
scQuery: a web server for comparative analysis of single-cell

RNA-seq data

Amir Alavi1,†, Matthew Ruffalo1,†, Aiyappa Parvangada1, Zhilin Huang1, and Ziv

Bar-Joseph1,2,*

1Computational Biology Department

2Machine Learning Department

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
†Equal contribution

*Corresponding author: zivbj@cs.cmu.edu

Supporting Website: http://scquery.cs.cmu.edu

Summary

Single cell RNA-Seq (scRNA-seq) studies often profile upward of thousands of cells in heterogeneous environ-
ments. Current methods for characterizing cells perform unsupervised analysis followed by assignment using
a small set of known marker genes. Such approaches are limited to a few, well characterized cell types. To
enable large scale supervised characterization we developed an automated pipeline to download, process, and
annotate publicly available scRNA-seq datasets. We extended supervised neural networks to obtain efficient
and accurate representations for scRNA-seq data. We implemented a web server that compares new datasets
to collected data employing fast matching methods in order to determine cell types, key genes, similar prior
studies, and more. We applied our pipeline to process over 500 different studies with over 300 unique cell
types. A case study of neural degeneration data highlights the ability of the web server to identify differences
between cell type distributions in healthy and diseased mice.

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

http://scquery.cs.cmu.edu
https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction

Single-cell RNA sequencing (scRNA-seq) has recently emerged as a major advancement in the field of tran-

scriptomics (Kolodziejczyk et al., 2015). Compared to bulk (many cells at a time) RNA-seq, scRNA-seq can

achieve a higher degree of resolution, revealing many properties of subpopulations in heterogeneous groups of

cells (Wills et al., 2013). Several different cell types have now been profiled using scRNA-seq leading to the

characterization of sub-types, identification of new marker genes, and analysis of cell fate and development

(Lescroart et al., 2018; Patel et al., 2014; Zeisel et al., 2015).

While most work attempted to characterize expression profiles for specific (known) cell types, more recent

work has attempted to use this technology to compare differences between different states (for example,

disease vs. healthy cell distributions) or time (for example, sets of cells in different developmental time points

or age) (Mathys et al., 2017; Rizvi et al., 2017). For such studies, the main focus is on the characterization

of the different cell types within each population being compared, and the analysis of the differences in

such types. To date, such work primarily relied on known markers (Usoskin et al., 2015) or unsupervised

(dimensionality reduction or clustering) methods (Jaitin et al., 2014). Markers, while useful, are limited and

are not available for several cell types. Unsupervised methods are useful to overcome this, and may allow

users to observe large differences in expression profiles, but as we and others have shown, they are harder to

interpret and often less accurate than supervised methods (Lin et al., 2017).

To address these problems, we have developed a framework that combines the idea of markers for cell

types with the scale obtained from global analysis of all available scRNA-seq data. We developed scQuery, a

web server that supports the analysis of new, large scale scRNA-seq datasets. scQuery relies on scRNA-seq

data collected from over 500 different experiments. We developed a common pipeline to uniformly process

all scRNA-seq experiments in public databases. The pipeline automatically associates different profiles with

cell type based on a constrained ontology and then aligns the raw read data, assigns them to a pre-defined

set of genes, and quantifies their expression. Next, we used neural networks to reduce the dimensions of the

input data in a supervised way to improve retrieval run time, reduce storage space, and improve accuracy.

All profiles are then stored in a web server and newly uploaded data (which is also processed and reduced

using the same pipeline) is compared to all database data using fast approximate nearest neighbors methods.

The web server then provides users with information about the cell type predicted for each cell, overall cell

type distribution, set of differentially expressed (DE) genes identified for cells, prior data that is closest to

the new data, and more.

We tested the pipeline, dimensionality reduction, approximate nearest neighbors, and overall web server

in several cross-validation experiments. We also performed a case study in which we analyzed close to

2000 cells from a neurodegeneration study (Mathys et al., 2017). As we show, in all cases we observe good

performance of the methods we used and of the overall web server for the analysis of new scRNA-seq data.

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Results

We developed a pipeline (Figure 1) for querying, downloading, aligning and quantifying scRNA-seq data.

Following queries to the major repositories (Methods) we uniformly processed all datasets so that each was

represented by the same set of genes and undergoes the same normalization procedure (RPKM). We next

attempt to assign each cell to a common ontology term using text analysis. This uniform processing allowed

us to generate a combined dataset that represented expression experiments from more than 500 different

scRNA-seq studies, representing 300 unique cell types, and totaling over 60K expression profiles that passed

our stringent filtering criteria for both expression quality and ontology assignment (Methods). We next

used supervised neural network (NN) models to learn reduced dimension representations for each of the

input profiles. We tested several different types of NNs including architectures that utilize prior biological

knowledge to reduce overfitting as well as architectures that directly learn a discriminatory reduced dimension

profile (Siamese architectures (Koch, Zemel, and Salakhutdinov, 2015)). Reduced dimension profiles for all

data were then stored on a web server that allows users to perform queries to compare new scRNA-seq

experiments to all data collected so far to determine cell types, identify similar experiments and focus on

key genes.

Statistics for data processing and downloads

To retrieve all available scRNA-seq data we queried the two largest databases, GEO and ArrayExpress, for

scRNA-seq data. Supporting Figure S1 presents screenshots of queries to the NCBI GEO and ArrayExpress

databases similar to the ones we used here, though our queries utilized automated APIs instead of the web

interfaces shown in these figures. Figure 2 and Supporting Figure S2 respectively show study and cell counts

by month, with respect to the “release date” data provided by GEO and ArrayExpress. As can be seen, while

cell counts increase over time, there is a lag in availability of raw data and author-processed supplementary

data available through NCBI GEO and ArrayExpress systems. Since our pipeline is automated, we expect

to be able to collect and analyze much more data over the next several months.

Our “mouse single-cell RNA-seq” query matched a total of 155,242 cells, of which 71,982 have raw data

and 29,216 had only author-processed data. We used established ontologies to determine the cell type that

was profiled (Methods) for each cell expression dataset we downloaded. Of the 2,356 unique descriptors we

obtained for all cells, 1,860 map to at least one term in the cell ontology. Of the 5,010 distinct cell ontology

terms (restricted to the CL and UBERON namespaces), 307 are assigned at least one cell expression profile.

Of the 71,982 cells for which raw data is available, 49,237 had alignment rates above our cutoff of 40%.

Of these 49,237, we identified 2,473 raw data files that contained reads from multiple cells, but lacked any

metadata that allowed us to assign reads to individual cells. This leaves 46,764 cells that are usable for

building our scRNA-seq database.

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

G 𝑔G 4G 3G 2G 1
Input

(Genes)

Hidden
Layers

…

D 𝑑D 3D 2D 1 …

… … … …

…

Embedding
Layer

A

B

C

D

E

Retina

Dorsal root
ganglion Brain

Macrophage …

+

Figure 1: Pipeline for large-scale, automated analysis of scRNA-seq data. (A) Bi-weekly querying
of GEO and ArrayExpress to download the latest data, followed by automatic label inference by mapping
to the Cell Ontology. (B) Uniform alignment of all data sets using HISAT2, followed by quantification to
obtain RPKM values. (C) Supervised dimensionality reduction using our neural embedding models. (D)
Identification of cell type-specific gene lists using differential expression analysis. (E) Integration of data
and methods into a publicly available web application.

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

20
13

-1
2

20
14

-0
1

20
14

-0
2

20
14

-0
4

20
14

-0
5

20
14

-0
6

20
14

-0
7

20
14

-0
8

20
14

-0
9

20
14

-1
1

20
14

-1
2

20
15

-0
1

20
15

-0
2

20
15

-0
3

20
15

-0
5

20
15

-0
6

20
15

-0
7

20
15

-0
8

20
15

-0
9

20
15

-1
0

20
15

-1
1

20
15

-1
2

20
16

-0
1

20
16

-0
2

20
16

-0
3

20
16

-0
4

20
16

-0
5

20
16

-0
6

20
16

-0
7

20
16

-0
8

20
16

-0
9

20
16

-1
0

20
16

-1
1

20
16

-1
2

20
17

-0
1

20
17

-0
2

20
17

-0
3

20
17

-0
4

20
17

-0
5

20
17

-0
6

20
17

-0
7

20
17

-0
8

20
17

-0
9

20
17

-1
0

20
17

-1
1

20
17

-1
2

20
18

-0
1

20
18

-0
2

20
18

-0
3

20
18

-0
4

Release date

0

10

20

30

40

50

60

70

80

Se
rie

s c
ou

nt

Series count by release date

Figure 2: Number of studies released each month in GO and ArrayExpress.

