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28 Abstract 

29 Intestinal health of weaning piglets was studied after oral treatments with 

30 fosfomycin (FOS), Cynara scolymus extract (CSE), deoxynivalenol (DON) and their 

31 combinations. Piglets were divided in groups and received different treatments during 

32 15 days, namely DON (1mg/kg of feed), FOS administered into the drinking water (30 

33 mg/kg b.w.), CSE (300 g/ton of feed) and all possible combinations including a control 

34 group that received clean balanced diet. At day 15, three piglets from each group were 

35 euthanized and gastrointestinal tract samples were immediately taken to evaluate pH, 

36 bacteriology (enterobacteria and lactic acid bacteria), volatile fatty acids concentration 

37 (VFAs), disaccharidases activity (lactase, sucrase and maltase), histology (intestinal 

38 absorptive area [IAA] and goblet cells count) and adherence of bacteria to intestinal 

39 mucus. Animals receiving FOS and CSE treatments exhibited evident beneficial 

40 intestinal effects compared to animals receiving diets free from these compounds. This 

41 was revealed by a lower enterobacteria population together with a lower E/L, an 

42 enhanced production of butyric acid, an increased enzymatic activity (particularly 

43 maltase), and a greater IAA and goblet cells count along with an increase in pathogenic 

44 bacteria adherence to intestinal mucus. Interactions between both treatments resulted in 

45 similar beneficial effects as their individual administration. On the contrary, DON 

46 produced detrimental effects on intestinal health as a decrease was observed on volatile 

47 fatty acids production, enzymatic activity and goblet cells count in animals receiving 

48 diets containing sub- toxic concentrations of this mycotoxin. The knowledge of the 

49 intestinal effects of these compounds contributes to understand the physiological and 

50 pathological gut changes and their potential productive consequences.
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52 Introduction

53 Weaning is considered one of the most critical periods of pig production because 

54 of its highly negative impact on health and productive performance of piglets, mainly in 

55 the first post-weaning days. During this period, the animals are exposed to 

56 physiological, immunological, microbiological, social, environmental and nutritional 

57 factors that lead to post-weaning stress (1–3). In order to overcome this situation a 

58 common, though not rational practice, has been the prophylactic use of antibiotics in 

59 intensive pig production. Fosfomycin ((cis 1-2 epoxy propyl) phosphonic acid, FOS) is 

60 a broad spectrum bactericide antibiotic, widely used in pig farms in Central and South 

61 America, South Africa and Southeast Asia. At weaning FOS is indicated for the 

62 treatment of several bacterial infections (Haemophilus parasuis, Streptococcus suis, 

63 Pasteurella multocida, Bordetella bronchiseptica, Staphylococcus hyicus, Escherichia 

64 coli, etc.) associated to stress (4).

65 In addition, vegetable extracts, particularly Cynara scolymus extract (CSE), have 

66 long been used in different species for their hepatoprotective and digestive roles, 

67 exerting a choleretic– cholagogue effect, increasing bile concentrations at small 

68 intestine level and thus enhancing fat and lipophilic vitamins absorption. In animal 

69 production, these compounds are used as feed additives to improve zootechnical 

70 parameters (5–8) and they have shown further beneficial consequences on intestine and 

71 liver functions.  Nowadays enteroprotective, trophic, antitoxic and antimicrobial effects 

72 are ascribable to bile action (9–12). CSE is used in intensive pig and avian productions. 

73 It is obtained from the leaves of the plant and contains caffeolquinic acid derivatives 

74 which are known for their choleretic– cholagogue effect in different species (7,13,14), 

75 including pigs (15). 

76 Among weaning stress factors, the presence of anti-nutritional compounds in 

77 feed, such as mycotoxins, negatively influences the productive performance of animals. 

78 Deoxynivalenol (DON) is a mycotoxin produced by Fusarium species, being pigs the 

79 most susceptible species to its toxic effects (16,17). Formerly DON was also called 

80 vomitoxin, referring to its emetic effect (18,19). Other clinical signs that have been 

81 described include reduction in feed intake and complete feed refusal, 

82 immunosuppression, haemorrhage and eventually, circulatory shock (20–22). However 

83 there is little information on the possible subclinical effects associated to the ingestion 
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84 of feed contaminated with low DON concentrations, which is highly likely to occur 

85 (19,23,24).

