three approaches (AFNI/FSL/SPM). For an 775

event-related design with very short stimulus duration times 776

(around zero), residual positive autocorrelation at high frequen- 777

cies makes it difficult to distinguish the activation blocks from 778

the rest blocks, as part of the experimentally-induced signal is in 779

the assumed rest blocks. This is what happened with AFNI and 780

SPM. As their power spectra at high frequencies were above 781

1, we observed a lower percentage of significant voxels com- 782

pared to SPM tested with option FAST. On the other hand, FSL’s 783

power spectra at high frequencies were below 1. As a result, 784

FSL decorrelated activation blocks from rest blocks possibly 785

introducing negative autocorrelations at high frequencies, lead- 786

ing to a higher percentage of significant voxels than SPM tested 787

with option FAST. Though we do not know the ground truth, we 788

might expect that AFNI and SPM led for this event-related de- 789

sign dataset to more false negatives than SPM with option FAST, 790

while FSL led to more false positives. Alternatively, FSL might 791

have increased the statistic values above their nominal levels for 792

the truly but little active voxels. 793

Impact on group studies with a random effects model 794

To investigate the impact of pre-whitening on the group level, 795

we performed in SPM random effects analyses for a one-sample 796

t-test. We considered only the 8 mm smoothing level and results 797

corresponding to SPM and FAST. As there were 10 datasets and 798

16 assumed designs, for each pre-whitening we ran 160 group 799

analyses. Four of these group analyses were for task data with 800

assumed true design. The rest were analyses on null data. For 801

null data, we found significant clusters in 14 analyses for SPM 802

and in 16 analyses for FAST. This corresponded to a family- 803

wise error rate of 9% for SPM and 10.3% for FAST. For task 804

datasets tested with the true design, the use of FAST resulted in 805

a lower percentage of significant voxels than the use of the de- 806

fault method. For the NKI dataset at TR=1.4s, 6.5% of the 807

brain was significant for SPM and 6.2% was significant for 808

FAST. For the NKI dataset at TR=0.645s, SPM and FAST led 809

to 7.1% and 6.4%, respectively. For the BMMR dataset, 10.8% 810

and 10.7% of the brain was significant following the use of the 811

default noise model of SPM and the use of FAST. For the “CRIC 812

checkerboard” dataset, no significant clusters were found at the 813

group level, as several of the subjects had deformed brains and 814

the resulting group brain mask in MNI space did not cover the 815

primary visual cortex. 816

Furthermore, we performed group analyses for the event- 817

related design dataset: “CamCAN sensorimotor”. For the as- 818

sumed true design, the use of FAST led to a higher percentage 819

of significant voxels: 45.6% compared to 42.9% for the SPM’s 820

default method. We observed the same relationship at the single 821

subject level (Supplementary material, Fig. S4). While a high 822

percentage of significant voxels might be surprising, the exper- 823

iment included both visual and audio stimuli, and the dataset 824

consisted of 200 subjects. A large number of subjects makes it 825

easier to find significant activation if the effect size is negligible. 826
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Figure S1: Average percentage of significant voxels across subjects for different packages. x-axis shows the assumed designs, e.g. “10” refers to the boxcar design
of 10s of rest followed by 10s of stimulus presentation. Scans were spatially smoothed with FWHM of 8 mm. Resting state data was used as null data. Thus, a low
percentage of significant voxels was a desirable outcome, as it was suggesting high specificity. Task data with assumed wrong designs was used as null data too.
Thus, large positive differences between the true design and the wrong designs were a desirable outcome.
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Figure S2: Positive rate for different packages. x-axis shows the assumed designs, e.g. “10” refers to the boxcar design of 10s of rest followed by 10s of stimulus
presentation. Scans were spatially smoothed with FWHM of 4 mm. For null data, the positive rate is the familywise error rate. AFNI and FAST had the highest
specificity.
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Figure S3: Positive rate for different packages. x-axis shows the assumed designs, e.g. “10” refers to the boxcar design of 10s of rest followed by 10s of stimulus
presentation. Scans were spatially smoothed with FWHM of 8 mm. For null data, the positive rate is the familywise error rate. AFNI and FAST had the highest
specificity.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 16, 2018. ; https://doi.org/10.1101/323154doi: bioRxiv preprint 

https://doi.org/10.1101/323154
http://creativecommons.org/licenses/by/4.0/


0   0.05 0.1 0.15 0.2 0.25

Frequency [Hz]

0

0.5

1

1.5

TASK: CamCAN sensorimotor (TR=1.97s)
 

Po
w

e
r 

sp
e
ct

ra

B1 B2 E1 E2

Assumed experimental design

0

2

4

6

8

10

A
v
g

. 
%

 o
f 

si
g

 v
ox

e
ls

B1 B2 E1 E2

Assumed experimental design

0

20

40

60

80

100

Po
si

ti
v
e
 r

a
te

 (
%

)

AFNI
FSL
SPM
SPM with option FAST
Ideal power spectra
True experimental design

Expected for null data
95% CI
B1:  boxcar 10s off + 10s on
B2:  boxcar 40s off + 40s on
E1:  subject-specific event-related design
E2:  dummy event-related design

Spatial distribution of significant clusters

          AFNI                   FSL                   SPM           SPM with FAST 
0

20

40

60

Figure S4: Differences between AFNI, FSL and SPM for a task dataset where the design was an event-related design (“CamCAN sensorimotor”). From top to
bottom: (1) power spectra of the GLM residuals in native space averaged across brain voxels and across subjects for the assumed true design (“E1”), (2) average
percentage of significant voxels for three wrong designs and the true design, (3) positive rate for the same four designs, and (4) spatial distribution of significant
clusters for the assumed true design (“E1”) on an exemplary MNI axial slice. Scans were spatially smoothed with FWHM of 8 mm.
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