Neural networks for supervised dimensionality reduction

We trained several different types of supervised and unsupervised (autoencoder) NNs. These included models

with the label matching a cell type as the output (with the layer before last serving as the reduced dimension)

(Lin et al., 2017), models that directly optimize a discriminatory reduced dimension layer (using as input

pairs or triplets of matched and unmatched profiles), and autoencoders which attempt to reconstruct the

input by introducing a lower dimension bottleneck. See Supporting Methods Figures S9, S11, and S12

for details. Some of the models utilized prior biological knowledge as part of the architecture to reduce

overfitting (including protein-protein and protien-DNA interaction data and hierarchical GO assignments)

while others did not (dense, autoencoders). We experimented with various hyperparameters (Methods), and

all of our neural network models were trained for up to 100 epochs, with training terminated early if the

model converged. All models converged sooner than the full 100 epochs (Supporting Figure S3). Performance

on a held out validation set was assessed after each epoch during training. The final weights chosen for each

model were those at the end of the epoch with the lowest validation loss out of the 100 epochs. For triplet

networks, we also monitored the fraction of “active triplets” in each batch as a selection criterion. Most

models trained in minutes (Figure S4), but more complex models, such as our hierarchical GO architectures

(116,271,314 parameters) took hours to train (1 hour and 57 minutes for the triplet version).

After training each of our neural embedding models, we evaluated their performance using retrieval

testing as described in Methods. Cells used for testing are completely disjoint from the set of cells that were

used for training and come from different studies so that batch effects and other experimental artifacts do not

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

affect performance and evaluation. The results of this retrieval testing for a selection of architecture types

and cell types are shown in Figure 3. These models have been trained using the data that we processed

ourselves in addition to data from studies that only had author-processed data available (these required

missing-data imputation, see Methods) though similar results were obtained on models trained using only

our own processed data (Supporting Figure S5). It is common to assess retrieval performance with mean

average precision (MAP). Here, each value in the table represents the mean average “flexible” precision

(MAFP, Supporting Methods), which allows for scores between 0 and 1 for matching a cell type to a similar

or parent type (for example, a cortex cell matched to brain, Methods).

The best scoring model achieved a weighted average (accross all cell types) MAFP of 0.576 which is very

high when considering the fact that this was a 45-way classification problem (while our database contains

over 300 cell types, only 45 types had independent data from multiple studies and these were used for the

analysis discussed here). When restricting the analysis to the six cell types for which we had more than 1000

cells in our database, results for this model further improved to 0.623. This top performing model (first row

in Figure 3) employed a dense architecture (two-hidden-layer perceptron network). The next best model

overall (based on the weighted average) was a similarly defined and performing dense architecture with three-

hidden-layers (not shown), followed by a PPITF architecture with three sparsely-connected hidden layers

trained as a triplet network (third row in Figure 3). We also see that for specific cell types, other neural

networks perform better. Specifically, triplet networks perform best for neuron, embryo, and retina. Siamese

architectures perform the best in the neural cell type. We also note that the best performing models were

those that were pretrained with an unsupervised strategy (a full table with result from over 100 models,

including those from models without pretraining are available on our web server). Finally, as is clear from

the last two rows, supervised neural network embeddings consistently outperform PCA and the original data

in the retrieval task.

Gene set enrichment analysis (GSEA) of cell-type specific DE genes

We further used our ontology assignments to identify cell type-specific genes (Methods). For this we used

read counts rather than RPKM following several prior methods that determined that such analysis provides

a better list of DE genes (Bullard et al., 2010; Robinson and Oshlack, 2010). The differential expression

analysis we conducted is based on multiple studies for each cell type. Our procedure performs DE analysis

for each study, for each cell type independently and then combines the results. This method ensures that

resulting DE genes are not batch or lab related but rather real DE for the specific cell type. We used this

method to identify cell type specific genes for 39 cell types. The number of significant (< 0.05 FDR adjusted

p-value) DE genes for each cell type ranged from 170 for embryonic stem cells to 7381 for osteocytes. The

full list of DE genes can be found on the supporting web server.

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

#	in	query 91 45 162 81 45 250 678
#	in	database 734 481 421 523 250 340 1097

Architecture	
type Model

hematop-
oietic	
stem	cell osteocyte neuron neural embryo retina

skin	
epidermis

weighted	
average	
(higly	rep.	
cell	types)

PT	dense	1136	100 0.683 1.000 0.931 0.574 0.145 0.909 0.621 0.623
PT	dense	1136	500	100 0.798 0.977 0.905 0.930 0.091 0.909 0.573 0.586
PT	(frac	active)	ppitf	1136	500	100 0.382 0.951 0.955 0.644 0.493 0.941 0.598 0.594
PT	(val	loss)	ppitf	1136	500	100 0.308 0.961 0.963 0.516 0.640 0.942 0.552 0.550
PT	dense	1136	500	100 0.510 0.981 0.937 0.996 0.258 0.896 0.426 0.483
PT	ppitf	1136	100 0.113 0.767 0.385 0.952 0.082 0.870 0.159 0.224
PCA	100 0.696 0.946 0.863 0.889 0.167 0.901 0.488 0.494
Original	data 0.019 0.976 0.539 0.823 0.146 0.797 0.062 0.109

Classic

Triplet

Siamese

N/A

Figure 3: Retrieval testing results of various architectures, as well as PCA and the original (unreduced)
expression data. Scores are MAFP values. “PT” indicates that the model had been pretrained using the
unsupervised strategy (Supporting Methods). Numbers after the model name indicate the hidden layer sizes.
For example, “dense 1136 500 100” is an architecture with three hidden layers. The metrics in parenthesis
for the triplet architectures indicate the metric used to select the best weights over the training epochs. For
example, “frac active” indicates that the weights chosen for that model were the ones that had the lowest
fraction of active triplets in each mini-batch. The final column is the weighted average score over those cell
types with at least 1000 cells in the database (some not shown in table), and the weights are the number of
such cells in the query set.

To determine the accuracy of the DE genes and to showcase the effectiveness of the automated processing

and ontology assignments we performed GSEA using the Gene Ontology (GO) on the set of DE genes for

each cell type. Results for a number of the cell types are presented in Figure 4. As can be seen, even though

each of the cell type data we used combined multiple studies from different labs, the categories identified for

all of the cell types are highly specific indicating that the automated cell type assignment and processing

were able to correctly group related experiments.

As an example, the top three enriched terms for “retina” are “visual perception” (p = 1.77 × 10−11),

“sensory perception of light stimulus” (p = 1.77 × 10−11), and “retina development in camera-type eye”

(p = 3.42×10−8). Cells of dorsal root ganglion are sensory neurons as reflected in Figure 4B with terms such

as “detection of temperature stimulus” (p = 6.55×10−5) and “sensory perception of pain” (p = 6.55×10−5).

In Figure 4D, nine of the top ten terms are related to immune response and specific aspects of the T cell-

mediated immune system. Complete results are available from the supporting web server.

Query and retrieval

To enable users to compare new scRNA-seq data to the data we processed, and to determine the composition

of cell types in such samples we developed a web application. After processing their data (Methods) users

can uploaded it to the server. Next, uploaded data is compared to all studies stored in the database. For

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

GO ID Name p-value
GO:0007601 visual perception 1.77E-11
GO:0050953 sensory perception of light stimulus 1.77E-11
GO:0060041 retina development in camera-type eye 3.42E-08
GO:0030182 neuron differentiation 4.76E-08
GO:0007423 sensory organ development 8.77E-08
GO:0048699 generation of neurons 1.70E-07
GO:0022008 neurogenesis 4.10E-07
GO:0007399 nervous system development 4.82E-07
GO:0001654 eye development 1.18E-06
GO:0048666 neuron development 3.95E-06

Number of studies: 2

Cell type: Retina
Cell Ontology ID: UBERON:0000966

GO ID Name p-value
GO:0016048 detection of temperature stimulus 6.55E-05
GO:0019233 sensory perception of pain 6.55E-05
GO:0048666 neuron development 3.67E-04
GO:0008344 adult locomotory behavior 4.24E-04
GO:0031175 neuron projection development 4.24E-04
GO:0007409 axonogenesis 4.24E-04
GO:0050961 detection of temperature stimulus involved in sensory perception 5.77E-04
GO:0050965 detection of temperature stimulus involved in sensory perception of pain 5.77E-04
GO:0021510 spinal cord development 5.77E-04
GO:0061564 axon development 5.77E-04

