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Abstract 
Motivation: For over 10 years allele-level HLA matching for bone marrow registries has been performed in a probabilistic 
context. HLA typing technologies provide ambiguous results in that they could not distinguish among all known HLA allele 
sequences, therefore registries have implemented matching algorithms that provide lists of donor and cord blood units 
ordered in terms of the likelihood of allele-level matching at specific HLA loci. With the growth of registry sizes, current 
match algorithm implementations are unable to provide match results in real time.  
Results: We present here novel computationally-efficient open source implementation of an HLA imputation and match 
algorithm using a graph database platform. Using graph traversal, our algorithm runtime grows slowly with registry size. 
This implementation generates results that agree with consensus output on a publicly-available match algorithm cross-
validation dataset.  
Availability: The Python, Perl and Neo4jJcode is available at https://git.com/nmdp-bioinformatics/grimm 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction  
Human leukocyte antigen (HLA) matching between patient and donor is 
a primary factor determining the success of an allogeneic hematopoietic 
stem cell (HSC) transplantation (Lee, et al., 2007) (Spellman, et al., 
2012). Therefore, the rapid and reliable identification of allele-level 
HLA matches in unrelated donor registries is of primary importance. 
This registry search process is performed via a HLA-matching algorithm, 
which uses population HLA haplotype frequencies to predict which 
potential matches are most likely to be allele-level matches when addi-
tional HLA testing is performed (Dehn, et al., 2016).  
Given ambiguous HLA typing data, current match algorithms perform 
imputation by direct enumeration of all possible haplotype pairs con-
sistent with the typing. The runtime cost of such an algorithm is more 
than linear with the registry size. With the overall growth in the registry, 
number of alleles and number of haplotypes in the frequencies set used 
for imputation, this becomes unfeasible in real time, which is essential 
for  streamlining the donor selection process,  

The validate the quality of such algorithms across international registries, 
the World Marrow Donor Association has developed a formal specifica-
tion for HLA matching (Bochtler, et al., 2011) and a cross-validation 
framework for testing matching algorithms (Bochtler, et al., 2016). This 
framework includes a panel of reference data sets of haplotype frequen-
cies and HLA typing along with collaboratively-generated consensus 
match results. We here propose novel implementation of imputation and 
matching based on graph traversal that achieves a cost proportional to 
the typing ambiguity and total number of potentially-matched donors.  

2 Methods 
The imputation algorithm implementation described here is logically 
equivalent to previously described methods (Listgarten, et al., 2008; 
Madbouly, et al., 2014), but is drastically more efficient.  
Given an ambiguous HLA typing of a donor and a distribution of popula-
tion haplotype frequencies, the algorithm calculates the probability of all 

haplotype pairs consistent with the current typing. 
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To perform imputation, a graph database with haplotype frequencies for 
the full set of five HLA loci and also all subsets of locus combinations 
(partial haplotypes) down to single locus (allele) frequencies is loaded. 
This graph is constructed with edges connecting each of the partial hap-
lotypes (e.g. the A and C loci) to the top set of full haplotypes, so that 

partial typing can be directly related to the appropriate full haplotypes 
(see supplemental methods for more details). This imputation method 
can tolerate ambiguous and missing data without computing Cartesian 
products of possible genotypes at missing loci. Our implementation 
explicitly enumerates phases (possible arrangements of alleles on haplo-
types) upfront and uses graph database queries (currently performed 
using Neo4J - https://neo4j.com/) to deal with allelic ambiguity in the 
HLA typing data (Fig 1. Upper plot). 
A second graph database is then used to perform matching calculations 

by representing the results of this imputation process with nodes for each 
subject (patient, donor) and their associated HLA multi-locus unphased 
unambiguous genotype (MUUG) and single-locus genotypes (SLG). 
Edges between each subject and their associated MUUG and SLG nodes 
are weighted by the likelihood of that subject having the corresponding 
genotype calculated by imputation (Fig 1 bottom plots). A mathematical 
description of the method is in the supplementary material. 

3 Results 
We applied this imputation method to the WMDA cross-validation set of 
simulated patients and donors with the provided haplotype frequencies 
(Bochtler, et al., 2016). An imputation graph was generated to enumerate 
probabilities for possible allele-level haplotypes for each subject. Impu-
tation results were then stored in a matching graph that stores MUUGs as 
nodes with imputed likelihood-weighted edges connecting each subject 

to their possible allele-level genotypes. We computed match probabili-
ties by running graph traversal Cypher queries against a Neo4J graph 
database. For example, this query provides the complete list of patient-
donor pairs who are potentially full allele matches at 5 loci (10 out of 10) 
with the probability of match provided as an integer percentage value: 
  match (d:Subject {id_typ:'D'dono)-[dml:MUUG_LIKELIHOOD]-(m:MUUG)-

[rml:MUUG_LIKELIHOOD] -(r:Subject {id_typ:'P'})- return d.id, r.id, 

round(100*sum(dml.prob*rml.prob)) 

Single allele mismatch searches (e.g. frequency of donors matching in a 

recipient in nine out of ten alleles) are accomplished by generating 
MUUG-1 nodes that represent partial genotypes with edges linking them 
to all corresponding MUUGs. A similar Cypher query provides the inte-
ger percentage values for the probability of a single mismatch between a 
patient and donor at any locus. Single-locus matching is implemented by 
a similar query for each individual locus based on single-locus genotype 
(SLG) nodes connected to each subject which were computed during 
graph construction by summing across all MUUG likelihood edges for 
that locus.  

We generated a set of 10 million match results for each of 1,000 simulat-
ed patients compared to 10,000 simulated donors in the WMDA valida-
tion dataset. These results were in complete concordance with the cross-
registry “consensus” results, except for one donor where we believe the 
consensus results are incorrect.  
The Cypher queries generate results in the order of 100 milliseconds, 
rather than up to many-minutes from the current match algorithm im-
plementation. This improvement in runtime is largely achieved from 
storing results from pre-computed imputation sub-problems in the 

matching graph. 
The imputation graph can be generated using any number of population 
haplotype frequency sets. In the current formalism, very little about the 
number of HLA loci, resolution, or populations is hard-coded.  

Additional categories of HLA matching queries are easy to impleme
Cypher queries: haplo-identical matching, multiple-allele-mismatc

or matching only for certain alleles, which could be relevant for tar
T-Cell therapies. This platform has the potential to provide a transp
cy to matching that is currently lacking and may offer many advan
over current approaches in terms of flexibility in inputs and outputs.
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Fig. 1.  Upper plot schematic model of imputation. Each HLA typing is expanded into all 

possible ambiguous phases (first row). Each phase is in turn expanded to all possible 

haplotype pairs. Next a Neo4j query is performed to find all haplotypes in the database 

consistent with the typing. Lower plot. Schematic model of matching. Each donor is 

associated with a list of multi-locus unphased genotypes (MUUGs). Finding the donor 

that can match a patient is simply a graph traversal through the MUUGs (Green circles). 

For mismatched donors, the traversal must include MUUGs with one or more mismatches 

(Yellow circles). A parallel query can be performed at the single allele level via single-

locus genotypes (SLGs) (red circles). Central plot – example of actual matching database 

at high level. 
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