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Abstract

Although human leukocyte antigen (HLA) genotyping based on am-
plicon, whole exome sequence (WES), and RNA sequence data has been
achieved in recent years, accurate genotyping from whole genome sequence
(WGS) data remains a challenge due to the low depth. Furthermore,
there is no method to identify the sequences of unknown HLA types not
registered in HLA databases. We developed a Bayesian model, called
ALPHLARD, that collects reads potentially generated from HLA genes
and accurately determines a pair of HLA types for each of HLA-A, -B, -C,
-DPA1, -DPB1, -DQA1, -DQB1, and -DRB1 genes at 6-digit resolution.
Furthermore, ALPHLARD can detect rare germline variants not stored
in HLA databases and call somatic mutations from paired normal and tu-
mor sequence data. We illustrate the capability of ALPHLARD using 253
WES data and 25 WGS data from Illumina platforms. By comparing the
results of HLA genotyping from SBT and amplicon sequencing methods,
ALPHLARD achieved 98.8% for WES data and 98.5% for WGS data at
4-digit resolution. We also detected three somatic point mutations and
one case of loss of heterozygosity in the HLA genes from the WGS data.
ALPHLARD showed good performance for HLA genotyping even from
low-coverage data. It also has a potential to detect rare germline vari-
ants and somatic mutations in HLA genes. It would help to fill in the
current gaps in HLA reference databases and unveil the immunological
significance of somatic mutations identified in HLA genes.
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5442; Email: imoto@ims.u-tokyo.ac.jp
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Introduction

Human leukocyte antigen (HLA) genes play a key role in immunological re-
sponses by presenting peptides to T cells. It is well known that HLA loci are
highly polymorphic, and the polymorphism patterns define several thousands of
types within HLA genes. HLA genotyping is a process that determines a pair
of HLA types for an HLA gene. Since the relationships between HLA types
and diseases have now been intensively investigated [1–5], HLA genotyping is
considered as a fundamental step in immunological analysis. Further analysis
enables us to identify novel HLA types and detect somatic mutations, which
potentially affect the efficacy of immune therapy.

Recently, next generation sequencing-based approaches have been developed
for HLA genotyping. These can be generally separated into two categories:
those based on amplicon sequencing of HLA loci [6, 7] and others based on un-
biased sequencing methods such as whole exome sequencing (WES) and RNA
sequencing (RNA-seq) [8–15]. The amplicon sequencing-based methods are the
most accurate owing to the sufficient coverage of sequence data, but are rela-
tively expensive to perform and require specialized materials and equipment.
The unbiased sequencing ones can be used without additional costs, but the
accuracy of the results depends on the amount and quality of sequence reads
generated from HLA loci. Previous papers have shown that the accuracy can
reach 95% at 4-digit resolution from WES and RNA-seq data [10, 12, 13, 15]
However, Bauer et al. has reported that these methods cannot achieve 80% ac-
curacy from whole genome sequence (WGS) data [16]. Thus, HLA genotyping
from WGS data remains a significant challenge, although this approach would
provide more information of HLA loci than possible with WES and RNA-seq
data, including details of the non-coding regions such as the introns and the
untranslated regions.

To achieve high accuracy for WGS-based HLA genotyping and further analy-
sis of HLA genes, we developed a series of computational methods, which involve
collection of sequence reads that are potentially generated from a target HLA
gene followed by HLA genotyping, using a novel Bayesian model termed ALelle
Prediction in HLA Regions from sequence Data (ALPHLARD). This model
was found to yield comparable accuracy to those based on WES and RNA-seq
data at 6-digit resolution. Together with HLA genotyping, a notable feature of
ALPHLARD is that it can estimate the personal HLA sequences of the sample.
This enables achieving high accuracy for a sample whose HLA sequence is not
included in the reference databases and further allows for calling rare germline
variants not stored in the databases. We can also detect somatic mutations by
comparing the HLA sequences of paired normal and tumor sequence data.

