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Abstract 14 
 15 
Background 16 
De novo transcriptome assemblies are required prior to analyzing RNAseq data from a species 17 
without an existing reference genome or transcriptome. Despite the prevalence of transcriptomic 18 
studies, the effects of using different workflows, or “pipelines”, on the resulting assemblies are 19 
poorly understood. Here, a pipeline was programmatically automated and used to assemble and 20 
annotate raw transcriptomic short read data collected by the Marine Microbial Eukaryotic 21 
Transcriptome Sequencing Project (MMETSP). Transcriptome assemblies generated through this 22 
pipeline were evaluated and compared against assemblies that were previously generated with a 23 
pipeline developed by the National Center for Genome Research (NCGR). 24 
 25 
Findings 26 
New transcriptome assemblies contained 70% of the previous contigs as well as new content. On 27 
average, 7.8 ± 0.19% of the annotated contigs in the new assemblies were novel gene names not 28 
found in the previous assemblies. Taxonomic trends were observed in the assembly metrics, with 29 
assemblies from the Dinoflagellata and Ciliophora phyla showing a higher percentage of open 30 
reading frames and number of contigs than transcriptomes from other phyla. 31 
 32 
Conclusions 33 
Given current bioinformatics approaches, there is no single ‘best’ reference transcriptome for a 34 
particular set of raw data. As the optimum transcriptome is a moving target, improving (or not) 35 
with new tools and approaches, automated and programmable pipelines are invaluable for 36 
managing the computationally-intensive tasks required for re-processing large sets of samples 37 
with revised pipelines. Moreover, automated and programmable pipelines facilitate the 38 
comparison of diverse sets of data by ensuring a common evaluation workflow was applied to all 39 
samples. Thus, re-assembling existing data with new tools using automated and programmable 40 
pipelines may yield more accurate identification of taxon-specific trends across samples in 41 
addition to novel and useful products for the community. 42 
 43 
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Introduction 45 
 46 
The analysis of gene expression from high-throughput nucleic acid sequence data relies on the 47 
presence of a high quality reference genome or transcriptome. When there is no reference 48 
genome or transcriptome for an organism of interest, raw RNA sequence data (RNAseq) must be 49 
assembled de novo into a transcriptome [1]. This type of analysis is ubiquitous across many 50 
fields. For example, evolutionary developmental biology [2], cancer biology [3], agriculture 51 
[4,5], ecological physiology [6,7], and biological oceanography [8]. In recent years, substantial 52 
investments have been made in data generation, primary data analysis, and development of 53 
downstream applications, such as biomarkers and diagnostic tools [9–16]. 54 

Methods for de novo RNAseq assembly of the most common short read Illumina sequencing data 55 
continue to evolve rapidly, especially for non-model species [17]. At this time, there are several 56 
major de novo transcriptome assembly software tools available to choose from, including Trinity 57 
[18], SOAPdenovo-Trans [19], Trans-ABySS [20], Oases [21], SPAdes [22], IDBA-tran [23], 58 
and Shannon [24]. The availability of these options stems from continued research into the 59 
unique computational challenges associated with transcriptome assembly of short read Illumina 60 
RNAseq data, including large memory requirements, alternative splicing and allelic variants 61 
[18,25]. 62 

The continuous development of new tools and workflows for RNAseq analysis combined with 63 
the vast amount of publicly available RNAseq data [26] raises the opportunity to re-analyze 64 
existing data with new tools. This, however, is rarely done systematically. To evaluate the 65 
performance impact of new tools on old data, we developed and applied a programmatically 66 
automated de novo transcriptome assembly workflow that is modularized and extensible based 67 
on the Eel Pond Protocol [27]. This workflow incorporates Trimmomatic [28], digital 68 