Number of studies: 2

Cell type: Dorsal root ganglion
Cell Ontology ID: UBERON:0000044

GO ID Name p-value
GO:0002934 desmosome organization 3.18E-06
GO:0022610 biological adhesion 1.33E-05
GO:0043588 skin development 2.30E-05
GO:0030216 keratinocyte differentiation 9.59E-05
GO:0050891 multicellular organismal water homeostasis 2.02E-04
GO:0030104 water homeostasis 2.65E-04
GO:0060429 epithelium development 3.01E-04
GO:0009913 epidermal cell differentiation 4.08E-04
GO:0034330 cell junction organization 4.40E-04
GO:0061436 establishment of skin barrier 6.80E-04

Number of studies: 2

Cell type: Skin epidermis
Cell Ontology ID: UBERON:00010003

GO ID Name p-value
GO:0002376 immune system process 1.81E-08
GO:0042110 T cell activation 3.94E-07
GO:0001775 cell activation 9.42E-06
GO:0045321 leukocyte activation 1.74E-05
GO:0046649 lymphocyte activation 3.74E-05
GO:0001816 cytokine production 6.25E-05
GO:0006955 immune response 7.03E-05
GO:0002682 regulation of immune system process 8.96E-05
GO:0008219 cell death 9.40E-05
GO:0012501 programmed cell death 1.98E-04

Number of studies: 1

Cell type: T-cell
Cell Ontology ID: CL:0000084

A B

C D

Figure 4: Results of GO enrichment analysis. We used GO: Biological Process as the source gene set,
and using the top 50 differentially expressed genes from our cell type-specific gene lists for (A) Retina, (B)
Dorsal root ganglion, (C) Skin epidermis, and (D) T cell. The top 10 GO terms are shown for each cell
type, sorted by FDR adjusted p-values.

this, we use approximate nearest neighbor approaches to match these to the data we have pre-processed.

Embedding in the reduced dimension representation and the fast matching queries of thousands of cells

against hundreds of thousands of database cells can be performed in minutes.

Figure 5 present an example of a partial analysis of newly uploaded data by the web server. The web

server clusters cells based on their matched types (Figure 5A), plots their 2D embedding with respect to all

other cell types in the database (Figure 5B), highlights the top represented ontology terms in the uploaded

cells (Figure 5C), and provides additional information about key DE (Figure 5D) genes and specific studies

that it matched to the uploaded data (Figure 5E).

Mouse brain case study

To test the application of our pipeline we used it to study a recent scRNA-seq neurodegeneration dataset

that was not included in our database (Mathys et al., 2017). This study profiled 2208 microglial cells

extracted from the hippocampus of the CK-p25 mouse model of severe neurodegeneration. In the CK-p25

mouse model, induction of the p25 gene, a calpain cleaved kinase activator, results in Alzheimer’s disease-like

pathology. In the original study, the microglial cells were extracted from control and CK-p25 mice from four

time points: before p25 induction (three months old), and one, two, and six weeks after induction (three

months 1 week, three months 2 weeks old, and 4 months 2 weeks old, respectively). The goal of the study

was to compare the response of microglial cells to determine distinct molecular sub-types, uncover disease-

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) (b)

(c) (d) (e)

Figure 5: The scQuery web server. (A) Cluster heatmap of the nearest neighbor results for a query
consisting of 40 “brain” and 10 “spinal cord” cells. The horizontal dashed lines demarcate the currently
selected cluster and the corresponding dendrogram sub-cluster is highlighted in red. (B) 2D scatter plot of
the selected sub-cluster (shown as inverted triangles and tagged as “User Query”) along with a handful of
other cell-types whose tags show cell-type information and GEO submission ids for a single cell from each
cluster. (C) Ontology DAG depicting the retrieved cell-types in green while the nodes in gray visualize the
path to the root nodes (which reflects paths of cellular differentiation as well as other biological relationships).
(D) Heatmap displaying log-transformed RPKM values for differentially expressed genes of a subset of the
submitted query cells. The first column shows log-tranformed RPKM counts of the same genes averaged
over all the cells in the processed database that are mapped to the ontology term activated in the ontology
DAG(“brain” here). (E) Metadata table for the retrieved hits displaying the GEO accession id, similarity
score, publication titles, and their respective pubmed links.

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

A B C

csf1r

c1qa

lgals3
cd74

ccl4

lilrb4a

SR
R
5
9
9
4
1
8
6
-2

SR
R
5
9
9
4
1
8
6
-6

SR
R
5
9
9
4
1
8
8
-9

SR
R
5
9
9
4
2
0
0
-1

SR
R
5
9
9
4
2
1
3
-8

SR
R
5
9
9
5
1
6
9
-4

SR
R
5
9
9
5
1
9
3
-1
0

SR
R
5
9
9
5
2
6
8
-7

SR
R
5
9
9
5
2
7
4
-3

SR
R
5
9
9
5
2
7
4
-5

Figure 6: Analysis of mouse neurodegeneration dataset, late response cells. (A) p-values of the
difference in cell type classification distributions for different time points. Three months was the initial time
point in the study, and four months two weeks was the last time point. “Overall” is the pool of all 1990
cells. The p-values are from conducting Fisher’s exact test (for “overall”, the p-value was simulated based on
1e+07 replicates). (B) Classification distribution for late stage cells (four months two weeks). (C) logRPKM
expression of the macrophage-specific genes (Methods) within a cluster of late-stage neurodegenerative cells
enriched for “macrophage” labeling by our retrieval server. The leftmost column is the average logRPKM
among our database macrophage cells. Genes highlighted in magenta were also found to be up-regulated in
the original study (Mathys et al., 2017). Genes highlighted in yellow are additional genes related to immune
response that are up-regulated in the query cells. Genes highlighted in yellow in order of top to bottom:
Cd53, Ccl6, Cd52, Ccl9, Cd14, H2-ab1, Cd48, Ccl2

stage specific states, and further characterize the heterogeneity in microglial response. We used the raw read

data to perform alignment and quantification (Methods) resulting in 1990 cells that passed our alignment

thresholds and were used for the analysis that follows.

Neural embeddings

We used this data to test several aspects of the method, pipeline, and website. The web server was able to

perform a complete analysis of the roughly 2000 cells in minutes. We first compared the supervised (using

NN) and unsupervised dimensionality reduction. The cells were transformed to a lower dimensional space

using the “PT dense 1136 100” NN followed by t-SNE to get them to 2 dimensions. We compared this to

a completely unsupervised dimensionality reduction, as was done in the original paper. Supporting Figure

S6 presents the results of this analysis. We observe that the supervised method is able to better account for

the differences between the two populations of healthy and disease cells.

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Cell type classifications

We next performed retrieval analysis by using the mouse brain cells as queries against our large database of

labeled cells. We classified each query cell based on the most common label in its 100 nearest neighbors in

the database (Methods). The results of this cell type classification can be seen in Figure 6.

We next compared the cell assignments for 3 different groups. An early time point (three months old) in

which the healthy and disease mouse models are not expected to diverge, a later time point (four months 2

weeks old) in which differences are expected to be pronounced, and all data collected from the healthy and

disease data. As can be seen in Figure 6A, overall assignment indeed reflects these stages with a much more

significant difference for the later time point compared to the earlier one, with the entire dataset (which

includes more intermediate points) in the middle. Focusing on the later time point, Figure 6B shows the

distribution for the latest time point. Several of the cell types identified by the method correspond to brain

cells (brain, cortex, meningeal cluster) while others are related to blood and immune response (bone marrow,

macrophage). The most common classification among the query cells was “fibroblast.” Recent studies have

shown that fibroblast-like cells are common in the brain (Park et al., 2012), and that brain fibroblast cells

can express neuronal markers (Vanlandewijck et al., 2018).

As can be seen, the main difference observed between the disease and healthy mice is the increase in the

immune system related types of “bone marrow” and “macrophage” cells in the disease model. We believe

that while the method labeled these cells as macrophages, they are actually microglia cells which were indeed

the cells the authors tried to isolate. To confirm this, we analyzed sets of marker genes that are distinct for

macrophages and for microglia (Hickman et al., 2013). Figure S7 shows that indeed, for the cells identified

by the method the expressed markers are primarily microglia markers.

The main reason that the method identified them as macrophages is the lack of training data for microglial

cells in our database (our train data of high-confidence cell types contains no microglial cells and 273

macrophage cells; our full database contains only 44 microglial cells compared to 603 macrophage cells).

Still, the result that disease samples contain more immune cells, which is only based on our analysis of

scRNA-seq data (without using any known immune markers) indicates that as more scRNA-seq studies are

performed and entered into our database, the accuracy of the results would increase.