We illustrate the capability of our method by comparing the performance of
ALPHLARD and existing methods using WES data from 253 HapMap samples
and WGS data from the normal samples of 25 cancer patients. We also applied
ALPHLARD to WGS data of the tumor samples of the cancer patients and
detected three somatic point mutations and one case of loss of heterozygosity
(LOH) in the HLA genes, which were validated by the Trusight HLA Sequencing
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Figure 1: Schematic overview of ALPHLARD: (a) For each read and each
HLA type, the HLA read score (HR score) is calculated, which quantifies the
likelihood that the read comes from the HLA type. Based on the calculated
HR scores, it is determined whether or not the read comes from a certain HLA
gene. (b) For each read and each HLA type, the HLA read score (HR score) is
calculated, which quantifies the likelihood that the read comes from the HLA
type. Based on the calculated HR scores, it is determined whether or not the
read comes from a certain HLA gene.

Panels [17] and the Sanger sequencing.

Methods

Overview of our pipeline

Our pipeline consists of two steps as shown in Figure 1. First, for each read and
each HLA type, the HLA read score (HR score) is calculated, which quantifies
the likelihood that the read comes from the HLA type. Based on the calcu-
lated HR scores, it is determined whether or not the read comes from a certain
HLA gene. For example, by aligning read x to the reference sequences in HLA
databases, we obtained the HR scores as shown in the bar graph of Figure 1a.
Then, if the maximum HR score for the HLA-A gene is large enough and the
difference in the maximum scores for the HLA-A gene and the other HLA genes
is also large, we conclude that read x is most likely a specific read of the HLA-A
gene. Otherwise, read x is judged to be a read produced from other regions.
HLA genotyping is then performed using the collected reads for each HLA gene,
as shown in Figure 1b. ALPHLARD outputs candidate pairs of HLA types
according to the Bayesian posterior probabilities.
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HLA reference data

We used HLA reference information that can be obtained from the IPD-
IMGT/HLA database (release 3.28.0) [18]. There are two types of HLA ref-
erence sequences in the database: one is a complete genomic reference and the
other is an exonic reference without non-coding regions. Some HLA types have
both genomic and exonic reference information, but most HLA types have only
exonic reference information.

The database also provides multiple sequence alignments (MSAs) at the ge-
nomic and the exonic levels for each HLA gene. We combined the two MSAs
into a common MSA as follows: First, some gaps were inserted into exons of the
genomic MSA for consistency with the exonic reference sequences. Then, miss-
ing non-coding sequences were replaced with the most similar genomic reference
sequences. This integrated MSA is then used for alignment and realignment of
the reads.

Collection and realignment of reads

First, all reads are mapped to a human reference genome, and reads mapped to
the HLA region and unmapped reads are used at the next step. We use hg19
[19] as the reference sequence and define the HLA region as chr6:28,477,797-
33,448,354, which covers HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, and
-DRB1 genes.

Next, the filtered reads are mapped to all HLA genomic and exonic reference
sequences. We use BWA-MEM (version 0.7.10) [20] with the -a option to output
all found alignments. Then, each mapped read is filtered based on whether or
not it is likely to be produced by the target HLA gene. This filtering is performed
according to the HR score sij for the i

th read xi and the jth HLA type tj , which
is similar to the filtering procedure used in HLAforest [11]. If xi is not aligned
to tj , sij is −∞. Otherwise, let (x̃ij , t̃ij) be the alignment of xi and tj , which
might include some gaps. x̃ijn and t̃ijn are defined as the nth bases or gaps

of x̃ij and t̃ij , respectively, and b̃ijn is defined as the base quality of x̃ijn. We
suppose that p̃ijn is the probability of a mismatch between x̃ijn and t̃ijn, which
can be calculated by

p̃ijn = 10−
b̃ijn
10 .

Then, the HR score sij is given by

sij =
∑
n

(α̃ijn + β̃ijn),
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where

α̃ijn =



log(
p̃ijn

3 ) (if x̃ijn, t̃ijn ∈ B and x̃ijn ̸= t̃ijn)

αdo (if x̃ijn = - and x̃ijn−1 ̸= -)

αde (if x̃ijn = - and x̃ijn−1 = -)

αio (if t̃ijn = - and t̃ijn−1 ̸= -)

αie (if t̃ijn = - and t̃ijn−1 = -)

αN

(
if x̃ijn = N and t̃ijn ∈ BN

or x̃ijn ∈ BN and t̃ijn = N

)
0 (otherwise)

,

β̃ijn =

{
β (if x̃ijn ∈ BN)

0 (otherwise)
.