normalization with khmer software [29,30], and the Trinity de novo transcriptome assembler 69 
[18]. 70 
 71 
To evaluate this pipeline, we re-analyzed RNAseq data from 678 samples generated as part of 72 
the Marine Microbial Eukaryotic Transcriptome Sequencing Project (MMETSP). The MMETSP 73 
RNAseq data set was generated to broaden the diversity of sequenced marine protists to enhance 74 
our understanding of their evolution and roles in marine ecosystems and biogeochemical cycles 75 
[31,32]. With data from species spanning more than 40 eukaryotic phyla, the MMETSP provides 76 
one of the largest publicly-available collections of RNAseq data from a diversity of species. 77 
Moreover, the MMETSP used a standardized library preparation procedure and all of the 78 
samples were sequenced at the same facility, making this data set unusually comparable. 79 
 80 
Reference transcriptomes for the MMETSP were originally assembled by the National Center for 81 
Genome Research (NCGR) with a pipeline which used the Trans-ABySS software program [31] 82 
to assemble the short reads. The transcriptomes generated from the NCGR pipeline have already 83 
facilitated discoveries in the evolutionary history of ecologically significant genes [33,34], 84 
differential gene expression under shifting environmental conditions [8,35], inter-group 85 
transcriptome comparisons [36], unique transcriptional features [37–39], and meta-86 
transcriptomic studies [34–36]. 87 
 88 
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In re-assembling the MMETSP data, we sought to compare and improve the original MMETSP 89 
reference transcriptome and to create a platform which facilitates automated re-assembly and 90 
evaluation. Here, we show that our re-assemblies had higher evaluation metrics and contained 91 
most of the NCGR contigs as well as adding new content.  92 
 93 
Methods 94 
 95 
Programmatically Automated Pipeline 96 
 97 
An automated pipeline was developed to execute the steps of the Eel Pond mRNAseq Protocol 98 
[27], a lightweight protocol for assembling short Illumina RNA-seq reads that uses the Trinity de 99 
novo transcriptome assembler. This protocol generates de novo transcriptome assemblies of 100 
acceptable quality [43]. The pipeline was used to assemble all of the data from the MMETSP 101 
(Figure 1). The code and instructions for running the pipeline are available at 102 
https://doi.org/10.5281/zenodo.249982. 103 
 104 
The steps of the pipeline applied to the MMETSP are as follows: 105 
 106 
1. Download the raw data 107 
 108 
Raw RNA-seq data sets were obtained from the National Center for Biotechnology Information 109 
(NCBI) Sequence Read Archive (SRA) from BioProject PRJNA231566. Data were paired-end 110 
(PE) Illumina reads with lengths of 50 bases for each read. A metadata (SraRunInfo.csv) file 111 
obtained from the SRA web interface was used to provide a list of samples to the get_data.py 112 
pipeline script, which was then used to download and extract fastq files from 719 records. The 113 
script uses the fastq-dump program from the SRA Toolkit to extract the SRA-formatted fastq 114 
files (version 2.5.4) [44]. There were 18 MMETSP samples with more than one SRA record 115 
(MMETSP0693, MMETSP1019, MMETSP0923, MMETSP0008, MMETSP1002, 116 
MMETSP1325, MMETSP1018, MMETSP1346, MMETSP0088, MMETSP0092, 117 
MMETSP0717, MMETSP0223, MMETSP0115, MMETSP0196, MMETSP0197, 118 
MMETSP0398, MMETSP0399, MMETSP0922). In these cases, reads from multiple SRA 119 
records were concatenated together per sample. Taking these redundancies into consideration, 120 
there were a total of 678 re-assemblies generated from the 719 records in PRJNA231566 121 
(Supplemental Notebook 1). Assembly evaluation metrics were not calculated for MMETSP 122 
samples with more than one SRA record because these assemblies were different than the others, 123 
containing multiple samples, and thus not as comparable.  124 
 125 
Initial transcriptomes that were assembled by the National Center for Genome Resources 126 
(NCGR), using methods and data described in the original publication [31], were downloaded 127 
from the iMicrobe repository to compare with our re-assemblies 128 
(ftp://ftp.imicrobe.us/projects/104/). There were two versions of each assembly, ‘nt’ and ‘cds’. 129 
