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High Temporal-Resolution Dynamic PET Image
Reconstruction Using A New Spatiotemporal Kernel

Method
Guobao Wang

Abstract— Current clinical dynamic PET has an effective
temporal resolution of 5-10 seconds, which can be adequate
for traditional compartmental modeling but is inadequate for
exploiting the benefit of more advanced tracer kinetic modeling.
There is a need to improve dynamic PET to allow fine temporal
sampling of 1-2 seconds. However, reconstruction of these short-
time frames from tomographic data is extremely challenging
as the count level of each frame is very low and high noise
presents in both spatial and temporal domains. Previously the
kernel framework has been developed and demonstrated as a
statistically efficient approach to utilizing image prior for low-
count PET image reconstruction. Nevertheless, the existing kernel
methods mainly explore spatial correlations in the data and
only have a limited ability in suppressing temporal noise. In
this paper, we propose a new kernel method which extends the
previous spatial kernel method to the general spatiotemporal
domain. The new kernelized model encodes both spatial and
temporal correlations obtained from image prior information
and is incorporated into the PET forward projection model to
improve the maximum likelihood (ML) image reconstruction.
Computer simulations and an application to real patient scan
have shown that the proposed approach can achieve effective
noise reduction in both spatial and temporal domains and
outperform the spatial kernel method and conventional ML
reconstruction method for improving high temporal-resolution
dynamic PET imaging.

Index Terms— High temporal resolution (HTR), dynamic PET,
image reconstruction, maximum likelihood, image prior, kernel
method, spatiotemporal correlation

I. INTRODUCTION

Dynamic positron emission tomography (PET) can monitor
spatiotemporal distribution of a radiotracer in human body.
With tracer kinetic modeling [1], [2], dynamic PET is capable
of quantifying physiologically or biochemically important pa-
rameters in regions of interest or voxelwise to detect disease
status and characterize severity. Traditionally compartmental
models are used for kinetic analysis of dynamic PET data [1].
Other advanced tracer kinetic models such as the distributed-
parameter model [3] and the adiabatic adapproximations [4]
are considered closer to the physiological process than com-
partmental models. However, those models have not been
well explored in dynamic PET because the effective temporal
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resolution of clinical dynamic PET has been limited to 5-10
seconds with already-compromised image quality. This poor
temporal resolution is insufficient to value the use of advanced
kinetic modeling in dynamic PET [3].

We aim to improve the effective temporal resolution of
clinical dynamic PET imaging to 1-2 seconds. To achieve the
high temporal resolution (HTR), short scan durations must be
used, which however results in very low counting statistics in
the dynamic frames. Image reconstruction from the low-count
projection data is extremely challenging because tomography
is ill-posed and high noise exists in tomographic measurement
of short time frames.

In PET, incorporation of image prior information into image
reconstruction has become a popular means to improve the
quality of reconstructed images [5], [6]. Prior information can
be either local smoothness of neighboring pixels or obtained
from a co-registered anatomical MRI image (e.g., [7]–[11]) or
CT image (e.g., [12], [13]). Most of existing PET image recon-
struction methods employ an explicit regularization form (e.g.,
the Bowshwer’s approach [14]) to incorporate image priors and
can be complex for practical implementation. Regularization-
based methods also commonly require a convergent solution
to achieve optimal performance, which is computationally
costly and can be inefficient for dynamic PET in which
many frames need to be reconstructed. Direct reconstruction
is another framework which incorporates kinetic modeling
into the reconstruction formula [6], [15]–[17]. The method
is statistically efficient when the kinetic model type is well
known and all voxels in the field of view can be well described
using the same kinetic model. However, this assumption is
challenging to meet especially for new radiotracers and new
clinical applications where the underlying kinetic model can
be different from existing models. Any mismatch of kinetic
model can induce significant bias propagation in the kinetic
images [18].

The recent kernel method [19], [21], [23] encodes image
prior information in the forward model of PET image recon-
struction and requires no explicit regularization. The kernel
method is easier to implement and has been demonstrated
more efficient and better improve PET image reconstruction
than regularization-based methods [19], [21]. Existing kernel
methods mainly explore spatial correlations of image pixels
to improve image quality in the spatial domain [19]–[21]. It
has been applied to dynamic PET imaging [19], [20], MRI-
guided static PET image reconstruction [21], [22], MRI-guided
direct PET parametric image reconstruction [23], [24], and
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optical tomography [25]. These spatial kernels, however, have
a limited ability in suppressing noise in the temporal domain.
In HTR dynamic PET imaging, noise variation in the temporal
domain can be very severe because many short-time frames
are used. It is therefore desirable to include temporal prior
knowledge in the kernel method to suppress temporal noise.