Here, B = {A, C, G, T} and BN = {A, C, G, T, N}. The parameters αdo, αde, αio,
αie, and αN take negative values as penalties for opening a deletion, extending a
deletion, opening an insertion, extending an insertion, and N in the read or the
HLA type, respectively. β is a positive constant reward for read length, which
prefers longer reads. Then, the score of xi for the target HLA gene s∗i , and the
score of xi for the non-target HLA genes s̄∗i are defined by

s∗i = max
tj∈T

sij , s̄∗i = max
tj /∈T

sij ,

where T is the set of HLA types in the target HLA gene. s∗i and s̄∗i indicate
how likely xi is to be produced by the target HLA gene and the non-target HLA
genes, respectively.

Thus, when xi is an unpaired read, it is used for HLA genotyping if

s∗i > θum, s∗i − s̄∗i > θud,

where θum and θud are constant thresholds. When xi and xi′ are paired, they
are used for HLA genotyping if

s∗i + s∗i′ > θpm, (s∗i + s∗i′)− (s̄∗i + s̄∗i′) > θpd,

where θpm and θpd are constant thresholds. Paired reads are generally more
effective than unpaired reads; hence, θpm and θpd should be less than θum and
θud, respectively.

In the next step, all of the collected reads are realigned as follows. First, tj∗
is defined as the best type for xi in the target gene, which is obtained by

j∗ = argmax
j:tj∈T

sij .

Then, xi is realigned to be consistent with the alignment (x̃ij∗ , t̃ij∗) and the
integrated MSA of the target HLA gene.
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Bayesian model for analyzing HLA genes

Analysis of the target HLA gene by ALPHLARD is performed using the col-
lected and realigned reads. Let x̂i be the ith paired (or unpaired) read(s) col-
lected and realigned with the previous procedure, x̂in be the nth base or gap of
x̂i, and b̂in be the base quality of x̂in. Note that, hereafter, we regard paired
reads as one sequence. The probability of mismatch p̂in can be calculated by

p̂in = 10−
b̂in
10 .

Suppose that Rr
1 and Rr

2 are the HLA types of the sample, and that Sr
1

and Sr
2 are the true HLA sequences of the sample, which are introduced be-

cause the HLA sequences of the sample might not be registered in the refer-
ence (IPD-IMGT/HLA) database. Let Rd

1, R
d
2, ..., be decoy HLA types and

Sd
1 , S

d
2 , ..., be decoy HLA sequences. These parameters could make this HLA

analysis robust when reads from non-target homologous regions are misclassi-
fied into the target HLA gene at the previous filtering step. We will sometimes
use R1, R2, R3, R4, ..., and S1, S2, S3, S4, ..., instead of Rr

1, R
r
2, R

d
1, R

d
2, ..., and

Sr
1 , S

r
2 , S

d
1 , S

d
2 , ..., for convenience. Ii is defined as a parameter to indicate which

sequence produced the read x̂i; that is, Ii = k means that x̂i was generated from
Sk. Then, the posterior probability of the parameters p(R,S, I|X̂) is given by

p(R,S, I|X̂) ∝ p(X̂|S, I)p(R,S)p(I),

where X̂ = {x̂1, x̂2, ...}, R = {R1, R2, ..., }, S = {S1, S2, ..., }, and I =
{I1, I2, ...}.

The likelihood function p(X̂|S, I) is defined by

p(X̂|S, I) =
∏
i

p(x̂i|SIi).