86 In the productive reality, in innumerable situations, but mostly during weaning, 

87 antibiotics, natural extracts and mycotoxins coexist in the animals´ diet, and 

88 consequently in the gut, regardless the potential interactions among them. 

89 The aim of this study was to evaluate the effect of FOS, CSE, DON and their 

90 interactions on the intestinal health of weaning piglets. 

91

92 Materials and methods
93 Animals

94 The study was carried out according to guidelines of the Animal Welfare 

95 Committee of the Faculty of Veterinary Sciences UNCPBA, Argentina, for animal 

96 handling and experimentation. One hundred and sixty, healthy, 21 days old weaned 

97 piglets (6.26 ± 0.4 kg body weight [b.w.]) of the same genetic line from a commercial 

98 farm were used. Piglets were housed in an environmentally controlled barn (22±5°C; 

99 light: dark cycle 12:12 h; relative humidity 45-65%), given free access to feed 

100 (commercial feed: 3.0 Kcal/Kg of metabolizable energy) and water, and were checked 

101 daily. 

102 Antibiotic, natural extract and mycotoxin 

103 Fosfomycin (FOS): Calcium fosfomycin was provided by Bedson S.A. 

104 laboratory (Fosbac®, Pilar, Buenos Aires, Argentina). The antibiotic dose was 30 mg/kg 

105 b.w. administered via drinking water. Water consumption was measured by a water 

106 flow meter installed at the entrance pipeline of the weaning room two days before the 

107 beginning of the trial. Medicated water was prepared daily at 8.00 am, considering 

108 water consumption and mean piglets weight.

109 Cynara scolymus extract (CSE): This natural extract was provided by Bedson 

110 S.A. laboratory (Bedgen40®, Pilar, Buenos Aires, Argentina). Three hundred grams of 

111 CSE were uniformly mixed with one ton of feed (15 mg/kg b.w.).
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112 Deoxynivalenol (DON): The mycotoxin was produced in our laboratory by 

113 growing Fusarium graminearum NRRL 28063 in corn at 25°C for 25 days. For DON 

114 quantification, samples of ground corn were extracted twice with water/acetonitrile and 

115 then with hexane by liquid-liquid extraction. Extracts were passed through DONPREP 

116 columns (R-Biopharm, Acre Road, Glascow, Scotland) and evaporated to dryness at 

117 40°C. The dry extract was reconstituted with MilliQ water and filtered through 0.22 μm 

118 nylon membranes before Injection into HPLC UV/VIS for quantification. A Gilson 

119 HPLC system equipped with a Gilson 151 UV-Vis detector and Gilson 712 software 

120 was used for data analysis (Gilson, Inc., Middleton, USA). The column was a C18; 250 

121 mm × 3.00 mm Sinergy Hydro RP 4 μm (Phenomenex, Torrance, United States) 

122 maintained in at 35°C. The mobile phase was water: acetonitrile (90:10) at 0.5 ml/min 

123 flow rate. DON was detected at 222 nm and its retention time was 8.7 min. 

124 Convenient aliquots of ground contaminated corn were uniformly mixed with 

125 feed in order to obtain 1 mg DON/ Kg (50 µg/kg b.w.).

126 Experimental groups

127 Weaning piglets were randomly assigned to one of eight groups, which were 

128 subjected to different treatments for a 15 days period. The dietary treatments were as 

129 follows: A) balanced diet containing DON (1mg/kg of feed), B) balanced diet and FOS 

130 administered into the drinking water (30 mg/kg b.w.), C) balanced diet containing CSE 

131 (300 g/ton of feed), D) balanced diet containing DON (1mg/kg of feed) and FOS (30 

132 mg/kg b.w.) into the drinking water, E) balanced diet containing DON (1mg/kg of feed) 

133 plus CSE (300 g/ton of feed), F) balanced diet containing CSE (300 g/ton of feed) and 

134 FOS (30 mg/kg b.w.) into the drinking water, G) balanced diet containing DON 

135 (1mg/kg of feed) plus CSE (300 g/ton of feed) and FOS (30 mg/kg b.w.) into the 

136 drinking water and, H) balanced diet without FOS, CSE or DON.