In this paper, we extend the spatial kernel method to a
spatiotemporal kernel method that allows both spatial and
temporal correlations to be encoded in the kernel matrix.
We propose a separable spatiotemporal kernel to make the
method more computationally tractable and easier use. The
new spatiotemporal kernel method is expected to achieve
substantial noise reduction in the temporal domain in addition
to the enhancement on image quality by existing spatial
kernels. Note that this new method is different from other
ongoing developments that combine the spatial kernel method
with direct reconstruction for well-known kinetic models such
as the spectral model [23] or the Patlak graphical model
[24]. Our focus here is on the reconstruction of HTR time
activity curves, allowing new, unknown kinetic modeling to
be explored in clinical translation of dynamic PET.

The rest of this paper is organized as follows. We introduce
the generalized theory of spatiotemporal kernel method for
dynamic PET reconstruction and describe specific kernels in
Section II. We then present a computer simulation study in
Section III to validate the improvement of the kernel method
over existing methods. Section IV presents the result of
applying the new method to real patient data of HTR dynamic
PET imaging. Finally conclusions are drawn in Section V.

II. THEORY

A. Dynamic PET Image Reconstruction
For a time frame m, we denote the PET image intensity

value at pixel j by xj,m and the measurement in detector pair
i by yi,m. The expectation of the dynamic projection data ȳ =
{ȳi,m} is related to the unknown dynamic image x = {xj,m}
through

ȳ = Px+ r (1)

where P is the detection probability matrix for dynamic PET
and r is the expectation of dynamic random and scattered
events [5].

Dynamic PET projection measurement y = {yi,m} can be
well modeled as independent Poisson random variables with
the log-likelihood function [5],

L(y|x) =

ni∑
i=1

M∑
m=1

yi,m log ȳi,m − ȳi,m − log yi,m!, (2)

where ni is the total number of detector pairs and M is the
total number of time frames. The maximum likelihood (ML)
estimate of the dynamic image x is found by maximizing the
Poisson log-likelihood,

x̂ = arg max
x≥0

L(y|x). (3)

The expectation-maximization (EM) algorithm [26] with the
following iterative update

xn+1 =
xn

P T1N
·
(
P T y

Pxn + r

)
, (4)

is often the choice to find the solution, where 1N is a
vector of length N = ni × M with all elements being 1,
n denotes iteration number and the superscript “T ” denotes
matrix transpose. The vector multiplication and division are
element-wise operations.

B. The Spatiotemporal Kernel Method

The kernel method for tomographic image reconstruction
[19] was inspired by the kernel methods for classification
and regression in machine learning. Different from the kernel
methods in machine learning, the kernel method for image
reconstruction has unknown “label” values and the available
data for kernel coefficient estimation is the tomographic pro-
jection data. Previously the kernel method [19] was derived for
frame-by-frame spatial image reconstruction, here we adapt
the expressions for spatiotemporal reconstruction.

In machine learning language, the image intensity xj,m
at pixel j in time frame m is the “label” value. For each
spatiotemporal location, a set of features are identified to form
the feature vector fj,m, which is also called a “data point” in
machine learning. A mapping function φ(fj,m) is then used
to transform the data points {fj,m} into a feature space of
very-high dimension {φ(fj,m)}. By doing this, the “label”
value xj,m can be better described as a linear function in the
high-dimensional feature space,

xj,m = wTφ(fj,m) (5)

where w is a weight vector which also sits in the transformed
feature space:

w =

nj∑
j′=1

M∑
m′=1

αj′,m′φ(fj′,m′) (6)

with α being the coefficient vector. nj is the number of pixels
in image. By substituting (6) into (5), the kernel representation
for the image intensity at pixel j and in time frame m is written
as

xj,m =

nj∑
j′=1

M∑
m′=1

αj′,m′φ(fj′,m′)Tφ(fj,m) (7)