The likelihood of each read p(x̂i|Sk) is given by

p(x̂i|Sk) =
∏
n

p(x̂in|Skn),

where Skn is the nth base or gap of Sk. The likelihood of each base p(x̂in|Skn)
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is calculated by

p(x̂in|Skn∈B) =


(1−γd)(1−γN)(1−p̂in) (if x̂in=Skn)

(1−γd)(1−γN) p̂in

3 (if x̂in∈B and x̂in ≠Skn)

(1−γd)γN (if x̂in=N)

γd (if x̂in=-)

,

p(x̂in|Skn=N) =


(1−γd)(1−γN) 14 (if x̂in∈B)

(1−γd)γN (if x̂in=N)

γd (if x̂in=-)

,

p(x̂in|Skn=-) =


γi(1−γN) 14 (if x̂in∈B)

γiγN (if x̂in=N)

1−γi (if x̂in=-)

.

Here, γd, γi, and γN are the probabilities of a deletion error, an insertion error,
and N, respectively.

The prior probability of the HLA types and the HLA sequences p(R,S) is
defined by

p(R,S) =
∏
k

p(Rk)p(Sk|Rk).

Here, p(Rr
k) is the prior probability of the HLA type, which is calculated using

The Allele Frequency Net Database [21]. On the other hand, p(Rd
k) is the prior

probability of the decoy HLA type, which we assume as constant. The prior
probability of the HLA sequence p(Sk|Rk) is given by

p(Sk|Rk) =
∏
n

p(Skn|Rkn),

where and Rkn is the nth base or gap of Rk in the integrated MSA. The prob-
ability of a germline variant p(Skn|Rkn) is calculated by

p(Skn|Rkn∈B) =


(1−δd)(1−δN)(1−δs) (if Skn=Rkn)

(1−δd)(1−δN) δ
s

3 (if Skn∈B and Skn ̸=Rkn)

(1−δd)δN (if Skn=N)

δd (if x̂in=-)

,

p(Skn|Rkn=N) =


(1−δd)(1−δN) 14 (if Skn∈B)

(1−δd)δN (if Skn=N)

δd (if Skn=-)

,

p(Skn|Rkn=-) =


δi(1−δN) 14 (if Skn∈B)

δiδN (if Skn=N)

1−δi (if Skn=-)

.
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Here, δs, δd, δi, and δN are the probabilities of a true substitution, a true
deletion, a true insertion, and a true N, respectively. Skn tends to become N

when it is ambiguous.
The prior probability of the indicator variables p(I) is defined by

p(I) =
∏
i

p(Ii)

Here, p(Ii) is the prior probability of the indicator variable, which is calculated
by

p(Ii) ∝

{
1 (if Ii = 1 or Ii = 2)

ϵ (otherwise)
.

ϵ reflects how likely the reads are to be produced by non-target homologous
regions.

Efficient sampling with elaborate MCMC schemes

The parameters of the model above are sampled using two Markov chain Monte
Carlo (MCMC) schemes, Gibbs sampling and the Metropolis-Hastings algo-
rithm, with parallel tempering to make the parameter sampling efficient. Gibbs
sampling is mainly used for local search, and Metropolis-Hastings sampling is
periodically used for more global search. For the Metropolis-Hastings algorithm,
we constructed two novel proposal distributions that enable the parameters to
jump from mode to mode and lead more efficient sampling.

One of the proposal distributions is focused on positions not covered with
any read. First, SN

k is defined as a modified HLA sequence whose bases are
replaced with Ns at positions not covered with any read produced by Sk, which
is given by

SN
kn =

{
Skn (if ∃i; Ii = k and x̂i covers the nth base of Sk)

N (otherwise)
.

A candidate HLA type and a candidate HLA sequence are then sampled based
on

R∗
k ∼ p(R∗

k|SN
k),

S∗
k ∼ p(S∗

k |R∗
k, I, X̂).