Comparison to our differentially expressed genes for macrophage

We further characterized the gene expression within these microglial cells by comparing the gene expression

in the query cells to our cell-type-specific marker genes (Methods). We uploaded the RPKM gene expression

values for 256 microglial cells from late-stage neurodegenerative mice (6 weeks after p25 induction) to our

web server (Mathys et al., 2017). Given the hits from the retrieval database, we then selected a cluster of

these that were enriched for “macrophage”, and then viewed the expression (logRPKM) of our previously

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

calculated cell-type-specific marker genes as a heatmap for a subset of these cells. A screen shot of the

interactive heatmap provided by the web server is shown in Figure 6C, where we see that there is rough

agreement in up and down regulation trends of the set of macrophage-specific DE genes we identified between

the cells in the database (leftmost column) and the query (microglial) cells. We would expect to see this

expression pattern for these genes in these cells, as microglia are distinct from macrophages, but are related

in function.

Among the up-regulated genes selected for “macrophage” in the web server, we see genes that Mathys

et al., 2017 also found to be up-regulated in late-response clusters including a microglial marker (Csf1r), a

gene belonging to the chemokine superfamily of proteins (Ccl4), a major histocompatability complex (MHC)

class II gene (Cd74), and other genes related to immune response (Lilrb4a, Lgals3), (magenta highlights in

Figure 6C). We also see that a different microglial marker (C1qa) (Zhang et al., 2014) is up-regulated. In

addition to re-identifying genes of interest from the original study, our method is also able to highlight

additional genes that are biologically relevant. These are highlighted in yellow in Figure 6C and include

more chemokines (Ccl2, Ccl6, Ccl9), another MHC class II gene (H2-ab1), and other cell surface antigens

(Cd14, Cd48, Cd52, Cd53).

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Discussion

We developed a computational pipeline to process all scRNA-seq data deposited in public repositories. We

have identified over 500 studies of scRNA-seq data. For each we attempted to download the raw data and

to assign each cell to a restricted ontology of cell types. For cells for which this information existed we

uniformly processed all reads, ran them through a supervised dimensionality reduction method based on

NNs and created a database of cell type profiles. Using the scQuery server, users can upload new data,

process it in the same way, and then compare it to all collected scRNA-seq data.

In addition to cell assignments, the web server allows users to view the metadata on which the assignment

is based, view the ontology terms that are enriched for their data and the distribution it predicts, and compare

the expression of genes in the new profiled cells to genes identified as DE for the various cell types. The

web server also clusters the cells and plots a 2D dimensionality reduction plot to compare the expression of

the users’ cells with all prior cells types it stores. Applying the method to analyze recent neurodegeneration

data led to the identification of significant differences between cell distributions of healthy and diseased

mouse models, with the largest observed difference being the set of immune related cells that are more

prevalent in the diseased mouse. Our method also revealed additional up-regulated immune-related genes in

the late-stage neurodegenerative cells that were classified as “macrophage” cells.

While the pipeline was able to process several of the datasets we identified on public repositories, not all

of them could be analyzed. Specifically, many studies lacked raw scRNA-seq reads, and thus could not be

processed via our uniform expression quantification pipeline. Though we were able to find author-processed

expression data for many studies, usage of this data is complicated by different gene selections, data format

differences (e.g. RPKM vs. FPKM vs. TPM vs. read counts), and more. Additionally, several studies

profiled thousands of cells but published far fewer raw data files, with each raw data file containing reads

from hundreds or thousands of cells but no metadata that allows each read to be assigned to a unique cell.

In addition to issues with processing data that has already been profiled and deposited, we observed that

cell type distribution in our database is still very skewed. While some cell types are very well represented

(“bone marrow cell”: 6,283 cells, “dendritic cell”: 4,126 cells, “embryonic stem cell”: 2,963 cells) others are

either completely missing or were only represented with very few samples (“leukocyte”: 12 cells, “B cell”:

22 cells, “microglial cell”: 44 cells, “cardiac muscle cell”: 72 cells). Such skewed distribution can cause

challenges to our method leading to cells being assigned to similar, but not the correct, types. These are still

the early days of scRNA-seq analysis with several public and private efforts to characterize cell types more

comprehensively. Our dataset retrieval and processing pipeline (including cell type assignments) is fully

automated and we expect that once more experiments are available they would be added to the database

and server. We believe that as more data accumulates the accuracy of scQuery would increase making it the

tool of choice for cell type assignment and analysis.

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgements

Work partially supported by NIH grant 1R01GM122096 and a James S. McDonnell Foundation Scholars

Award in Studying Complex Systems to Z.B.-J. We thank Hongyu Zheng (Computational Biology Dept.,

CMU) for his work on cell-type similarity calculation.

Author Contributions

Conceptualization, Z.B.-J.; Methodology, Z.B.-J., A.A., and M.R.; Software, A.A., M.R., A.P., and Z.H.;

Formal Analysis, A.A.; Investigation, Z.B.-J., A.A., M.R.; Data Curation, M.R. and Z.H.; Writing - Original

Draft, Z.B.-J., A.A., M.R., A.P., and Z.H.; Writing - Review & Editing, Z.B.-J., A.A., M.R., A.P., and Z.H.;

Visualization: A.A., M.R., and A.P.; Supervision: Z.B.-J., A.A., and M.R.; Project Administration, Z.B.-J.;

Funding Acquisition, Z.B.-J.

Declaration of Interests

The authors declare no competing interests.

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

References

Andoni, Alexandr et al. (2015). “Practical and optimal LSH for angular distance”. In: Advances in Neural

Information Processing Systems, pp. 1225–1233.

Bard, Jonathan, Seung Y Rhee, and Michael Ashburner (2005). “An ontology for cell types”. In: Genome

biology 6.2, R21.

Bengio, Yoshua et al. (2007). “Greedy layer-wise training of deep networks”. In: Advances in neural infor-

mation processing systems, pp. 153–160.

Boytsov, Leonid and Bilegsaikhan Naidan (2013). “Engineering Efficient and Effective Non-metric Space

Library”. In: Similarity Search and Applications - 6th International Conference, SISAP 2013, A Coruña,

Spain, October 2-4, 2013, Proceedings, pp. 280–293. doi: 10.1007/978- 3- 642- 41062- 8_28. url:

https://doi.org/10.1007/978-3-642-41062-8_28.

Bullard, James H et al. (2010). “Evaluation of statistical methods for normalization and differential expression

in mRNA-Seq experiments”. In: BMC bioinformatics 11.1, p. 94.

Chollet, François et al. (2015). Keras. https://github.com/fchollet/keras.

Chopra, Sumit, Raia Hadsell, and Yann LeCun (2005). “Learning a similarity metric discriminatively, with

application to face verification”. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on. Vol. 1. IEEE, pp. 539–546.

Consortium, Gene Ontology et al. (2017). “Expansion of the Gene Ontology knowledgebase and resources”.

In: Nucleic acids research 45.D1, pp. D331–D338.

Hermans, Alexander, Lucas Beyer, and Bastian Leibe (2017). “In defense of the triplet loss for person re-

identification”. In: arXiv preprint arXiv:1703.07737.

Hickman, Suzanne E et al. (2013). “The microglial sensome revealed by direct RNA sequencing”. In: Nature

neuroscience 16.12, p. 1896.

Hinton, Geoffrey E and Ruslan R Salakhutdinov (2006). “Reducing the dimensionality of data with neural

networks”. In: science 313.5786, pp. 504–507.

Jaitin, Diego Adhemar et al. (2014). “Massively parallel single-cell RNA-seq for marker-free decomposition

of tissues into cell types”. In: Science 343.6172, pp. 776–779.

Kharchenko, Peter V, Lev Silberstein, and David T Scadden (2014). “Bayesian approach to single-cell dif-

ferential expression analysis”. In: Nature methods 11.7, p. 740.

Kim, D., B. Langmead, and S. L. Salzberg (2015). “HISAT: a fast spliced aligner with low memory require-

ments”. In: Nat. Methods 12.4, pp. 357–360.

Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov (2015). “Siamese neural networks for one-shot

image recognition”. In: ICML Deep Learning Workshop. Vol. 2.

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1007/978-3-642-41062-8_28
https://doi.org/10.1007/978-3-642-41062-8_28
https://github.com/fchollet/keras
https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kolodziejczyk, AleksandraA. et al. (2015). “The Technology and Biology of Single-Cell RNA Sequencing”.

In: Molecular Cell 58.4, pp. 610 –620. issn: 1097-2765. doi: https://doi.org/10.1016/j.molcel.

2015.04.005. url: http://www.sciencedirect.com/science/article/pii/S1097276515002610.

LeCun, Yann et al. (1998). “Gradient-based learning applied to document recognition”. In: Proceedings of

the IEEE 86.11, pp. 2278–2324.

Lescroart, Fabienne et al. (2018). “Defining the earliest step of cardiovascular lineage segregation by single-

cell RNA-seq”. In: Science, eaao4174.

Lin, Chieh et al. (2017). “Using neural networks for reducing the dimensions of single-cell RNA-Seq data”.