=

nj∑
j′=1

M∑
m′=1

αj′,m′κ(fj,m,fj′,m′), (8)

where
κ(fj,m,fj′,m′) , φ(fj,m)Tφ(fj′,m′) (9)

is a kernel defined by the kernel function κ(·, ·) (e.g. radial
Gaussian function). The mapping function φ is now implicitly
defined by the kernel and not required to be known. The image
intensity xj,m at pixel j in time frame m is thus described as
a linear function in the kernel space but is nonlinear in the
original space of the data points {fj,m}. With x denoting the
dynamic image and K the spatiotemporal kernel matrix, The
equivalent matrix-vector form of (8) is

x = Kα. (10)

where α , {αj,m} denotes the kernel coefficient vector.
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Substituting the kernelized image model (10) into the
standard PET forward projection model (1), we obtain the
following kernelized forward projection model for dynamic
PET image reconstruction:

ȳ = PKα+ r. (11)

The advantage of using this kernelized model (11) is that
image prior knowledge can be incorporated in the forward
projection to improve the reconstruction of low-count scans.

A kernelized EM algorithm can be easily derived [19]. The
EM update of α at iteration (n+ 1) is

αn+1 =
αn

KTP T1N
·
(
KTP T y

PKαn + r

)
. (12)

Once the coefficient image α is estimated, the reconstructed
dynamic PET image is calculated by

x̂ = Kα̂. (13)

Note that the EM solution converges to the ML estimate
when n is large, which however can result in noisy recon-
struction. In practice, early stopping is commonly used in EM
reconstruction to control noise. This mechanism is also used
in the kernel-based EM reconstruction.

C. Separable Spatiotemporal Kernel

The kernel matrixK encodes image prior information based
on the feature vectors {fj,m}. For each pixel j in time frame
m, we identify a set of features to form fj,m,

fj,m = [(fsj )T , (f tm)T ]T , (14)

where the vector consists of two components. fsj is the vector
for exploring spatial correlations between pixels and f tj is for
exploring temporal correlations between frames.

We further define the spatiotemporal kernel function
κ(fj,m,fj′,m′) to be spatially and temporally separable, i.e.

κ(fj,m,fj′,m′) = κs(f
s
j ,f

s
j′)κt(f

t
m,f

t
m′) (15)

where κs(·, ·) denotes the kernel function for calculating
spatial correlations and κt(·, ·) is for calculating temporal
correlations.

Thus the overall spatiotemporal kernel matrix K is decou-
pled into a spatial kernel matrix Ks ∈ IRnj×nj and a temporal
kernel matrix Kt ∈ IRM×M ,

K = Kt ⊗Ks, (16)

where ⊗ represents the Kronecker product.
Derivation of the spatial kernel matrix Ks has been devel-

oped in our previous work [19].Ks is often formed as a sparse
matrix based on image prior data. For obtaining image prior
in dynamic PET, an effective and efficient means is to use
composite frames [19]. For example, an one-hour dynamic
FDG-PET scan can be first rebinned into three composite
frames, each with 20 minutes. From the reconstructed com-
posite images, three time activity points are obtained at each
pixel j and used as the feature vector fsj to construct the kernel
matrix.

The spatial kernel method [19] is a special example of the
spatiotemporal kernel method with the temporal kernel matrix
set to the identity matrix,

Kt = IM . (17)

In this paper, we explore the role of new Kt in the context of
HTR dynamic PET imaging.

D. Choice of Temporal Kernels

The (m,m′)th element of Kt is obtained by comparing the
feature vectors of the frames m and m′:

κt(f
t
m,f

t
m′) =

{
exp

(
− ||f

t
m−f

t
m′ ||2

2σ2
t

)
, |τm − τ ′m| < dt,

0, otherwise.
(18)

where τm denotes the middle time point of frame m and dt is
the width of time window for neighborhood construction. σt
is a parameter to adjust the weight calculation.

The simplest form of the temporal feature f tm is probably

f tm , τm (19)

by which Kt becomes a shift-invariant Gaussian smoothing
kernel with the parameter σt determined by the window size.
This type of kernel can smooth out noise but may also over-
smooth sharp signals in the temporal domain.