Then, the acceptance rate r can be calculated based on the Metropolis-Hastings
algorithm, which is given by

r = min(1, r∗),

r∗ =
p(R∗

k, S
∗
k |I, X̂)p(R∗

k, S
∗
k → Rk, Sk|I, X̂)

p(Rk, Sk|I, X̂)p(Rk, Sk → R∗
k, S

∗
k |I, X̂)

=
p(SN

k|Rk)
∑

S p(X̂|S, I)p(S|R∗
k)

p(SN
k|R∗

k)
∑

S p(X̂|S, I)p(S|Rk)
.
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This proposal distribution makes the sampling more efficient when there is am-
biguity in the HLA types attributed to some uncovered positions. For example,
let tj and tj′ be HLA types that only differ with one mismatch at the nth posi-
tion. If a sample has tj as an HLA type but there are no reads from tj covering
the nth position, we cannot determine whether the HLA type is tj or tj′ . How-
ever, once Rk becomes tj′ , Skn becomes the nth base of tj′ with high probability.
Then, Rk becomes tj′ with high probability, and this process is repeated. This
is because Rk and Sk are separately sampled in the Gibbs sampling in spite of
their high correlation. Thus, the proposal distribution prevents the parameters
from getting stuck by sampling them simultaneously.

The other proposal distribution swaps non-decoy and decoy parameters. In
this proposal distribution, indices for non-decoy and decoy parameters are uni-
formly sampled, and the HLA types and the HLA sequences at the indices are
swapped. After swapping, candidate indicator variables are sampled based on
the conditional distribution given the swapped parameters. Suppose that R∗

and S∗ are HLA types and HLA sequences after swapping, and that I∗ is a set
of candidate indicator variables. Then, the acceptance rate r can be calculated
by

r = min(1, r∗),

r∗ =
p(R∗,S∗, I∗|X̂)p(R∗,S∗, I∗ → R,S, I|X̂)

p(R,S, I|X̂)p(R,S, I → R∗,S∗, I∗|X̂)

=
p(R∗)

∑
I p(X̂|S∗, I)p(I)

p(R)
∑

I p(X̂|S, I)p(I)
.

This proposal distribution enables quickly distinguishing reads from the target
HLA gene and non-target homologous regions.

Some procedures are used in the burn-in period to avoid getting stuck in
local optima. At the beginning of sampling, a multi-start strategy is used to
reduce the influence of initial parameters. Specifically, some MCMC runs are
carried out, and initial parameters are sampled from the last parameters of the
MCMC runs. In addition, reference sequences are periodically copied to HLA
sequences because there are many local optima where the parameters of the
HLA sequences are twisted as if some crossovers occurred.

After sampling the parameters, HLA genotyping can be performed by count-
ing Rr

1 and Rr
2. We used the most sampled HLA genotype in the MCMC process

as the candidate. The HLA sequences of a sample can be also inferred by count-
ing Sr

1 and Sr
2 .

Results

WES and WGS datasets

To evaluate the capability of our method, we obtained 253 WES data with the
HLA genotypes from the International HapMap Project [22] that had been used
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by Szolek et al. [13] and Shukla et al. [15]. We further downsampled these data
to 1/2, 1/4, 1/8, and 1/16 to simulate low-coverage data.

We also used paired normal and tumor WGS data of 25 Japanese cancer
patients, including 20 liver cancer and 5 microsatellite-unstable colon cancer
samples. These data were obtained from an Illumina HiSeq system with a 101-bp
pair-end read length. The sequence data were deposited into the International
Cancer Genome Consortium (ICGC) database (https://dcc.icgc.org/).

The sequencing-based typing (SBT) approach, which is guaranteed to be
accurate at 4-digit resolution, was used for validation of the 20 liver cancer
samples. Additional HLA genotyping using the TruSight HLA Sequencing Pan-
els, which are theoretically guaranteed to be accurate at full (8-digit) resolution,
was performed for 7 out of the above 20 liver cancer samples to reduce ambiguity
of the SBT genotyping. The 5 microsatellite-unstable samples were genotyped
using the TruSight HLA Sequencing Panels, in order to verify not only the HLA
genotypes but also the presence of somatic mutations. We regarded the results
of the SBT approach and/or the TruSight HLA Sequencing Panels as the correct
information. If the results differed between the two methods, we assumed that
the result of the TruSight HLA Sequencing Panel was correct.