The version used for comparison is noted below in each evaluation step. To our knowledge, the 130 
NCGR took extra post-processing steps to filter content, leaving only coding sequences in the 131 
‘cds’ versions of each assembly [31]. 132 
 133 
2. Perform quality control 134 
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 135 
Reads were analyzed with FastQC (version 0.11.5) and multiqc (version 1.2) [45] to confirm 136 
overall qualities before and after trimming. A conservative trimming approach [46] was used 137 
with Trimmomatic (version 0.33) [28] to remove residual Illumina adapters and cut bases off the 138 
start (LEADING) and end (TRAILING) of reads if they were below a threshold Phred quality 139 
score (Q<2). 140 
 141 
3. Apply digital normalization 142 
 143 
To decrease the memory requirements for each assembly, reads were interleaved, normalized to 144 
a k-mer (k = 20) coverage of 20 and a memory size of 4e9, then low-abundance k-mers from 145 
reads with a coverage above 18 were trimmed. Orphaned reads, where the mated pair was 146 
removed during normalization, were included in the assembly. 147 
 148 
4. Assemble 149 
 150 
Transcriptomes were assembled from normalized reads with Trinity 2.2.0 using default 151 
parameters (k = 25). 152 
 153 
The resulting assemblies are referred to below as the “Lab for Data Intensive Biology” 154 
assemblies, or DIB assemblies. The original assemblies are referred to as the NCGR assemblies. 155 
 156 
5. Post-assembly assessment  157 
 158 
Transcriptomes were annotated using the dammit pipeline (Scott 2016), which relies on the 159 
following databases as evidence: Pfam-A [47], Rfam [48], OrthoDB [49]. In the case where there 160 
were multiple database hits, one gene name per contig was selected by choosing the name of the 161 
lowest e-value match (<1e-05). 162 
 163 
All assemblies were evaluated using metrics generated by the Transrate program [50]. Trimmed 164 
reads were used to calculate a Transrate score for each assembly, which represents the geometric 165 
mean of all contig scores multiplied by the proportion of input reads providing positive support 166 
for the assembly [50]. Comparative metrics were calculated using Transrate for each MMETSP 167 
sample between DIB and the NCGR assemblies using the Conditional Reciprocal Best BLAST 168 
hits (CRBB) algorithm [51]. A forward comparison was made with the NCGR assembly used as 169 
the reference and each DIB re-assembly as the query. Reverse comparative metrics were 170 
calculated with each DIB re-assembly as the reference and the NCGR assembly as the query. 171 
Transrate scores were calculated for each assembly using the Trimmomatic quality-trimmed 172 
reads, prior to digital normalization. 173 
 174 
Benchmarking Universal Single-Copy Orthologs (BUSCO) software (version 3) was used with a 175 
database of 234 orthologous genes specific to protistans and 306 genes specific to eukaryota with 176 
open reading frames in the assemblies. BUSCO scores are frequently used as one measure of 177 
assembly completeness [52]. 178 
 179 
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To assess the occurrences of fixed-length words in the assemblies, unique 25-mers were 180 
measured in each assembly using the HyperLogLog estimator of cardinality built into the khmer 181 
software package [53].  182 
 183 
Unique gene names were compared from a random subset of 296 samples using the dammit 184 
annotation pipeline [54]. If a gene name was annotated in NCGR but not in DIB, this was 185 
considered a gene uniquely annotated in NCGR. Unique gene names were normalized to the total 186 
number of annotated genes in each assembly.  187 
 188 
A Tukey’s honest significant different (HSD) post-hoc range test of multiple pairwise 189 
comparisons was used in conjunction with an ANOVA to measure differences between 190 
distributions of data from the top eight most-represented phyla ("Bacillariophyta", "Dinophyta", 191 
"Ochrophyta", "Haptophyta", "Ciliophora", "Chlorophyta", "Cryptophyta", "Others") using the 192 
‘agricolae’ package version 1.2-8  in R version 3.4.2 (2017-09-28). Margins sharing a letter in 193 
the group label are not significantly different at the 5% level (Figure 8). Averages are reported ± 194 