In: Nucleic Acids Research 45.17, e156. doi: 10.1093/nar/gkx681. eprint: /oup/backfile/content_

public/journal/nar/45/17/10.1093_nar_gkx681/2/gkx681.pdf. url: +http://dx.doi.org/10.

1093/nar/gkx681.

Mathys, Hansruedi et al. (2017). “Temporal Tracking of Microglia Activation in Neurodegeneration at Single-

Cell Resolution”. In: Cell reports 21.2, pp. 366–380.

Mouse Genome Informatics, The Jackson Laboratory. Mouse Genome Database (MGD). url: http://www.

informatics.jax.org (visited on 07/10/2017).

Park, Thomas In-Hyeup et al. (2012). “Adult human brain neural progenitor cells (NPCs) and fibroblast-like

cells have similar properties in vitro but only NPCs differentiate into neurons”. In: PloS one 7.6, e37742.

Patel, Anoop P et al. (2014). “Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblas-

toma”. In: Science, p. 1254257.

Pierson, Emma and Christopher Yau (2015). “ZIFA: Dimensionality reduction for zero-inflated single-cell

gene expression analysis”. In: Genome biology 16.1, p. 241.

Rizvi, Abbas H et al. (2017). “Single-cell topological RNA-seq analysis reveals insights into cellular differen-

tiation and development”. In: Nature biotechnology 35.6, p. 551.

Robinson, Mark D and Alicia Oshlack (2010). “A scaling normalization method for differential expression

analysis of RNA-seq data”. In: Genome biology 11.3, R25.

Rosenbloom, Kate R et al. (2014). “The UCSC genome browser database: 2015 update”. In: Nucleic acids

research 43.D1, pp. D670–D681.

Schroff, Florian, Dmitry Kalenichenko, and James Philbin (2015). “Facenet: A unified embedding for face

recognition and clustering”. In: Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 815–823.

Schulz, Marcel H et al. (2012). “DREM 2.0: Improved reconstruction of dynamic regulatory networks from

time-series expression data”. In: BMC systems biology 6.1, p. 104.

Smith, Cynthia L et al. (2017). “Mouse Genome Database (MGD)-2018: knowledgebase for the laboratory

mouse”. In: Nucleic acids research 46.D1, pp. D836–D842.

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/https://doi.org/10.1016/j.molcel.2015.04.005
https://doi.org/https://doi.org/10.1016/j.molcel.2015.04.005
http://www.sciencedirect.com/science/article/pii/S1097276515002610
https://doi.org/10.1093/nar/gkx681
/oup/backfile/content_public/journal/nar/45/17/10.1093_nar_gkx681/2/gkx681.pdf
/oup/backfile/content_public/journal/nar/45/17/10.1093_nar_gkx681/2/gkx681.pdf
+ http://dx.doi.org/10.1093/nar/gkx681
+ http://dx.doi.org/10.1093/nar/gkx681
http://www.informatics.jax.org
http://www.informatics.jax.org
https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Szklarczyk, Damian et al. (2014). “STRING v10: protein–protein interaction networks, integrated over the

tree of life”. In: Nucleic acids research 43.D1, pp. D447–D452.

Tirosh, Itay et al. (2016). “Dissecting the multicellular ecosystem of metastatic melanoma by single-cell

RNA-seq”. In: Science 352.6282, pp. 189–196.

Troyanskaya, Olga et al. (2001). “Missing value estimation methods for DNA microarrays”. In: Bioinformatics

17.6, pp. 520–525.

Usoskin, Dmitry et al. (2015). “Unbiased classification of sensory neuron types by large-scale single-cell RNA

sequencing”. In: Nature neuroscience 18.1, p. 145.

Vanlandewijck, Michael et al. (2018). “A molecular atlas of cell types and zonation in the brain vasculature”.

In: Nature 554.7693, p. 475.

Vincent, Pascal et al. (2010). “Stacked denoising autoencoders: Learning useful representations in a deep

network with a local denoising criterion”. In: Journal of Machine Learning Research 11.Dec, pp. 3371–

3408.

Wills, Quin F et al. (2013). “Single-cell gene expression analysis reveals genetic associations masked in

whole-tissue experiments”. In: Nature biotechnology 31.8, pp. 748–752.

Yau, Christopher et al. (2016). “pcaReduce: hierarchical clustering of single cell transcriptional profiles”. In:

BMC bioinformatics 17.1, p. 140.

Zeisel, Amit et al. (2015). “Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq”.

In: Science 347.6226, pp. 1138–1142.

Zhang, Ye et al. (2014). “An RNA-sequencing transcriptome and splicing database of glia, neurons, and

vascular cells of the cerebral cortex”. In: Journal of Neuroscience 34.36, pp. 11929–11947.

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Methods

Data collection and preprocessing

We selected a mouse gene set of interest based on the NCBI Consensus CDS (CCDS) which contains 20,499

distinct genes. For genes with multiple isoforms, we consolidate all available coding regions (Supporting

Methods). To search for scRNA-seq datasets, we queried the NCBI Gene Expression Omnibus (GEO) and

the ArrayExpress database for mouse single-cell RNA-seq series (See Supporting Methods for the queries

we used). We then download metadata for each series returned in this query and parse this metadata to

identify the distinct samples that comprise each series. We examined the metadata for each sample (e.g.

library strategy, library source, data processing) and exclude any samples that do not contain scRNA-seq

data.

We next attempted to download each study’s raw RNA-seq reads and for those studies for which this

data is available we developed a pipeline that uniformly processed scRNA-seq data. We use the reference

mouse genome from the UCSC genome browser (Rosenbloom et al., 2014) (build mm10), and align RNA-

seq reads with HISAT2 (Kim, Langmead, and Salzberg, 2015) version 2.1.0. We align reads as single- or

paired-end as appropriate, and discard samples for which fewer than 40% of reads align to coding regions.

We represent gene expression using RPKM. Code for our alignment/quantification pipeline is available at

https://github.com/mruffalo/sc-rna-seq-pipeline.

Labeling using Cell Ontology terms

We use the Cell Ontology (CL) (Bard, Rhee, and Ashburner, 2005) available from http://obofoundry.

org/ontology/cl.html to identify the specific cell types which are represented in our GEO query results.

We parsed the ontology terms into a directed acyclic graph structure, adding edges between terms for “is a”

and “part of” relationships. Note that this choice of edge direction means that all edges point toward the

root nodes in the ontology.

We use the name and any available synonyms for each ontology term to automatically identify the

matching terms for each sample of interest (Supporting Methods). This produces a set of ontology term hits

for each sample. We filter these ontology term hits by excluding any terms that are descendants of any other

selected terms (e.g., term CL:0000000 “cell” matches many studies), producing a set of “specific” ontology

terms for each sample – for any two nodes u and v in such a set, neither u nor v is a descendant of the other

in the ontology.

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://github.com/mruffalo/sc-rna-seq-pipeline
http://obofoundry.org/ontology/cl.html
http://obofoundry.org/ontology/cl.html
https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Dimensionality Reduction

Most current analysis methods for scRNA-seq data use some form of dimensionality reduction to visualize

and analyze the data, most notably PCA and similar methods (Pierson and Yau, 2015; Yau, 2016) and

t-SNE (Tirosh et al., 2016). Past work has shown that while such methods are useful, supervised methods

for dimensionality reduction may improve the ability to accurately represent different cell types (see Lin

et al., 2017).

Using neural networks for dimensionality reduction has been shown to work well as a supervised technique

to learn compact, discriminative representations of data (Hinton and Salakhutdinov, 2006). The original,

unreduced dimensions form the input layer to a neural network, where each dimension is an input unit.

After training the model towards a particular objective (such as classification), the last hidden layer, which is

typically much smaller in the number of units than the input layer, may be taken as a reduced dimensionality

representation of the data. These learned features are referred to as neural embeddings in the literature,

and here we tested a number of different neural network architectures which either explicitly optimize these

neural embeddings (for example, Siamese (Chopra, Hadsell, and LeCun, 2005) and triplet networks (Schroff,

Kalenichenko, and Philbin, 2015)) or those that only optimize the label accuracy. All neural networks

we used were implemented in Python using the Keras API (Chollet, 2015), and our code is available at:

https://github.com/AmirAlavi/scrna_nn.

Neural network architectures

Prior work showed that sparsely connected NN architectures based on protein interaction data can be more

effective in determining cell types when compared to dense networks (Lin et al., 2017). Here we further

studied other NN networks architectures and compared their performance to the PPI and dense networks.

First, we looked at another method to group genes based on the Gene Ontology (GO) (Consortium, 2017).