To make the temporal kernel more adaptive to time varying
data, we propose to use the whole sinogram of each frame
as the feature vector to capture temporal correlations between
frames, i.e.

f tm , ỹm (20)

where ỹm denotes a smoothed version of the raw sinogram
ym of frame m. The parameter σt can be set to the standard
deviation of all elements of {dm,m′}M,M

m=1,m′=1:

σt =
1

M2

√∑
m,m′

(dm,m′ − d̄)2, (21)

where d̄ is the mean of {dm,m′} and

dm,m′ , ||ỹm − ỹm′ ||. (22)

As both Ks and Kt are very sparse, inclusion of the kernel
matrix K in the projection model does not add a significant
computational cost in the reconstruction.

III. VALIDATION USING COMPUTER SIMULATION

A. Simulation Setup

Dynamic 18F-FDG PET scans were simulated for a GE
DST whole-body PET scanner in two-dimensional mode using
a Zubal head phantom [Figure 1(a)]. The phantom contains
several brain regions including brain background, blood re-
gion, gray matter, white matter and a tumor (15 mm in
diameter). An attenuation map was simulated with a constant
linear attenuation coefficient assigned in the whole brain.
The scanning schedule consisted of 63 time frames over 20
minutes: 30×2 s, 12×5 s, 6×30 s, 15×60 s.

The blood input function was extracted from a real patient
18F-FDG PET scan [Figure 1(b)]. Regional time activity
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(a) (b)

(c) (d)

Fig. 1. The digital phantom and time activity curves used in the simulation
study. (a) The Zubal brain phantom; (b) Blood input function; (c) Regional
time activity curves of different brain regions; (d) Time activity curves of the
first 60 seconds.

curves (TACs) [Figure 1(c-d)] were assigned to different
brain regions to generate noise-free dynamic activity images.
The early phase of these TACs has fast temporal dynamics
and is challenging to reconstruct. The resulting noise-free
activity images were first forward projected to generate noise-
free sinograms. A 20% uniform background was included to
simulate random and scattered events. Poisson noise was then
generated with 20 million expected events over 20 minutes.

A total of 20 realizations were simulated and each was
reconstructed independently for statistical comparison. As the
main goal is to compare the reconstruction methods for HTR
dynamic PET imaging, the study focused on the comparisons
for the first one minute (thirty 2-second frames) of the dynamic
scan.

B. Illustration of Temporal Kernels
One way of understanding the temporal kernel matrix Kt is

that each column of Kt represents a temporal basis function.
For example, the mth column of a Kt represents the temporal
basis function centered at the mth time frame. Thus, a linear
combination of these temporal basis functions consists in a
time activity curve.

For illustration, a temporal window size of 15 time frames
was used to construct temporal kernels. This fixed number
of frames for defining the temporal window leads to varying
time windows across the dynamic sequence. The time window
size was 30 seconds for early time frames and 15 minutes
for late time frames. For calculating the data-driven temporal
kernel matrix, the sinogram of each frame was smoothed using
Gaussian smoothing with a window size of 7×7 before it was
used.

Fig. 2 shows the comparison of temporal basis functions of
two types of kernels - Gaussian temporal smoothing kernel

(a) (b)

(c)

Fig. 2. Temporal basis functions formed by the Gaussian kernel and data-
driven kernel. (a) center located at 5th frame (t = 10 s); (b) centered at 15th
frame (t = 30 s); (c) centered at 55th frame (t = 12 minutes).

(Eq. 19) and data-driven temporal kernel (Eq. 20). These
temporal bases correspond to the 5th frame (t=10-s), 15th
frame (t=30-s) and 55th frame (t = 12-minute), respectively.
For early time frames where fast activity changes occur, the
data-driven kernel provides sharper temporal basis functions
than the Gaussian smoothing kernel, while the two kernels are
similar for late-time frames due to the slower change of activ-
ities. Thus we expect the data-driven kernel to improve image
reconstruction mainly for early-time frames when compared
with the Gaussian temporal kernel.

Note that the spatial kernel method has a special temporal
kernel matrix - the identity matrix IM , of which the temporal
bases correspond to unit impulse functions for all frames.
Because there are no temporal correlations included in this
impulse kernel, temporal noise will substantially remain in
the reconstruction.