137 After 15 days of treatment, three piglets of each group were randomly selected 

138 and euthanized for sampling of the gastrointestinal tract. 

139 pH determination 

140 As soon as each sample was obtained, pH was measured with a pH meter (UP-

141 25, Denver Instrument Company, Denver, Colorado, EE. UU.) in the following portions 
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142 of the gastrointestinal tract: caudal portion of the stomach, ileum (15 cm proximal to 

143 ileocaecal valve), caecum and colon (20 cm distal from caecum).

144 Enterobacteriaceae/Lactic acid bacteria ratio (E/L)

145 The E/L has traditionally been used to determine balance of intestinal microbiota 

146 in pigs (25). It has been demonstrated that a greater resistance to gastrointestinal 

147 diseases is acquired when animals show a lower E/L (26–28). 

148 The intestinal contents from ileum (15 cm proximal to the ileocaecal valve), 

149 caecum and colon (20 cm distal from caecum) were collected and kept at 4°C until 

150 arrival to the laboratory. One g of sample was diluted in 9 ml of peptone water and 

151 homogenized by continuous agitation. Counting of viable bacteria was performed by 

152 plating serial 10-fold dilutions (in 1% peptone water) onto MRS agar (Britania S.A.) for 

153 Lactic acid bacteria (LAB) representative of beneficial bacteria in pigs, and onto Mac 

154 Conkey agar (Britania S.A.) for Enterobacteriaceae representative of commensal Gram 

155 negative bacteria (29–32). Colonies were counted, log transformed and expressed as 

156 colony forming units per gram of digesta (CFU/g).

157 Volatile fatty acids (VFAs) 

158 The caecal content was immediately diluted with phosphoric acid (in a 4:1 

159 proportion) for preservation and kept at -70°C until analyzed. Concentrations of VFAs 

160 were determined using gas liquid chromatography according to the method described by 

161 Jouany (33). A Shimadzu chromatograph (Model GC–17A, Kyoto, Japan) with a 

162 19091N-133 Innowax 30M column (Agilent, Santa Clara, CA, USA) was used. A 

163 mixture of 10 mM Supelco VFAs (C2 to C10) and 2-ethyl-butyric acid (Fluka) as 

164 internal standard were used to build calibration curves.

165 Disaccharidases activity 

166 The digestive function of the intestine can be evaluated by the activity of 

167 disaccharidases present in the microvilli or brush border of the enterocytes (34,35). The 

168 evaluation of these enzymes gives information on the physio pathological status of the 

169 intestinal mucosa (36).

170 The four portions of the small intestine (duodenum, proximal jejunum, medium 

171 jejunum and ileum) were opened along the mesenteric border and washed with saline 
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172 solution to eliminate the mucus and remaining intestinal contents. The mucosa was 

173 scraped off with a scalpel and 1.000 g of this material was weighed. Then, saline 

174 solution (2 ml) was added to the intestinal mucosa and it was ground with a dispersing 

175 instrument (Ultra-Turrax®) and a Potter homogenizer. Samples were then cold-

176 centrifuged at 4°C and 6630 rpm for 10 min. The supernatant was used as crude enzyme 

177 solution and it was stored at – 20ºC until analysis. The protein concentration of each 

178 homogenate was determined by Bradford method using bovine serum albumin as 

179 standard (37). The activity of sucrase, lactase and maltase was determined by 

180 quantification of released glucose, according to Dahlqvist method (38). Briefly, the 

181 homogenate supernatants were diluted, added to an equal volume of 0.1 M sodium 

182 maleate buffer (pH 6.0) containing 56 mM lactose, sucrose or maltose, and incubated 

183 for 1 h at 37ºC. Then, the mixtures were added to the glucose oxidase–peroxidase 

184 reagents (Sigma Chemical Company, USA) containing O-dianisidine as chromogen. 