To construct a hierarchical neural network architecture that mirrors the structure of GO we associate input

genes with GO nodes. Multiple genes are associated (and connected to) the same node. We use this

grouping of the input genes as the first hidden layer of a neural network. Nodes in the next hidden layer will

be constructed from GO nodes that are descendants of nodes in the prior layer. We continue this process

until the last hidden layer has the desired number of nodes (the size of our reduced dimension). The final

result is the network depicted in Figure S12. See also Supporting Methods.

Siamese architectures trained with contrastive loss

The NNs discussed above indirectly optimize the neural embedding layer by optimizing a classification

target function (correct assignment of scRNA-seq data to cell types). A number of NN architectures have

been proposed to explicitly optimize the embedding itself. For example, Siamese neural networks (Chopra,

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://github.com/AmirAlavi/scrna_nn
https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hadsell, and LeCun, 2005; Koch, Zemel, and Salakhutdinov, 2015) (Figure S9) consist of two identical

“twin” subnetworks which share the same weights. The outputs of both subnetworks are connected to a

“conjoined” layer (sometimes referred to as the “distance” layer) which directly calculates a distance between

the embeddings in the last layers of the twin networks. The input to a Siamese network is a pair of data

points and the output which is optimized is whether they are similar (same cell type) or not. The loss is

computed on the output of the distance layer, and heavily penalizes large distances between items from the

same class, while at the same time penalizing small distances between items from different class. Specifically

the network optimizes the following loss function:

Contrastive Loss =
P∑
i=1

(Y i)Ls(D
i) + (1− Y i)Ld(D

i) (1)

Where:

P is the set of all training examples (pairs of data points)

Y is the corresponding label for each pair (1 indicates that

the pair belong to the same class, 0 indicates that each

sample in the pair come from different classes)

D is the Euclidean distance between the points in the pair

computed by the network

Ls(D) =
1

2
(D)2 (2)

Ld(D) =
1

2
(max{0,m−D})2 (3)

m is a margin hyperparameter, usually set to 1

Following the same motivations as Siamese networks, triplet networks also seek to learn an optimal

embedding but do so by looking at three samples at a time instead of just two as in a Siamese network. The

triplet loss used by Schroff et al. considers a point (anchor), a second point of the same class as the anchor

(positive), and a third point of a different class (negative) (Schroff, Kalenichenko, and Philbin, 2015). See

Supporting Methods for details.

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Training and testing of neural embedding models

We conduct supervised training of our neural embedding models using stochastic gradient descent. Although

our processed dataset contains many cells, each with a set of labels, we train on a subset of “high confidence”

cells to account for any label noise that may have occurred in our automatic term matching process. This

is done by only keeping terms that have at least 75 cells mapping to them, and then only keeping cells

with a single mapping term. This led to a training set of 21,704 cells from the data we processed ourselves

(36,473 cells when combined with author-processed data). We experimented with tanh, sigmoid, and ReLU

activations, and found that tanh performed the best. ReLU activation is useful for helping deeper networks

converge by preventing the vanishing gradient problem, but here our networks only have a few hidden layers,

so the advantage of ReLU is less clear. We also experimented with different learning rates, momentums, and

input normalizations (see web server for full results).

Since our goal is to optimize a discriminative embedding, we test the quality of our neural embeddings

with retrieval testing, which is similar to the task of cell type inference. In retrieval testing, we query a cell

(represented by the neural embedding of its gene expression vector) against a large database of other cells

(which are also represented by their embeddings) to find the query’s nearest neighbors in the database.

We separate the studies for each cell type when training and testing so that the test set is completely

independent of the training set. We find all cell types which come from more than one study, and hold out

a complete study for each such cell type to be a part of the test set. Cell types that do not exist in more

than one study are all kept in the training set. For our integrated dataset, our training set contained 45 cell

types, while our query set was a subset of 26 of the training cell types. After training the model using the

training set, the training set can then be used as the database in retrieval testing.

Evaluation of classification and embeddings for scRNA-seq data

In both training and evaluation of our neural embedding models, we are constantly faced with the question

of how similar two cell types are. A rigid (binary) distinction between cell types is not appropriate since

“neuron”, “hippocampus”, and “brain” are all related cell types, and a model that groups these cell types

together should not be penalized as much as a model that groups completely unrelated cell types together.

We have thus extended the NN learning and evaluation methods to incorporate cell type similarity when

learning and testing the models. See Supporting Methods for details on how these are used and how they

are obtained.

Differential expression for cell types

We use the automated scRNA-seq annotations we recovered to identify a set of differentially expressed genes

for each cell type. Unlike prior methods that often compare two specific scRNA-seq datasets, or use data

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

from a single lab, our integrated approach allows for a much more powerful analysis. Specifically, we can

both focus on genes that are present in multiple datasets (and so do not represent specific data generation

biases) and those that are unique in the context of the ontology graph (i.e. for two brain related types, find

genes that distinguish them rather than just distinguishing brain vs. all others).

Our strategy, presented in Algorithm ?? is DE-method agnostic, meaning that we can utilize any of the

various DE tools that exist. In practice we have used SCDE here. This method builds an error model for

each cell in the data, where the model is a mixture between a negative binomial and a Poisson (for dropout

events) distribution, and then uses these error models to identify differentially expressed genes (Kharchenko,

Silberstein, and Scadden, 2014).

Another key aspect of our strategy is the use of meta-analysis of multiple DE experiments. The algorithm

attempts to make the best use of the integrated dataset by doing a separate DE experiment for each study

that contains cells of a particular cell type, and then combines these results into a final list of DE genes for

the cell type. See Supporting Methods for the details of this meta-analysis.

Large scale query and retrieval

To enable users to compare new scRNA-seq data to the public data we have processed, and to determine the

composition of cell types in such samples, we developed a web application. Users download a software package

available on the website to process SRA/FASTQ files. The software implements a pipeline that generates

RPKM values for the list of genes used in our database and can work on a PC or a server (Supporting

Methods).

Once the user processes their data, the data is uploaded to the server and compared to all studies stored

in the database. For this, we first use the NN to reduce the dimensions of each of the input datasets and

then use approximate nearest neighbor approaches to match these to the data we have pre-processed as we

discuss below.

Since the number of unique scRNA-seq expression vectors we store is large, an exact solution obtained

by a linear scan of the dataset for the nearest neighbor cell-types would be too slow. To enable efficient

searches, we benchmarked three approximate nearest neighbor libraries: NMSLib (Boytsov and Naidan,

2013), ANNoY1, and FALCONN (Andoni et al., 2015). Benchmarking revealed that NMSLib was the

fastest method (Supporting Figure S8). NMSLib supports optimized implementations for cosine similarity

and L2-distance based nearest neighbor retrieval. The indexing involves creation of hierarchical layers of

proximity graphs. Hyperparameters for index building and query runtime were tuned to trade-off a high

accuracy with reduced retrieval time. For NMSLib, these were: M = 10, efConstruction = 500, efSearch

= 100, space =“cosinesimil”, method = “hnsw”, data type = nmslib.DataType.DENSE VECTOR, dtype

1https://github.com/spotify/annoy

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://github.com/spotify/annoy
https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

= nmslib.DistType.FLOAT. Time taken to create the index: 2.6830639410000003 secs. Hyperparameters

tuned for the ANNOY library were: number of trees = 50, search k var = 3000. Time taken to create the

index: 1.3495307050000065 secs. For FALCONN, a routine to compute and set the hyperparameters at

optimal values was used. This calibrates K (number of hash functions) and last cp dimensions. Time taken

to create the index: 0.12065599400011706 secs.

Visualizing query results

We use the approximate nearest neighbors results to compute a similarity measure of each query cell to

each ontology term. This is done by identifying the 100 nearest neighbors for each cell and determining the

fraction of these matches that belong to a specific cell type. This generates a matrix of similarity measure

entries for all query cells against all cell types which is presented as a hierarchical clustering heat-map (Figure

5A). All visualizations are based on this matrix.

We also perform further dimensionality reduction of the query via PCA to obtain a 2D nearest-neighbor

style visualization against all cell types in the database and generate the ontology subgraph that matches

the input cells. Users can click on any of the nodes in that graph to view the cell associated with it, DE

genes related to this cell type, and their expression in the query cells.

In addition to matching cells based on the NN reduced values, we also provide users with the list of

experiments in our database that contain cells that are most similar to a subset of uploaded cells the user

selects. This provides another layer of analysis beyond the automated (though limited) ontology matching

that is based on the cell types extracted for the nearest neighbors.

Finally, users can obtain summary information about cell type distribution in their uploaded cells and

can find the set of cells matched to any of the cell types in our database.

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supporting figures

Figure S1: Our queries to the NCBI GEO and ArrayExpress systems, selecting mouse single-cell RNA-seq
data.