WES- and WGS-based HLA genotyping

For performance comparison, we used three existing methods, OptiType [13],
PHLAT [12], and HLA-VBSeq [14] because it has been reported that they
achieve the highest accuracy for WES- and WGS-based HLA genotyping [16].
First, we applied ALPHLARD and the existing methods to the original and the
downsampled WES data (Additional file 1: Tables S1-S5). Because the gold
standard HLA genotypes were determined from exon 2 and 3, we used only the
exons as the reference sequences in ALPHLARD. Figure 2 shows the perfor-
mance of the methods. ALPHLARD kept higher accuracy compared with the
other methods even when the downsampling ratio was low. The accuracy of the
existing methods was consistent with the preceding paper [16].

We also applied the methods to the normal WGS data and compared the
determined HLA genotypes with those obtained by the SBT approach and the
TruSight HLA Sequencing Panel (Additional file 2: Tables S6-S13). Table 1
shows the performance of the four methods. ALPHLARD clearly achieved a
higher accuracy rate than the other methods. Moreover, the HLA-B genotype of
one sample was inferred differently between the SBT approach and the TruSight
HLA Sequencing Panel, and the result of ALPHLARD for this sample was
identical to that of the TruSight HLA Sequencing Panel. This suggests that
ALPHLARD could be potentially superior to the SBT approach in some cases.
HLA-VBSeq achieved higher accuracy from the WGS data than from the WES
data. This would be because HLA-VBSeq uses non-coding information such as
the introns and the untranslated regions. The accuracy of the existing methods
was consistent with the preceding paper [16].
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Table 1: WGS-based HLA genotyping of ALPHLARD, OptiType, PHLAT,
and HLA-VBSeq. N/A indicates that the method does not support the HLA
gene.

ALPHLARD OptiType PHLAT HLA-VBSeq

HLA-A
2-digit 100% (50/50) 100% (50/50) 76.0% (38/50) 96.0% (48/50)
4-digit 98.0% (49/50) 98.0% (49/50) 60.0% (30/50) 82.0% (41/50)
6-digit 98.0% (49/50) N/A 46.0% (23/50) 82.0% (41/50)

HLA-B
2-digit 100% (48/48) 87.5% (42/48) 72.9% (35/48) 89.6% (43/48)
4-digit 100% (48/48) 85.4% (41/48) 56.3% (27/48) 75.0% (36/48)
6-digit 95.8% (46/48) N/A 39.6% (19/48) 72.9% (35/48)

HLA-C
2-digit 100% (50/50) 100% (50/50) 78.0% (39/50) 96.0% (48/50)
4-digit 98.0% (49/50) 94.0% (47/50) 56.0% (28/50) 66.0% (33/50)
6-digit 98.0% (49/50) N/A 44.0% (22/50) 66.0% (33/50)

HLA-DPA1
2-digit 100% (24/24) N/A N/A 87.5% (21/24)
4-digit 100% (24/24) N/A N/A 87.5% (21/24)
6-digit 100% (24/24) N/A N/A 87.5% (21/24)

HLA-DPB1
2-digit 100% (22/22) N/A N/A 86.4% (19/22)
4-digit 100% (22/22) N/A N/A 86.4% (19/22)
6-digit 100% (22/22) N/A N/A 86.4% (19/22)

HLA-DQA1
2-digit 100% (24/24) N/A 70.8% (17/24) 100% (24/24)
4-digit 95.8% (23/24) N/A 62.5% (15/24) 95.8% (23/24)
6-digit 95.8% (23/24) N/A 62.5% (15/24) 95.8% (23/24)

HLA-DQB1
2-digit 100% (18/18) N/A 77.8% (14/18) 100% (18/18)
4-digit 94.4% (17/18) N/A 61.1% (11/18) 88.9% (16/18)
6-digit 94.4% (17/18) N/A 38.9% (7/18) 88.9% (16/18)

HLA-DRB1
2-digit 100% (24/24) N/A 70.8% (17/24) 95.8% (23/24)
4-digit 100% (24/24) N/A 50.0% (12/24) 58.3% (14/24)
6-digit 100% (24/24) N/A 45.8% (11/24) 58.3% (14/24)

Total
2-digit 100% (260/260) 95.9% (142/148) 74.8% (160/214) 93.8% (244/260)
4-digit 98.5% (256/260) 92.6% (137/148) 57.5% (123/214) 78.1% (203/260)
6-digit 97.7% (254/260) N/A 45.3% (97/214) 77.7% (202/260)
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Figure 2: WES-based HLA genotyping of ALPHLARD, OptiType, PHLAT,
and HLA-VBSeq. Each WES data was downsampled to 1/2, 1/4, 1/8, and 1/16,
and the four methods were applied to all of the original and the downsampled
WES data.