C. Reconstruction Methods to Compare

Noisy sinograms were reconstructed independently by four
different image reconstruction methods: the traditional MLEM
method, spatial kernelized EM (KEM-S), and new spatiotem-
poral kernel method with the Gaussian smoothing temporal
kernel (KEM-ST-G) and the spatiotemporal kernel method
with the data-driven temporal kernel (KEM-ST-D). Each re-
construction was run for 200 iterations to allow the investiga-
tion of the effect of iteration number.

The spatial kernel matrix Ks was constructed using the k
nearest neighbor (kNN) approach described in [19]. Four com-
posite images (4×5-minute) were obtained by recombining the
full 20-minute dynamic data and used for the spatial kernel
matrix construction. The temporal kernels were constructed
using a window size of 15 frames unless specified otherwise.
Different window sizes, ranging from 7 to 33 frames, were
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(a) (b) (c) (d) (e)

Fig. 3. True activity image and reconstructed images at iteration 100 by different reconstruction methods for the 5th frame (t = 10 s, top row), 15th frame
(t = 30 s, middle row) and 55th frame (t = 12 minutes, bottom row). (a) True images, (b) MLEM reconstructions, (c) reconstructions by the spatial kernel
method (KEM-S), (c) by the spatiotemporal kernel method with the time-invariant Gaussian smooth kernel (KEM-ST-G), (e) by the spatiotemporal kernel
method with a data-driven temporal kernel (KEM-ST-D).

(a) (b) (c)

Fig. 4. Plots of image MSE as a function of iteration number for different reconstruction methods. (a) frame 5, (b) frame 15, (c) frame 55.

also investigated to evaluate the effect of temporal window
size on reconstruction quality.

D. Comparison for Overall Image Quality
Image quality of different reconstruction methods were first

assessed using the image mean squared error (MSE) which is
defined by

MSE(x̂m) = 10 log10

||x̂m − xtrue
m ||2

||xtrue
m ||2

(dB), (23)

where x̂m is an image estimate of frame m obtained with one
of the reconstruction methods and xtrue

m denotes the ground
truth image of the frame.

Figure 3 shows the true activity image and reconstructed
images by the four different methods with 100 iterations for
the 5th frame (t = 10 s, ∆t = 2 s), 15th frame (t = 30
s, ∆t = 2 s) and 55th frame (t = 12 minutes, ∆t = 60
s), respectively. As expected, the KEM-S method achieved
a significant MSE decrease as compared with the MLEM
method. By incorporating temporal correlations, the KEM-ST-
G and KEM-ST-D methods further improved the image quality
and achieved lower MSE values than KEM-S. The KEM-ST-
D method had lower MSE than the KEM-ST-G method for
the early-time frame 5 and frame 15. The two methods had
similar MSE for the late-time frame 55.

Figure 4 shows image MSE as a function of iteration
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Fig. 5. Plots of image MSE of all time frames reconstructed by different
reconstruction methods.

number for the three different frames (5th, 15th and 55th).
The two spatiotemporal kernel methods KEM-ST-G and KEM-
ST-D had slower convenience than the spatial kernel method
KEM-S, requiring more iterations to achieve the lowest MSE
among iterations. This is because of the additional temporal
correlation included in the spatiotemporal kernel methods.
Note that the MSE curves of the 15th frame (t = 30 s) behaved
slightly different from that of the 5th and 55th frames and
achieved the lowest MSE earlier. This is because the 15th
frame had lower activity and count level than the other two
frames [see Fig.1 (c-d) for a comparison].

Figure 5 shows the plots of image MSE of all time frames
for different methods. The MSE of each frame is minimized
over iteration numbers in different methods. The error bars
indicate the standard deviation of the MSE over the 20 real-
izations. The three kernel methods outperformed the MLEM
reconstruction for all frames. Compared with the spatial kernel
method KEM-S, the spatiotemporal kernel method KEM-
ST-G improved late-time frames. This is because the TACs
of these late-time frames have small temporal changes than
early-time frames. Incorporation of temporal correlations thus
became beneficial and achieved noise reduction. KEM-ST-
D and KEM-ST-G had similar performance given the two
temporal kernels were close to each other in the late-time
frames. In the early-time frames where activity change is fast,
use of the time invariant temporal kernel in the KEM-ST-G
method over-smoothed the temporal signals. Thus KEM-ST-G
had even higher MSE than KEM-S. In contrast, KEM-ST-D
had data-adaptive temporal kernels and achieved better results.