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

20
13

-1
2

20
14

-0
1

20
14

-0
2

20
14

-0
4

20
14

-0
5

20
14

-0
6

20
14

-0
7

20
14

-0
8

20
14

-0
9

20
14

-1
1

20
14

-1
2

20
15

-0
1

20
15

-0
2

20
15

-0
3

20
15

-0
5

20
15

-0
6

20
15

-0
7

20
15

-0
8

20
15

-0
9

20
15

-1
0

20
15

-1
1

20
15

-1
2

20
16

-0
1

20
16

-0
2

20
16

-0
3

20
16

-0
4

20
16

-0
5

20
16

-0
6

20
16

-0
7

20
16

-0
8

20
16

-0
9

20
16

-1
0

20
16

-1
1

20
16

-1
2

20
17

-0
1

20
17

-0
2

20
17

-0
3

20
17

-0
4

20
17

-0
5

20
17

-0
6

20
17

-0
7

20
17

-0
8

20
17

-0
9

20
17

-1
0

20
17

-1
1

20
17

-1
2

20
18

-0
1

20
18

-0
2

20
18

-0
3

20
18

-0
4

0

2000

4000

6000

8000

10000

12000

14000

16000

Ce
ll

Co
un

t

Cell Count by Release Date
Usable
Below Alignment Rate Threshold
No Data Available
Not Mapped to Ontology

Figure S2: Cell counts by month, separated into four categories: usable, below our alignment rate threshold,
no raw or author-processed data available, and unmapped to ontology terms.

Figure S3: Training and validation loss exhibiting convergence within 100 epochs for the “PT dense 1136
100” model in Figure 3.

Model #	Parameters Train	set	size Mini-batch	size Training	time
PT	dense	1136	100 23,406,245 36,473 256 3	mins	54	secs
PT	dense	1136	500	100 23,911,145 36,473 256 3	mins	51	secs
triplet	PT	ppitf	1136	500	100 23,911,145 72,000 72 31	mins		5	secs
Siamese	PT	dense	1136	500	100 23,911,145 110,117 256 27	mins	13	secs
Siamese	PT	ppitf	1136	100 23,406,245 110,117 256 41	mins	18	secs

Figure S4: Number of parameters and time to train for each of the neural network model types from Figure
3. All models were trained for 100 epochs on a machine with two Intel(R) Xeon(R) E5-2620 v3 @ 2.40GHz
CPUs and a Nvidia GeForce GTX 1080 GPU.

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

in query 160 45 162 81 45 250 678

in database 645 481 421 523 250 340 1097

Architecture

type Model

hematop-

oietic

stem cell osteocyte neuron neural embryo retina

skin

epidermis

weighted

average

(higly rep.

cell types)

PT dense 1136 100 0.241 0.984 0.942 0.811 0.246 0.903 0.629 0.649

PT dense 1136 500 100 0.196 0.990 0.935 0.526 0.242 0.914 0.480 0.534

PT dense 1136 500 100 0.125 0.883 0.846 0.666 0.233 0.895 0.499 0.543

PT ppitf 1136 100 0.053 0.695 0.242 0.672 0.267 0.828 0.307 0.335

PCA 100 0.369 0.959 0.701 0.747 0.184 0.904 0.485 0.504

Original data 0.130 0.974 0.539 0.824 0.146 0.797 0.062 0.122N/A

Classic

Siamese

Figure S5: Retrieval testing results of various architectures, as well as PCA and the original (unreduced)
expression data, trained on only the data that we processed ourselves. “PT” indicates that the model had
been pretrained using the unsupervised strategy (Supporting Methods). Numbers after the model name
indicate the hidden layer sizes. For example, “dense 1136 500 100” is an architecture with three hidden
layers. The final column is the weighted average score over those cell types with at least 1000 cells in the
database (some not shown in table), and the weights are the number of such cells in the query set.

Figure S6: A) Two component t-distributed stochastic neighbor embedding (t-SNE) of the query cells from
their original 20,499 dimensions (genes), colored by disease status. B) Two component t-SNE of the query
cells from the 100 dimensional neural embedding via the “PT dense 1136 100” model.

26

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S7: Expression (log2(RPKM)) of marker genes (Hickman et al., 2013) for macrophages and microglial
cells for all cells we classified as “macrophage” or “myeloid” cell.

Number of Queries Linear Scan (secs) NMSLib (secs) Accuracy
100 0.457 0.001967 0.9819
500 2.417 0.005926 0.9543
1000 4.447 0.013977 0.9459

(A)

Number of Queries Linear Scan (secs) ANNoY (secs) Accuracy
100 0.457 0.028205 0.9673
500 2.417 0.137404 0.97726
1000 4.447 0.278778 0.94861

(B)

Number of Queries Optimal Number of probes Linear Scan (secs) FALCONN (secs) Accuracy
100 16 0.457 0.028205 0.9673
500 31 2.417 0.137404 0.97726
1000 346 4.447 0.278778 0.94861

(C)

Figure S8: Nearest neighbor search benchmarking results for (A) NMSLB, (B) ANNoY, and (C) FAL-
CONN.

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 1: Cell type-specific gene list construction

input : D = matrix of gene expression values (preprocessed as described in Supporting Methods)
m = minimum cells in a DE experiment
DEModule(goup1, group2) = Differential Expression analysis module

output: CellTypeGenes = Lists of cell type-specific differentially expressed genes

CellTypeGenes ← {∅}
foreach cell type C ∈ D do

DEResults ← {∅}
D′ ← only cells of type C from D
S ← set of studies in D′

if ∃ a study s ∈ S that contains at least m cells of type C then
foreach study s that satisfies the above condition do

a← SampleXFromY(m, D′s)
b← SampleXFromY(m, D)

DEResults ← DEResults ∪ DEModule(a, b)
end

else if |D′| >= m then
(If there doesn’t exist at least one study for C with at least m cells, then
we try to combine all of C’s studies into a single group)
a← SampleXFromY(m, D′)
b← SampleXFromY(m, D)

DEResults ← DEResults ∪ DEModule(a, b)
else

continue
end

CellTypeGenes ← CellTypeGenes ∪ MetaAnalysis(DEResults)
end

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supporting methods

Triplet architectures trained with batch-hard loss

Input Hidden Output
(Distance)

…

…

…

…

Gene 1

Gene 𝐺

…

…

…

…

…
…

𝐷

Gene 1

Gene 𝐺

Figure S9: A “Siamese” neural network configuration. Weights are shared between the yellow and the purple
subnetworks. Data is fed in pairs with one item in the pair going through the yellow subnetwork, and the
other through the purple subnetwork. Triplet networks operate in a similar manner, except that three points
are fed through three subnetworks (again, shared weights).

Following the same motivations as Siamese networks, triplet networks also seek to learn an optimal
embedding but do so by looking at three samples at a time instead of just two as in a Siamese network. The
triplet loss used by Schroff et al. considers an point (anchor), a second point of the same class as the anchor
(positive), and a third point of a different class (negative) (Schroff, Kalenichenko, and Philbin, 2015).

Triplet Loss =
T∑

i=1

[
(Di

a,p)2 − (Di
a,n)2 + α

]
+

(4)

Where:

T is the set of all training examples (triplets of data points)

Da,p,Da,n are the Euclidean distances computed by the network between the

embeddings of the anchor point and the positive point, and the

embeddings of the anchor point and the negative point, respectively

α is a margin hyperparameter

When training a Siamese or triplet network, it is very important to select pairs/triplets that are difficult
enough so that the network learns and converges (Schroff, Kalenichenko, and Philbin, 2015) . A straight-
forward approach to mine hard examples would involve periodically pausing training, embedding all data
points using the current weights, calculating pairwise distances among all of these points in the embedded
space, and selecting new examples based on this. This is computationally expensive and is prone to selecting
pairs that are too difficult (outliers), so here we have opted to mine challenging pairs in an online fashion
by selecting from points within a mini-batch (Hermans, Beyer, and Leibe, 2017; Schroff, Kalenichenko, and
Philbin, 2015). Specifically, we use Hermans et al.’s “batch hard” loss, shown in Equation 5 (Hermans,
Beyer, and Leibe, 2017). The loss is calculated over a mini-batch, which is constructed by first sampling P
cell types (labels) and then sampling K cells of each type.

29

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Batch Hard Loss =
P∑
i

K∑
a

m+ max
p=1,...,K

D
(
f(xia), f(xip)

)
− min

j=1,...,P ;j 6=i
n=1,...,K

D
(
f(xia), f(xjn)

)
+

(5)

Where:

f is the neural network (an embedding function)

xt
c is the cth cell of type t in the mini-batch

D(a, b) is the Euclidean distance between vectors a and b

m is a margin hyperparameter

For each anchor point a in the mini-batch, the max term in Equation 5 finds the hardest positive pair,
while the min term finds the hardest negative pair.