standard deviation. 195 
 196 
Results 197 
 198 
After assemblies and annotations were completed, files were uploaded to Figshare and Zenodo 199 
are available for download [55,56]. Due to obstacles encountered uploading and maintaining 678 200 
assemblies on Figshare, Zenodo will be the long-term archive for these re-assemblies 201 
http://doi.org/10.5281/zenodo.1212585.  202 
 203 
Differences in available evaluation metrics between NCGR and DIB were variable. 204 
 205 
The majority of transcriptome evaluation metrics collected for each sample were higher in 206 
Trinity-based DIB re-assemblies than for the Trans-ABySS-based NCGR assemblies (Table 1), 207 
with the exception being the Transrate score from the “nt” version of the assembly. The 208 
Transrate score with this ‘cds’ version was higher in DIB compared to NCGR but lower in DIB 209 
compared to the NCGR ‘nt’ version (Supplemental Figure 1). 210 
 211 
The DIB re-assemblies had more contigs than the NCGR assemblies in 83.5% of the samples 212 
(Table 1). The mean number of contigs in the DIB re-assemblies was 48,361 ± 35,703 while the 213 
mean number of contigs in the NCGR ‘nt’ assemblies was 30,532 ± 21,353 (Figure 2). A two-214 
sample Kolmogorov-Smirnov test comparing distributions indicated that the number of contigs 215 
were significantly different between DIB and NCGR assemblies (p < 0.001, D = 0.35715). 216 
Transrate scores [35], which calculate the overall quality of the assembly based on the original 217 
reads, were significantly higher in the DIB re-assemblies (0.31 ± 0.1) compared to the ‘cds’ 218 
versions of the NCGR assemblies (0.22 ± 0.09) (p < 0.001, D = 0.49899). The Transrate scores 219 
in the NCGR ‘nt’ assemblies (0.35 ± 0.09) were significantly higher than the DIB assemblies 220 
(0.22 ± 0.09) (p < 0.001, D = 0.22475) (Supplemental Figure 1). The frequency of the 221 
differences between Transrate scores in the NCGR ‘nt’ assemblies and the DIB re-assemblies 222 
appears to be normally distributed (Figure 2C). Transrate scores from the DIB assemblies 223 
relative to the NCGR ‘nt’ assemblies did not appear to have taxonomic trends (Supplemental 224 
Figure 2). 225 
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 226 
The DIB re-assemblies contained most of the NCGR contigs as well as new content. 227 
 228 
We applied CRBB to evaluate overlap between the assemblies. A positive CRBB result indicates 229 
that one assembly contains the same contig information as the other. Thus, the proportion of 230 
positive CRBB hits can be used as a scoring metric to compare the relative similarity of content 231 
between two assemblies. For example, MMETSP0949 (Chattonella subsalsa) had 39,051 contigs 232 
and a CRBB score of 0.71 in the DIB re-assembly whereas in the NCGR assembly of the same 233 
sample had 18,873 contigs and a CRBB score of 0.34. This indicated that 71% of the reference 234 
of DIB was covered by the NCGR assembly, whereas in the reverse alignment, the NCGR 235 
reference assembly was only covered by 34% of the DIB re-assembly. The mean CRBB score in 236 
DIB when queried against NCGR ‘nt’ as a reference was 0.70 ± 0.22, while the mean proportion 237 
for NCGR ‘nt’ assemblies queried against DIB re-assemblies was 0.49 ± 0.10 (p < 0.001, D = 238 
0.71121) (Figure 3). This indicates that more content from the NCGR assemblies was included in 239 
the DIB re-assemblies than vice versa and also suggests that the DIB re-assemblies overall have 240 
additional content. This finding is reinforced by higher unique k-mer content found in the DIB 241 
re-assemblies compared to NCGR, where more than 95% of the samples had more unique k-mers 242 
in the DIB re-assemblies compared to NCGR assemblies (Figure 4).	243 
 244 
To investigate whether the new sequence content was genuine, we examined two different 245 
metrics that take into account the biological quality of the assemblies. First, the estimated content 246 
of open reading frames (ORFs), or coding regions, across contigs was quantified. Though DIB 247 
re-assemblies had more contigs, the ORF content is similar to the original assemblies, with a 248 
mean of 81.8 ± 9.9% ORF content in DIB re-assemblies and 76.7 ± 10.1% ORF content in the 249 