E. Comparison for Time Activity Curves

Figure 6(a) and 6(b) respectively show the TACs of a
pixel in the blood region and a pixel in the tumor region
reconstructed by different methods. The TACs of the first
60 seconds are further shown in Figure 6(c) and 6(d). The
reconstructions by MLEM were extremely noisy, especially in
the early-time frames because these frames are of only 2-s
scan duration. While it achieved a significant noise reduction
in the spatial domain, the KEM-S method still resulted in

substantial noise in the temporal domain, particularly in the
tumor where the tracer uptake is relatively low. The KEM-
ST-G method reduced temporal noise in late-time frames but
over-smoothed the early-time peak activities, causing bias in
early-time frames. In comparison, the KEM-ST-D reconstruc-
tion overcame the limitation of KEM-ST-G and achieved a
substantial noise reduction in the temporal domain for both
early-time and late-time frames.

To compare different methods quantitatively, we calculated
the bias and standard deviation (SD) of the mean uptake in
the tumor region by

Bias =
1

||ctrue||
||c̄− ctrue||, (24)

SD =
1

||ctrue||

√√√√ 1

N

N∑
i=1

||ci − c̄||2, (25)

where ctrue is the noise-free regional TAC and c̄ = 1
N

∑N
i=1 ci

denotes the mean of N realizations. N = 20 in this study.
Figure 7 shows the trade-off between the bias and SD of

different methods in the tumor ROI for two single time points
(frame 5 and frame 15) and for the whole TAC of the first 60
seconds. The curves were obtained by varying the iteration
number from 10 to 200 iterations with an interval of 10
iterations. Compared with the MLEM and KEM-S methods,
the two spatiotemporal kernel methods (KEM-ST-G and KEM-
ST-D) had lower noise SD thanks to the temporal kernels. Due
to being more adaptive to the data, the KEM-ST-D method
achieved lower bias than the KEM-ST-G method at any level
of noise.

F. Effect of Temporal Window Size

Figure 8 shows the MSE of regional TAC of the blood
region and tumor region as a function of temporal window
size. With the window size equal to 1, the spatiotemporal
kernel methods KEM-ST-G and KEM-ST-D become the same
as the spatial kernel method KEM-ST.

Because the blood region has a high count level (due to high
activity), no temporal smoothing was needed. With increasing
temporal window size, the Gaussian kernel ST-G reduced the
TAC quality due to over-smoothing. The data-driven kernel
ST-D was less affected by the window size and was more
stable to maintain the blood TAC. In the tumor region, the
performance of the ST-G kernel changed sharply, indicating it
can be difficult to choose a proper window size. In contrast,
the performance of the ST-D kernel was stable for a range
of window sizes from 10 to 30 frames. The minimum MSE
achieved by the ST-D kernel was also lower than that by the
ST-G kernel.

These results indicate that the ST-D kernel is more adaptive
to the data and more stable than the ST-G kernel.

IV. APPLICATION TO REAL PATIENT SCAN

A. Patient Data Acquisition

A cardiac patient scan was performed on the GE Discovery
ST PET/CT scanner at the UC Davis Medical Center in two-
dimensional mode. The patient received 20 mCi 18F-FDG
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(a) (b)

(c) (d)

Fig. 6. Time activity curves reconstructed by different reconstruction methods. (a) Blood TAC, 0-20 minutes, (b) tumor TAC, 0-20 minutes, (c) blood TAC,
0-60 seconds, (d) tumor TAC, 0-60 seconds.

(a) (b) (c)

Fig. 7. Standard deviation versus bias trade-off of tumor ROI quantification by varying iteration numbers from 10 to 200 iterations. (a) frame 5 (t = 10 s),
(b) frame 15 (t = 30 s), (c) whole TAC of the first 60 seconds.

with a bolus injection. Data acquisition commenced right
after the FDG injection. A low-dose transmission CT scan
was then performed at the end of PET scan to provide CT
image for PET attenuation correction. The raw data of first
90 seconds were binned into a total of 45 dynamic frames,
each with 2-second duration. The data correction sinograms
of each frame, including normalization, attenuation correction,
scattered correction and randoms correction, were extracted
using the vendor software used in the reconstruction process.