Unsupervised neural network pretraining

While all of our neural embedding models are trained in a supervised fashion (for cell-type classification
or embedding optimization), we also used unsupervised training to initialize the weights for these models,
and this was shown to improve performance (Results, Figure 3). We have shown in prior work that using a
denoising autoencoder (DAE) for unsupervised pretraining can improve performance (Lin et al., 2017). Here
we extend this to using stacks of DAEs, which are each individually trained in a process called “greedy layer-
wise pretraining” to pretrain each layer of our neural network architectures (Bengio et al., 2007; Vincent
et al., 2010).

Here we illustrate the process with an example of how we would pretrain a neural network with an input
layer, two hidden layers, and an output layer (Figure S10a). Figure S10b shows how the first hidden layer is
pretrained. The first hidden layer becomes the hidden layer in a DAE, with a “reconstruction” layer of the
same dimensionality as the input added on top. Gaussian noise is added to each sample and fed through this
DAE, and the training objective is to minimize the mean squared error between the reconstructed output
and the clean, uncorrupted samples. After training this DAE, the weights can be used to initialize the first
hidden layer in our supervised neural network. This process is repeated for the other hidden layers, where
all weights below the layer of interest are fixed, and the input is first fed forward through these fixed weights
to get a new representation, and then the corrupting noise is added to this new representation for training
the DAE of the current layer.

Cell-type similarity calculation

Rather than rely on distances based on the ontology graph structure, we computed cell type similarities with
a data driven approach by using term co-occurrences in PubMed. For each pair of cell types in our ontology,
we queried PubMed for articles which had both of the terms in the title or abstract texts.

We then define Si as the number of articles in which term i occurred in, and Pi,j as the number of
articles in which terms i and j co-occurred in. We additionally define a binary matrix M of shape (number
of ontology terms, number of documents), where Mi,j = 1 if term j occurred in document i.

The similarity between two terms can then be computed as a cosine similarity:

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Output

Hidden

Input

𝑊1

𝑊2

𝑊3

Input

𝑊1

𝑊1
𝑇

Reconstruction

Supervised UnsupervisedA B

Figure S10: An illustration of one stage of greedy layer-wise unsupervised pretraining of a neural
network. W1,W2, and W3 are weight matrices. (A) A supervised neural network with two hidden layers
to be pretrained. (B) An unsupervised DAE that has the the supervised network’s first hidden layer as its
middle layer. This DAE is trained to minimize the mean squared error between its reconstruction and the
original input data (prior to corruption with noise). After training this DAE, its weights can be used as
initial values for the weights in the supervised network.

Di,j = cos(Mi,Mj)

=
Mi ·Mj

|Mi||Mj |

=
Pi,j√
SiSj

The above measure is not symmetric, and a symmetric version can be defined as:

Di,j =
Pi,j/Si + Pi,j/Sj

2

For our neural embedding models that rely on computing distances between cell types (Siamese archi-
tectures), we use the symmetric version of the cell type similarities. We use the non-symmetric version to
evaluate all of our neural embedding models (i.e. to compute the MAFP values in our retrieval analysis).

Mean average “flexible” precision

We employ a modified version of mean average precision (MAP) called mean average “flexible” precision
(MAFP) in order to evaluate the retrieval performance of our dimensionality reduction models. Traditional
average precision operates on ranked lists (e.g. a list of nearest neighbor cells in a retrieval database) by
calculating the precision at exact-match cutoffs in the list, and then taking the mean of these. This require-
ment is too restrictive for proper evaluation here, as a binary “hit” or “miss” criterion would not allow a

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

list containing similar cell types to be valued higher than lists with less relevant cell types. Instead, average
flexible precision is computed by summing the cell-type similarities between the query cell and each retrieved
result and dividing by the length of the list at a particular depth, and finally taking the average of these
values across all depths in the list.

Missing data imputation

Our uniform preprocessing pipeline requires the raw reads data for each study. For certain studies, this is not
available, and only the RPKM values processed by the authors of the original study are present. We would
still like to integrate this data into our database, which requires us to impute the values of the expression of
missing genes.

We conduct missing value imputation with a k-nearest neighbors-based approach, similar to procedures
in prior work (Lin et al., 2017; Troyanskaya et al., 2001). We ignore cells which have more than 20% of our
gene set missing. After filtering those cells out, we impute the remaining values for each study independently.
For each study, in order to compute nearest neighbor genes within the study we first fill the missing values
with the median expression value in each cell. We then calculate the euclidean distance matrix of the genes
in the study (where each gene is represented by a vector of its expression values in each cell). Finally, the
value of each missing gene is imputed with the average expression of its 10 nearest neighbor genes within
each cell.

Preprocessing strategies for differential expression analysis

Prior to conducting differential expression analysis, we filter out low-quality genes and cells. To filter out
lowly-expressed genes, we first calculate the average reads of each gene within each cell type. We then
calculate an overall average for each gene by taking the average of its cell-type specific average expressions.
We then only keep genes that have an overall average value that is above a cutoff of 50. This resulted in the
removal of 4180 out of 20499 genes.

To filter out cells, we remove cells with fewer than 1.8×103 detected genes, which is the default procedure
in the tool we have chosen to use for DE analysis, SCDE (Kharchenko, Silberstein, and Scadden, 2014). This
resulted in the removal 732 cells out of 23982 cells. We note that the 23982 cells are a subset of our total
database, as we only conduct DE analysis for cell types with a minimum of 75 cells.

Meta-analysis of differential expression experiments

For cell types that have data from multiple studies, we conduct separate DE analysis for each of those studies,
and then combine the results to obtain a single list of differentially expressed genes with their p-values. To
do this, we take the maximum FDR adjusted p-value for each gene across the studies as its final p-value.
Our list of significant DE genes for a particular cell type is then taken as the set of genes with final p-values
below a threshold of 0.05.

Additionally, we only keep the DE genes that had a consistent sign (positive or negative) log2 fold-change
across the multiple DE analysis that were done for the particular cell type.

PPI/TF architectures

Since our set of input genes is different, the architectures discussed in Lin et al. could not be used directly
here. We used the same transcription factor data as Lin et al. (Schulz et al., 2012). For our protein-
protein interaction data, we use a protein-protein interaction network which integrates known and predicted
interactions from multiple databases (Szklarczyk et al., 2014).

32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Input Layer Hidden Layer 1 Output Layer

…
…

…

…

Hidden Layer 2

…

Gene 1 TF 1

PPI 1

PPI 𝑀

Dense 1

Dense 𝐷

Gene 2

Gene 3

Gene 4

Gene 𝐺

TF 𝑁

Figure S11: Our Protein-protein/protein-DNA (PPI/TF) based neural network architecture.

Gene Ontology based architectures

We also tested another method to group genes based on the Gene Ontology (GO) (Consortium, 2017). GO
is a directed acyclic graph (DAG) whose nodes are gene products (RNA or protein) and whose edges are
relationships between these gene products. Along with this graph, there exist curated annotations which
associate genes from specific organisms with each node in the graph. Here we propose that GO’s hierarchical
structure will enable our models to recognize complicated relationships that most likely exist between genes.

To construct a hierarchical neural network architecture that mirrors the structure of the GO DAG, we
first use the published GO annotations for M. musculus (Mouse Genome Database (MGD); Smith et al.,
2017) to associate each of our input genes with a node in GO. Specifically, we choose a particular depth
d (distance from a root node) and first associate the genes with only the nodes at this depth in the GO
graph. Multiple genes can be associated with the same node. Then we use this grouping of the input genes
as the first hidden layer of a neural network. Each node in this hidden layer represents a GO node at depth
d with its associated input genes connected to it. The nodes in the next hidden layer will be constructed
from GO nodes that have depth d-1. A node in a layer is connected to a node in the layer above if a path
exists between their corresponding nodes in the GO graph. We continue this process until the last hidden
layer has the desired number of nodes (the size of our reduced dimension). The final result is the network
depicted in Figure S12.

A key point is that the connections in the network are sparse: a node is only connected to a subset of the
nodes in the layer below. This is analogous to the idea of convolutional neural networks (CNNs), in which
neurons in a given layer are only connected to a subset of neurons in the layer below (the neuron’s “receptive
field”) (LeCun et al., 1998).

33

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

Input

Level 4 (5394 units)

Output

…

Level 3 (925 units)

Level 2 (69 units)

Hidden

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 𝐺

…

…

…

…

Gene 6

Figure S12: Our Gene Ontology-based neural network architecture. The connections between the input layer
and the first hidden layer, as well a the connections between hidden layers, are sparse and follow connections
in the GO DAG. The final hidden layer is fully connected (dense) to the output layer.

34

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323238doi: bioRxiv preprint

https://doi.org/10.1101/323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

	References