NCGR assemblies. Nonetheless, ORF content in DIB re-assemblies was slightly higher than 250 
NCGR assemblies for 95% of the samples (Figure 5 A,B), although DIB re-assemblies had 251 
significantly higher ORF content (p < 0.001, D = 2681). Secondly, when the assemblies were 252 
queried against the eukaryotic BUSCO database [37], the percentages of BUSCO eukaryotic 253 
matches in the DIB re-assemblies (63 ± 18.6%) were less significantly different compared to the 254 
original NCGR assemblies (65 ± 19.1%) (p = 0.001873,  D = 0.10291) (Figure 5 C,D). Thus, 255 
although the number of contigs and amount of content was increased in the DIB re-assemblies 256 
compared to the NCGR assemblies, the ORF content and contigs matching with the BUSCO 257 
eukaryotic (Figure 5 C,D) and protistan (Supplemental Figure 3) databases did not decrease, 258 
suggesting that the extra content contained similar proportions of ORFs and BUSCO annotations 259 
and, therefore, might be biologically meaningful.  260 
 261 
Following annotation by the dammit pipeline (Scott 2016), 91 ± 1.6% of the contigs in the DIB 262 
re-assemblies had positive matches with sequence content in the databases queried (Pfam, Rfam, 263 
and OrthoDB), with 48 ± 0.9% of those containing unique gene names (the remaining are 264 
fragments of the same gene). Of those annotations, 7.8 ± 0.2% were identified as novel 265 
compared to the NCGR ‘nt’ assemblies, determined by a “false” CRBB result (Figure 6). 266 
Additionally, the number of unique gene names in DIB re-assemblies were higher in 97% of the 267 
samples compared to NCGR assemblies, suggesting an increase in genic content (Figure 7). 268 
 269 
Novel contigs in the DIB re-assemblies likely represent a combination of unique annotations, 270 
allelic variants and alternatively spliced isoforms. For example, "F0XV46_GROCL", 271 
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"Helicase_C", "ODR4-like","PsaA_PsaB", and "Metazoa_SRP" are novel gene names found 272 
annotated in the DIB re-assembly of the sample MMETSP1473 (Stichococcus sp.) that were 273 
absent in the NCGR assembly of this same sample. Other gene names, for example 274 
"Pkinase_Tyr","Bromodomain", and "DnaJ", are found in both the NCGR and DIB assemblies, 275 
but are identified as novel contigs based on negative CRBB results in the DIB re-assembly of 276 
sample MMETSP1473 compared to the NCGR reference. 277 
 278 
Assembly metrics varied by taxonomic group being assembled. 279 
 280 
To examine systematic taxonomic differences in the assemblies, metrics for content and 281 
assembly quality were assessed (Figure 8). Metrics were grouped by the top eight most 282 
represented phyla in the MMETSP data set as follows: Bacillariophyta (N=173), Dinophyta 283 
(N=114), Ochrophyta (N=73), Chlorophyta (N=62), Haptophyta (N=61), Ciliophora (N=25), 284 
Cryptophyta (N=22) and Others (N=130).  285 
 286 
While there were no major differences between the phyla in the number of input reads (Figure 8 287 
A), the Dinoflagellates (Dinophyta) had significantly different (higher) contigs (p < 0.01), unique 288 
k-mers (p < 0.001), and % ORF (p < 0.001) compared to than other groups (Figure 8 B,C,D), and 289 
assemblies from Ciliates (Ciliophora) had lower % ORF (p < 0.001) (Figure 8 D).  290 
 291 
Discussion 292 
 293 
DIB re-assemblies contained the majority of the previously-assembled contigs. 294 
 295 
We used a different pipeline than the original one used to create the NCGR assemblies, in part 296 
because new software was available [8] and in part because of new trimming guidelines [27]. We 297 
had no a priori expectation for the similarity of the results, yet we found that in the majority of 298 
cases the new DIB re-assemblies included substantial portions of the previous NCGR 299 
assemblies. Moreover, both the fraction of contigs with ORFs and the mean percentage of 300 
BUSCO matches were similar between the two assemblies, suggesting that both pipelines 301 
yielded equally valid contigs, even though the NCGR assemblies were less sensitive. 302 
 303 
Reassembly with new tools can yield new results. 304 
 305 
Evaluation with quality metrics suggested that the DIB re-assemblies were more inclusive than 306 
the NCGR assemblies. The Transrate scores in the DIB re-assemblies compared to the NCGR 307 