185 The absorbance was measured using a spectrophotometer (Dupont, Sorvall Instruments) 

186 at 450 nm. The activity of disaccharidases was expressed as U/mg protein. One U is 

187 defined as the amount of enzyme that hydrolyses 1 mmol of lactose, sucrose or maltose 

188 in 1 min under the standard assay conditions.

189 Histological study

190 Different measures on villi and crypts can be correlated to nutrient absorption 

191 capacity, possible structural alterations of intestinal mucosa and consequent productive 

192 yield (34,39–47).

193 Samples of medium jejunum (1.5 m from stomach) and ileum (20 cm proximal 

194 to ileocaecal valve) were washed with saline solution to remove the intestinal content, 

195 transversally cut and fixed in Bouin solution (75% saturated picric acid, 20% 

196 formaldehyde and 5% acetic acid). After 24 h of fixation, the samples were embedded 

197 in paraffin and stained with haemotoxylin and eosin (H&E) and periodic acid-Schiff 

198 (PAS). 

199 The intestinal mucosa was examined under light microscope and measured by 

200 the Image Analysis Software (ToupTekTM ToupViewTM). The length of villi and width 

201 of villi and crypts were measured in H&E- stained sections. The goblet cells count in 

202 villi and crypts (expressed as goblet cells/ 100 villi or crypts) was determined using 

203 PAS staining (48,49). Means were calculated for each group. The mathematical model 
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204 proposed by Kisielinski et al was used to estimate the intestinal absorptive area (IAA) 

205 using the following equation (50):

206
𝐼𝐴𝐴 = (𝑣𝑖𝑙𝑙𝑢𝑠𝑊 × 𝑣𝑖𝑙𝑙𝑢𝑠𝐿) + �𝑣𝑖𝑙𝑙𝑢𝑠𝑊
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207 being, IAA= intestinal absorptive surface area, villusW= villi mean width, villusL= villi 

208 mean length, and cryptW= crypts mean width. 

209 Goblet cells count was used as index of the secretory capacity and the 

210 production of protective intestinal mucus (51).

211 Adherence of bacteria to intestinal mucus

212 Mucus quality has been evaluated by its ability to adhere E. coli, since bacterial 

213 adhesion is associated with the protective and antimicrobial functions of mucus favoring 

214 bacterial elimination by the rapid removal of mucus by peristaltic movements (52,53). 

215 The interaction between the glycoproteins of the outer layer of the intestinal mucus and 

216 E. coli would prevent the attachment of bacteria to epithelial cells and subsequent 

217 damage (51,53–58).

218 Ileum samples (15 cm proximal to ileocaecal valve) were opened along the 

219 mesenteric border. The mucus was carefully scraped off with a scalpel (leaving 

220 intestinal mucosa intact), collected into sterile tubes and kept at -70°C until analyzed.

221 The adherence of bacteria to the intestinal mucus was analyzed according to Bai 

222 et a. (59). One hundred milligrams of mucus were diluted with 1.5 ml of saline solution 

223 and centrifuged (12.000 rpm, 10 min, 4ºC) to remove cell debris and bacteria. The 

224 supernatant was sterilized by filtration (13 mm x 0.22 µm nylon filter membranes) and 

225 the filtered solution was defined as the original crude mucus that contained 

226 glycoproteins responsible for bacteria adherence. A concentration of 103 CFU/ml of 

227 Escherichia coli O157:H7 was incubated with supernatant containing crude mucus for 

228 30 min, at 37°C under continuous agitation. Then the tubes were centrifuged (12.000 

229 rpm, 10 min, 4ºC) and pellets (with adhered and not adhered bacteria) were resuspended 

230 in 400 µl saline solution and further centrifuged (2000 rpm, 4ºC, 2 min). Two fractions 

231 were obtained, the pellet which contained adhered bacteria and the supernatant which 

232 contained not adhered bacteria. Aliquots from pellet and supernatant were spread on 

233 Mac Conkey Agar with Sorbitol (Britania S.A.) and incubated under aerobic condition 
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234 for 24 h at 37 °C for colonies count. Results were expressed as percentage of adhered 

235 bacteria to the intestinal mucus.