The patient data were reconstructed independently by the
traditional MLEM method and three kernel emthods: spatial
kernel method KEM-S, new spatiotemporal kernel methods
KEM-ST-G (Gaussian smoothing temporal kernel) and KEM-
ST-D (data-driven temporal kernel) with 100 iterations. The
spatial kernel matrix Ks was constructed using five composite
frames (3×10 s, 2×30 s). The temporal kernels were con-
structed using the same parameters as used in the simulation
study.
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(a) Blood

(b) Tumor

Fig. 8. Effect of temporal window size on quantification of regional TACs
in the simulation study. (a) Blood ROI, (b) Tumor ROI.

B. Results

Figure 9 shows the comparison of a 10-s low temporal-
resolution time frame by standard MLEM with its correspond-
ing 2-s high temporal-resolution time frames reconstructed
using the data-driven spatiotemporal kernel method KEM-ST-
D. While the 10-s image by MLEM already suffered from
noise and showed similar FDG uptakes in the left ventricle and
right ventricle, the HTR images demonstrated time-changing
uptakes in the two ventricular regions with good image quality
even if they are only of 2-s short duration. The right ventricle
had decreasing activities and the left ventricle had increasing
activities during the same 10 seconds period.

Figure 10 shows the comparison of different image re-
construction methods for reconstructing HTR time frames at
t = 10s, t = 30s and t = 90s. The traditional MLEM recon-
structions were extremely noisy. The spatial kernel method
KEM-S achieved substantial noise reduction. Compared with
KEM-S, KEM-ST-G underestimated the FDG uptake in the
left and right ventricles due to Gaussian temporal smoothing.
Thanks to being more adaptive to the data than KEM-ST-G,
KEM-ST-D preserved the improvement by KEM-S in the early
frames at t = 10s and t = 20s and further reduced the noise
in the late frame at t = 90s.

Figure 11 shows the HTR time activity curves for the pixels
in the right ventricle, left ventricle, aorta and myocardium,
respectively. The time activity curves of standard temporal
resolution by MLEM are also included for comparison. With

(a) Standard, 10-20 s (b) HTR, 10-12 s

(c) HTR, 12-14 s (d) HTR, 14-16 s

(e) HTR, 16-18 s (f) HTR, 18-20 s

Fig. 9. Comparison of a low-resolution time frame starting from 10 to 20s
with its corresponding 2-s HTR time frames by the spatiotemporal kernel
method for the patient study. (a) 10-s frame at 10-20s by MLEM, (b-f) HTR
time frames by KEM-ST-D: (b) 10-12s, (c) 12-14s, (d) 14-16s, (e) 16-18s, (f)
18-20s.

the standard MLEM reconstruction, the increase of tempo-
ral resolution suffered high noise, thus contaminating any
benefit brought by HTR. The kernel-based reconstruction by
KEM-S demonstrated low noise for the high-activity time
points. However, high noise remained in the low-activity time
points. KEM-ST-G smoothed out the noise in late frames but
over-smoothed early frames where activity changes fast. In
comparison, the KEM-ST-D method achieved satisfied noise
suppression for both early-time and late-time points on the
time activity curves.

These patient results have further demonstrated the improve-
ment of the spatiotemporal kernel method for HTR image
reconstruction in addition to the results from the simulation
study.

V. CONCLUSION

In this paper, we have developed a spatiotemporal kernel
method to incorporate both spatial and temporal prior infor-
mation into the kernel framework for dynamic PET image
reconstruction. The spatiotemporal kernel is separable in the
spatial and temporal domains and thus can be easily and
efficiently implemented. We conducted a computer simulation
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(a) MLEM (b) KEM-S (c) KEM-ST-G (d)KEM-ST-D

Fig. 10. Comparison of different methods for reconstructing HTR patient data at t = 10s (top row), t = 20s (middle row) and t = 90s (bottom row). (a)
MLEM, (b) KEM-S, (c) KEM-ST-G, (d) KEM-ST-D.

to validate the method and tested the method using a patient
PET scan. The results from both the simulation study and
patient study have shown that the new spatiotemporal kernel
method can outperform traditional MLEM and existing spatial
kernel methods and achieve a 2-s high temporal-resolution
while maintaining noise at a low level. Future work will
include a more comprehensive patient study to quantitate the
improvement.
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