‘nt’ assemblies were significantly lower, indicating that the NCGR ‘nt’ assemblies had better 308 
overall read inclusion in the assembled contigs whereas the DIB assemblies had higher Transrate 309 
scores than the NCGR ‘cds’ version. This suggests that the NCGR ‘cds’ version, which was 310 
post-processed to only include coding sequence content, was missing information originally in 311 
the quality-trimmed reads. The Transrate score [50] is one of the few metrics available for 312 
evaluating the ‘quality’ of a de novo transcriptome. It is similar to the DETONATE RSEM-313 
EVAL score in that it returns a metric indicating how well the assembly is supported by the read 314 
data [57]. Metrics directly evaluating the underlying de Bruijn graph data structure used to 315 
produce the assembled contigs may be better evaluators of assembly quality in the future. Here, 316 
the DIB re-assemblies, which used the Trinity de novo assembly software, typically contained 317 
more k-mers, more annotated transcripts, and more unique gene names than the NCGR 318 
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assemblies. These points all suggest that additional content in these re-assemblies might be 319 
biologically meaningful and that these re-assemblies provide new content not available in the 320 
previous NCGR assemblies. Since contigs are probabilistic predictions made by assembly 321 
software for full-length transcripts [57], ‘final’ reference assemblies are approximations of the 322 
full set of transcripts in the transcriptome. Results from this study suggest that achieving the 323 
‘ideal’ reference transcriptome is like chasing a moving target and that these predictions may 324 
continue to improve given updated tools in the future. 325 
 326 
The evaluation metrics described here serve as a framework for better contextualizing the quality 327 
of protistan transcriptomes. For some species and strains in the MMETSP data set, these data 328 
represent the first nucleic acid sequence information available [31]. 329 
 330 
Automated and programmable pipelines can be used to process arbitrarily many RNAseq 331 
samples. 332 
 333 
The automated and programmable nature of this pipeline was useful for processing large data 334 
sets like the MMETSP as it allowed for batch processing of the entire collection, including re-335 
analysis when new tools or new samples become available (see op-ed Alexander et al. 2018). 336 
During the course of this project, we ran four re-assemblies of the MMETSP data set as versions 337 
of the component tools were updated. Each re-analysis required only a single command and 338 
approximately half a CPU-year of compute. New Trinity versions were released (Supplemental 339 
Notebook 2) The value of programmable automation is clear when new data sets become 340 
available, tools are updated, or many tools are compared in benchmark studies. Despite this, few 341 
assembly efforts completely automate their process, perhaps because the up-front cost of doing 342 
so is high compared to the size of the dataset typically being analyzed. 343 
 344 
Analyzing many samples using a common pipeline identifies taxon-specific trends. 345 
 346 
The MMETSP dataset presents an opportunity to examine transcriptome qualities for hundreds 347 
of taxonomically diverse species spanning a wide array of protistan lineages. This is among the 348 
largest set of diverse RNAseq data to be sequenced. In comparison, the Assemblathon2 project 349 
compared genome assembly pipelines using data from three vertebrate species [59]. The BUSCO 350 
paper assessed 70 genomes and 96 transcriptomes representing groups of diverse species 351 
(vertebrates, arthropods, other metazoans, fungi) [52]. Other benchmarking studies have 352 
examined transcriptome qualities for samples representing dozens of species from different 353 
taxonomic groupings [57,58]. A study with a more restricted evolutionary analysis of 15 plant 354 
and animals species [58] found no evidence of taxonomic trend in assembly quality but did find 355 
evidence of differences between assembly software packages [58]. 356 
 357 
With the MMETSP data set, we show that comparison of assembly evaluation metrics across this 358 