236 Statistical analyses

237 A 2x2x2 factorial arrangement was used to evaluate interactions between FOS (0 

238 vs. 30 mg/kg b.w.), CSE (0 vs. 300 g/ton of feed) and DON (0 vs. 1 mg/kg feed) on the 

239 intestinal health of weaned piglets. The response variables (pH, intestinal bacteria, 

240 VFAs, dissacharidases activity, IAA, goblet cells and percentage of adhered bacteria to 

241 intestinal mucus) were subjected to analysis of variance (ANOVA) by GLM procedure 

242 of SAS V9.3 (SAS Institute Inc., Cary, NC, USA). Differences between treatments were 

243 declared significant when p < 0.05. When significant interactions were observed, 

244 contrasts were used to compare the different levels of each treatment. Data are presented 

245 in tables as means and mean standard error (SEM).

246

247 Results

248 pH 

249 pH values are shown in Table 1. No statically significant differences on pH were 

250 found neither in gastrointestinal (GI) portions studied for groups treated with CSE and 

251 DON nor in interactions between the different factors. In FOS treated groups, no 

252 statically significant effects were found in caudal portion of stomach and ileum, but 

253 piglets that received FOS showed a lower pH (p< 0.01) in caecum and colon. The mean 

254 caecal pH was 5.51±0.33 in FOS treated groups and 6.90±0.29 in FOS free groups. The 

255 mean pH in the colon was 6.21±0.30 in FOS treated groups and 7.36±0.26 in FOS free 

256 groups.
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258 Enterobacteriaceae, lactic acid bacteria and E/L

259 There was no effect of none of the treatments on the studied bacteria at ileum 

260 level. LAB counts from caecum and colon did not show any significant differences 

261 among treatments and effects of DON on Enterobacteriaceae in these intestinal portions 

262 were neither detected. In caecum and colon, FOS and CSE treated groups showed lower 

263 Enterobacteriaceae population and E/L regardless the presence of DON (Table 2). A 

264 significant antagonistic interaction was observed between FOS and CSE on 

265 Enterobacteriaceae count (p= 0.0004) and consequently on the E/L (p= 0.0016) at 

266 caecum level. In this case, the effect of both treatments was less pronounced than the 

267 effect they produced as individual factors. An indifferent interaction was observed for 

268 Enterobacteriaceae count (p= 0.0004) and E/L (p= 0.0114) at colon level when FOS 

269 and CSE were combined, i.e., the effect produced by the combination of FOS and CSE 

270 was similar to the one observed when they were administered individually.
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271

272 Volatile fatty acids

273 Concentrations of VFAs were not modified in FOS treated groups and 

274 interactions between different factors were not significant (p> 0.05). CSE treated 
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275 groups increased the concentrations of butyric acid (p= 0.033). For DON treated groups 

276 lower acetic (p= 0.0104) and butyric (p= 0.0001) acids and lower total VFAs 

277 concentrations (p= 0.0021) were detected (Table 3). 

278

279 Disaccharidases activity
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280 There were not significant interactions between FOS, CSE and DON on 

281 disaccharidases activity (p> 0.05). 

282 It was found that the activity of maltase in the different intestinal regions in 

283 piglets from FOS treated groups was significantly higher (p< 0.05) than that observed in 

284 FOS free groups. FOS treatments also increased sucrose and lactase activity in proximal 

285 and medium jejunum and ileum though this effect was not statistically significant. 

286 Treatments with CSE produced higher maltase activity in ileum (p= 0.0020). However, 

287 an effect on the activity of sucrase and lactase was not observed. DON showed negative 

288 effects for all enzymes in all intestinal portions, being enzymatic activity lower for pigs 

289 fed diets supplemented with DON when compared to those without DON 

290 supplementation. P value< 0.05 was observed for maltase and lactase activity in 

291 duodenum and proximal jejunum, sucrase and lactase in medium jejunum and maltase 

292 in the ileum (Table 4).
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294 Intestinal absorptive area and goblet cells

295 There was an evident increase in the IAA of medium jejunum in the presence of 

296 FOS, CSE and the combination of both factors (p< 0.05). The co-administration of FOS 

297 and CSE showed an indifferent type interaction at this level. IAA of ileum increased in 

298 piglets that received CSE and an antagonistic interaction between FOS and CSE was 