diversity provides not only a baseline for assembly performance, but also highlights particular 359 
metrics which are unique within some taxonomic groups. For example, the phyla Ciliophora had 360 
a significantly lower percentage of ORFs compared to other phyla. This is supported by recent 361 
work which has found that ciliates have an alternative triplet codon dictionary, with codons 362 
normally encoding STOP serving a different purpose [37–39], thus application of typical ORF 363 
finding tools fail to identify ORFs accurately in Ciliophora. Additionally, Dinophyta data sets 364 
had a significantly higher number of unique k-mers and total contigs in assemblies compared to 365 
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the assemblies from other data sets, despite having the same number of input reads. Such a 366 
finding supports previous evidence from studies showing that large gene families are 367 
constitutively expressed in Dinophyta [60]. 368 
 369 
In future development of de novo transcriptome assembly software, the incorporation of phylum-370 
specific information may be useful in improving the overall quality of assemblies for different 371 
taxa. Phylogenetic trends are important to consider in the assessment of transcriptome quality, 372 
given that the assemblies from Dinophyta and Ciliophora are distinguished from other 373 
assemblies by some metrics. Applying domain-specific knowledge, such as specialized 374 
transcriptional features in a given phyla, in combination with other evaluation metrics can help to 375 
evaluate whether a transcriptome is of good quality or “finished” enough to serve as a high 376 
quality reference to answer the biological questions of interest. 377 
 378 
Conclusion 379 
 380 
As the rate of sequencing data generation continues to increase, efforts to programmatically 381 
automate the processing and evaluation of sequence data will become increasingly important. 382 
Ultimately, the goal in generating de novo transcriptomes is to create the best possible reference 383 
against which downstream analyses can be accurately based. This study demonstrated that re-384 
analysis of old data with new tools and methods improved the quality of the reference assembly 385 
through an expansion of the gene catalogue of the dataset. Notably, these improvements arose 386 
without further experimentation or sequencing.  387 
 388 
With the growing volume of nucleic acid data in centralized and de-centralized repositories, 389 
streamlining methods into pipelines will not only enhance the reproducibility of future analyses, 390 
but will facilitate inter-comparisons amongst datasets from similar and diverse. Automation tools 391 
were key in successfully processing and analyzing this large collection of 678 samples.  392 
 393 
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Quality Metric Higher in NCGR Higher in DIB 
Transrate score, “cds” 44 583 
Transrate score, “nt” 495 143 
Mean ORF % 42 596 
Percentage of references with CRBB 100 538 
Number of contigs 12 626 

 
Table 1. Number of assemblies with higher values in NCGR or DIB assemblies for each quality 
metric.  
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Figure 1. A programmatically automated de novo transcriptome assembly pipeline was 
developed for this study. Metadata in the SraRunInfo.csv file downloaded from NCBI was used 
as input for each step of the pipeline to indicate which samples were processed. The steps of the 
pipeline are as follows: download raw fastq data with the fastq-dump script in the SRA Toolkit, 
perform quality assessment with FastQC and trim residual Illumina adapters and low quality 
bases (Q<2) with Trimmomatic, do digital normalization with khmer version 2.0, and perform de 
novo transcriptome assembly with Trinity. If a process was terminated, the automated nature of 
this pipeline allowed for the last process to be run again without starting the pipeline over. In the 
future, if a new sample is added, the pipeline can be run from beginning to end with just new 
samples, without having to repeat the processing of all samples in the dataset as one batch. If a 
new tool becomes available, for example a new assembler, it can be substituted in lieu of the 
original tool used by this pipeline. 