299 detected (p< 0.05). The IAA of medium jejunum and ileum was not affected by the 

300 treatments with DON (p> 0.05), (Table 5).
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301

302 Generally, the number of intestinal goblet cells increased with FOS and CSE 

303 treatments, whereas a decrease was evident in goblet cells from villi after DON 

304 treatments. Goblet cells count in crypts of ileum increased in FOS treated groups (p= 

305 0.0120). The treatments with CSE increased the count of these cells in villi (p= 0.0159) 
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306 and crypts (p= 0.0143) of medium jejunum. A negative effect of DON was observed in 

307 goblet cells count in villi of medium jejunum (p= 0.0125) and ileum (p= 0.0336) (Table 

308 6). No significant interactions were detected between FOS, CSE and DON on goblet 

309 cells count (p> 0.05).
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311 Adherence of bacteria to the intestinal mucus

312 Treatments with FOS, CSE and the combination of both resulted in a statistically 

313 significant increase in the percentages of adhesion of bacteria to intestinal mucus (p< 

314 0.001, p= 0.0133 and p= 0.0049, respectively) compared to FOS and CSE free groups. 

315 In the latter, the adhesion percentage of E. coli was 45.71%, whereas FOS or CSE 

316 treated groups increased the percentage of adhesion to 83.67% and 72.75%, 

317 respectively. The combination of treatments evidenced an indifferent type interaction. In 

318 this case, the adhesion percentage of bacteria was 81.61%. The percentage of bacteria 

319 adhered to intestinal mucus was not affected by treatments with DON (p> 0.05), (Table 

320 7).
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321

322 Discussion 

323 FOS, CSE and DON are commonly found together in the weaning diet. These 

324 compounds, individually or combined, may impact on the important morphological, 
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325 histological and microbiota modifications produced during weaning, affecting the 

326 animals´ productive outcome. 

327 Bacteria, VFAs and pH

328 LAB populations were not affected by none of the treatments in any of the 

329 intestine portions studied. Natural resistance of LAB strains to antibiotics and bile salts, 

330 increased by CSE consumption, has been largely demonstrated (17,60–62), The 

331 influence of mycotoxins on intestinal microbiota of pigs have been poorly investigated. 

332 Available data on the interaction of mycotoxins with bacteria are mainly related to the 

333 ability of the intestinal microbiota to detoxify mycotoxins (63–67,24).  Results obtained 

334 in a study conducted by Waché et al. showed that cultivable bacteria diversity in fecal 

335 samples was conserved in animals that consumed feed naturally contaminated with 

336 DON (2.8 mg/kg) (24). Accordingly, in our study, when piglets received diets 

337 containing DON at 1mg/kg, alone or in combination with the other factors, significant 

338 changes in CFU counts were neither observed for LAB nor for Enterobacteriaciae. In 

339 addition, pH values were conserved in all gastrointestinal tract portions after DON 

340 treatments. It is likely that gut bacteria possess resistance mechanisms against this 

341 mycotoxin, in fact in vitro studies identified intestinal bacterial strains that promote 

342 metabolism, binding or detoxification of DON (64,67). By contrast, VFAs 

343 concentrations were lowered. The normal concentration of VFAs in the caecum varies 

344 according to the content and composition of the raw material in the diet, being around 

345 80 mmol/L for this stage of pig rearing (68–70). In the present study, the decrease in 

346 VFAs at caecum level, where the mycotoxin is metabolized, could be explained by a 

347 detrimental effect of DON on the metabolism of culture independent bacterial 

348 populations as it has been previously demonstrated (17,24). 

349 A lower count of Enterobacteriaciae population and E/L in caecum and colon 

350 was observed in pigs treated with CSE. It has been recently demonstrated by our 

351 research group that using CSE as feed additive substantially increases bile production in 

352 pigs (15). Important bile effects on the intestinal microbiota have been described 

353 involving two main mechanisms: direct detergent action on bacterial cell membranes 

354 (mainly in proximal intestine) and an indirect action by interacting with specific nuclear 

355 receptors (FXR, TGR 5, mainly in large intestine) and thus inducing antimicrobial 

356 peptides synthesis (10,71–73). Furthermore, Cremers et al. indicated that bile acid salts 
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357 have profound effects on many key proteins in bacteria (74). Results from different 

358 studies suggest that bile salts could potentially induce DNA damage through oxidative 

359 stress in E. coli (75–79). Therefore bile acids are thought to have destructive effects on 

360 gut microbes except for some bile acid tolerant bacteria. LAB can tolerate biliary acids 

361 by expressing bile salts hydrolases (80). This might have contributed to lower 

362 Enterobacteriaceae count in CSE treated groups in our study without altering LAB. 

363 The administration of CSE in the piglets´ diet increased the concentration of 

364 butyric acid, an important energetic VFA in large intestine (81–84). This finding is in 

365 agreement with other scientific studies that detected an increase in the proportion of 

366 butyrate and an equal or lower concentration of acetate in diets containing other natural 

367 extracts (85–90). The no significant change in the levels of acetate could be attributed to 

368 the fact that butyrate producing bacteria are able to use acetate as a substrate. In this 

369 way, acetic acid constitutes a type of substrate for cross-feeding interactions that occur 

370 among colonic bacteria (91–95).

371 FOS reduced Enterobacteriaceae populations in caecum and colon exerting a 

372 bactericide effect, related to its low oral bioavailability (96). LAB populations, capable 

373 of resisting relatively high bactericide antibiotic concentrations through different 

374 adaptive mechanisms (97,98), were not affected by FOS. Further, a reduction in pH was 

375 observed in caecum and colon as consequence of the diminished E/L in FOS treated 

376 groups. These findings, together with an increase of butyrate production (p> 0.05) 

377 represent an important favorable aspect of intestinal health in weaning piglets. 

378 Interactions observed between FOS and CSE treatments could be explained by a 

379 possible interference of their mechanisms of action: The modes by which antimicrobial 

380 intestinal peptides kill bacteria are varied. The cytoplasmic membrane is a frequent 

381 target, but peptides may also interfere with DNA and protein synthesis, protein folding, 

382 and cell wall synthesis. Thereby, some peptides form a complex with different cell wall 

383 precursors inhibiting cell wall biosynthesis. On the other hand, FOS is transported into 

384 bacteria via both glycerol-3-phosphate and hexose phosphate membrane transporter 

385 systems. Besides, it interferes with the cytoplasmic step of bacterial cell wall 

386 biosynthesis, the formation of the peptidoglycan precursor UDP N-acetylmuramic acid 

387 (99–103). Interference between the action of FOS and intestinal peptides (induced by 

388 biliary acids through nuclear receptors), at cytoplasmatic or membrane transporter level 

389 could occur. Moreover, some cytoplasmic peptides show bacteriostatic effects that 
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390 could antagonize bactericidal effect of FOS that requires bacteria to grow at log phase to 

391 exert it´s action; i.e. antagonistic or indifference effects may be due to inhibition of 

392 bacterial growth by static agents (104).

393 Intestinal morpho-physiology 

394 Clinical symptoms characteristic of DON intoxication were not observed in the 

395 animals under study. In order to evaluate intestinal health, morphological and 

396 physiological integrity of intestinal mucosa was studied. The mycotoxin DON 

397 administered at 1mg/Kg of feed in our experiment did not affect IAA, which is in 

398 agreement with studies that indicate that higher DON concentrations are needed to 

399 deteriorate the tissue at this level (105). However, in the present study, treatments with 

400 DON adversely affected the number of goblet cells. Similarly, Obremski et al. obtained 

401 a lower goblet cells count in jejunum of piglets maintained on diets contaminated with 

402 DON for 14 days (106). In addition, Bracarense et al. and Gerez et al. also reported 

403 lower goblet cell counts in jejunum after administration of 1.5 to 3 mg/kg DON 

404 respectively in the diet of animals during 4 to 5 weeks (107,108). Apart from a lower 

405 goblet cells count, a lower expression of mucins (mainly MUC1, MUC2 and MUC3) by 

406 these cells would be expected after the ingestion of low DON concentrations (109–111). 