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Figure 2. The number of contigs and Transrate quality score for each data set varied between 
DIB and NCGR assemblies. (A) Slopegraphs show shifts in the number of contigs for each 
individual sample between the DIB and the NCGR assembly pipelines. Red lines represent 
values where NCGR was higher than DIB and green lines represent values where DIB was 
higher than NCGR. (B) Split violin plots show the distribution of the number of contigs in each 
assembly with the original assemblies from NCGR in red (left) and the DIB re-assemblies and in 
green (right side of B). (C) The difference in Transrate score between the DIB and NCGR 
assemblies is shown as a histogram. Negative values on the x-axis indicate that the NCGR 
assembly had a higher Transrate score and positive values indicate that the DIB assembly had a 
higher Transrate score.  
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Figure 3. (A) Line plot comparing proportion of CRBB hits between NCGR ‘nt’ assemblies and 
DIB assemblies between the same samples. (B) Violin plots showing the distribution of the 
proportion of NCGR transcripts with reciprocal BLAST hits to DIB (red) and the proportion of 
DIB transcripts with reciprocal BLAST hits to NCGR (green). 
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Figure 4. Unique numbers of k-mers (k=25) in seven most represented phyla, calculated with the 
HyperLogLog function in the khmer software package. DIB re-assemblies were compared to the 
NCGR ‘nt’ assemblies along a 1:1 line. Samples are colored based on their phylum level 
affiliation. More than 95% of the DIB re-assemblies had more unique k-mers than to the NCGR 
assembly of the same sample.  
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Figure 5. The percentage of contigs with a predicted open reading frame (ORF) (A, B) and the 
percentage of complete protistan universal single-copy orthologs (BUSCO) recovered in each 
assembly (C, D). In the green (right side B, D) are the “DIB” re-assemblies and in red (left side 
of B, D) are the original ‘nt’ assemblies from NCGR. Line plots (A,C) compare values between 
the DIB and the NCGR ‘nt’ assemblies. Red lines represent values where NCGR was higher than 
DIB and green lines represent values where DIB was higher than NCGR. 
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Figure 6. A histogram across MMETSP samples depicting the number of contigs identified as 
novel in DIB assemblies. These contigs were absent in the NCGR assemblies, based on negative 
conditional reciprocal best BLAST (CRBB) results. Samples are sorted from highest to lowest 
number of ‘new’ contigs. The region in gray indicates the number of unannotated contigs present 
in the DIB re-assemblies, absent from NCGR ‘nt’ assemblies. Highlighted in green are contigs 
that were annotated with dammit [44] to a gene name in the Pfam, Rfam, or OrthoDB databases, 
representing the number of contigs unique to the DIB re-assemblies with an annotation. 
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Figure 7. Unique gene names found in a subset (296 samples) of either NCGR ‘nt’ assemblies or 
DIB re-assemblies but not found in the other assembly, normalized to the number of annotated 
contigs in each assembly. The line indicates a 1:1 relationship between the unique gene names in 
DIB and NCGR. More than 97% of the DIB assemblies had more unique gene names than in 
NCGR assemblies of the same sample.  
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Figure 8. Box-and-whisker plots for the seven most common phyla in the MMETSP dataset, (A) 
number of input reads, (B) number of contigs in the assembly, (C) unique k-mers (k = 25) in the 
assembly, (D) mean percentage open reading frames (ORF). Groups sharing a letter in the top 
margin were generated from Tukey’s HSD post-hoc range test of multiple pairwise comparisons 
used in conjunction with an ANOVA. 
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