407 In our study this effect was reflected by a lower adherence of E. coli to mucus (p > 0.05; 

408 data not shown). Moreover, disaccharidases activity decreased with DON treatments, 

409 particularly maltase and sucrose, in the different portions of the intestine. The 

410 undesirable effect of the mycotoxin could be a consequence of its mechanism of action 

411 as a potent inhibitor of protein synthesis, including the synthesis of disaccharidases (21). 

412 After FOS treatments, IAA and goblet cells were considerably increased. In a 

413 previous study, Pérez Gaudio et al. demonstrated a protective effect of the antibiotic 

414 FOS on in vitro cell cultures that would favor a trophic effect on intestinal mucosa 

415 (112). On the other hand, certain antibiotics modulate physiological inflammation 

416 decreasing the catabolic cost of maintaining immune response, thereby favoring 

417 mucosal anabolic processes (113–117). A greater goblet cells count improved mucus 

418 production which was revealed by a greater pathogenic bacterial adhesion. Enzymatic 

419 activity was also increased in FOS treated groups, being maltase the most active 

420 disaccharidase, as expected for the age and diet of the animals (118). 
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421 CSE as an additive in the diet significantly increased IAA and goblet cells. 

422 These findings are consistent with previous works which reported that using different 

423 sources of natural extracts increased villi height and villi: crypts ratio in the small 

424 intestine of weaned piglets (95,119,120). In pigs, the action of bile acids on the G 

425 protein–coupled bile acid receptor (TGR5) found in enteroendocrine cells stimulates 

426 secretion of glucagon like peptides (GLP)-1 and 2, which function respectively as the 

427 major incretin hormone involved in glucose homeostasis and key trophic hormone in 

428 intestinal adaptation and growth in response to food ingestion. In fact, the induction of 

429 GLP-2 secretion, by TGR 5, is involved in the trophic action of bile acids in the 

430 intestinal lumen (121,122). The observed increase in IAA and goblet cells in our study 

431 could be explained by the direct trophic effect of the increased bile production (73,123) 

432 when CSE is added to the diet. As stated before, the increased bacterial adherence to 

433 mucus would be a direct consequence of the increased number of goblet cells rendering 

434 a better mucus quality. Maltase activity, which plays an important role at weaning, was 

435 increased in CSE treated groups at ileum level. This could be related to the trophic 

436 effect of bile acids, augmented after CSE administration, in this portion of the intestine 

437 through interaction with specific nuclear receptors (10,12,73,124).

438 Beneficial effects observed after co-administration of FOS and CSE on IAA and 

439 bacterial adherence to mucus did not exceed the benefits of individual treatments 

440 (antagonistic or indifferent interactions). It could be possible that anti-inflammatory 

441 mechanisms exerted by FOS and biliary acids, that involve cytokines produced by 

442 intestine immune cells, interfere at different levels (117,125–135).

443 Conclusions

444 The gastrointestinal mucosa is the first biological barrier that makes contact to 

445 different compounds present in feed, and consequently, it could be exposed to dietary 

446 toxins. Thereby the intestinal epithelial cells are target for antibiotic, natural extracts 

447 used as additives and mycotoxins.

448 In the present study, we have demonstrated the impact of FOS, CSE and DON 

449 on intestinal health parameters. DON showed a deleterious effect at different levels of 

450 the intestinal epithelium at sub- toxic concentrations. This could represent a 

451 predisposing factor to progressive weight loss, digestive problems and diarrhea as well 

452 as a reduction in the intestinal barrier function.
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453 The antibiotic FOS and CSE improved all studied parameters in relation with the 

454 intestinal health. Interactions between both treatments resulted in similar beneficial 

455 effects as the individual administration, there remains work to be done investigating the 

456 specific mechanisms which contribute to this type of interactions.

457 Finally, the knowledge of the intestinal effects of these compounds contributes 

458 to understand the physiological/physio-pathological gut changes and their potential 

459 productive consequences. Particularly, CSE could be considered as a nutritional strategy 

460 to prevent enteric disorders and improve intestinal health in post-weaned piglets, 

461 emerging as a possible alternative to preventive use of antibiotics.  In addition, the 

462 presence of mycotoxins in feed even at sub-toxic concentrations may cause detrimental 

463 gastrointestinal effects and should not be underestimated.
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