Detection of somatic mutations

Next, we searched for somatic point mutations in the HLA genes. They were
detected by comparing the inferred HLA sequences between paired normal and
tumor samples of each patient. We detected three somatic point mutations in
the microsatellite-unstable samples: two single-base deletions and one single-
base insertion (Figure 3 and Additional file 3: Figures S1 and S2). One of the
deletions occurred in a homopolymeric region in exon 1 of the HLA-A gene, and
the other occurred in a homopolymeric region in exon 1 of the HLA-B gene.
Both of these mutations caused a frameshift, leading to an early stop codon
and ultimate loss of function of the HLA allele. It is known that the HLA-A
and HLA-B genes are homologous, and we found that the two deletions oc-
curred at homologously the same position. Moreover, one of the HLA-A types
(A*68:11N) has a single-base deletion at exactly the same homopolymeric po-
sition. These observations suggest that the homopolymeric regions are deletion
hotspots. The insertion occurred in a homopolymeric region at the beginning
of exon 4 of the HLA-A gene, which changed the HLA-A allele from A*31:01:02
to A*31:14N. This region is known as an insertion hotspot in some HLA types
such as A*01:04N and B*51:11N, and the insertion causes no expression of the
allele [23–26]. The three indels identified were validated by the TruSight HLA
Sequencing Panels and the Sanger sequencing.

We further sought cases of LOH in the HLA genes as follows. First, we
focused on two types of patients: (i) those for which HLA genotypes were
uniquely determined for the normal sample but not for the tumor sample, and
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a

b

Figure 3: A single-base deletion in exon 1 of the HLA-B gene of patient RK363.
IGV screenshots were taken at the position for (a) the WGS data and (b) the
TruSight HLA Sequencing Panel data. In each of the screenshots, the upper
and lower tracks correspond to the normal and tumor samples, respectively.
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(ii) those for which HLA genotypes of both the normal and the tumor samples
were uniquely but not identically determined. Then, we checked whether the
collected reads of the tumor sample supported the HLA genotype inferred for
the normal sample.

We were able to detect one likely case of LOH in the tumor sample of a
patient, RK069. At each heterozygous single nucleotide polymorphism (SNP)
position in each HLA locus, the log odds ratio was calculated for the WGS data
and the Trusight HLA Sequencing Panels based on the number of reads that sup-
ported the SNP (Figure 4 and Additional file 4: Figures S3-S7). These figures
suggest that A*26:01:01, B*35:01:01, C*03:03:01, DPA1*01:03:01, DQA1*03:02,
and DRB1*12:01:01 might be lost in the tumor sample of RK069.

Discussion

In this paper, we presented a new Bayesian method, ALPHLARD, which per-
forms not only HLA genotyping but also infer the HLA sequences of a sample.
The results showed that our method ALPHLARD achieved higher accuracy for
HLA genotyping from both WES and WGS data than existing methods. We
presume that the high performance of ALPHLARD originates from the follow-
ing reasons. First, the search space of ALPHLARD is all possible HLA allele
pairs. Some methods treat an HLA allele pair as two independent HLA alle-
les; that is they give a score to each HLA allele and output the most and the
second most probable HLA alleles without directly considering the combina-
tions. This approximation reduces the computation time but works well only
when the coverage of the sequence data is sufficient. Therefore, such methods
would not achieve high accuracy for HLA genotyping from WGS data. Second,
ALPHLARD takes into account whether or not bases and gaps are observed
at each position by inserting the parameters for HLA sequences between the
parameters for HLA genotypes and collected reads. Most of read count-based
HLA genotyping algorithms consider only the number of reads mapped to each
HLA allele. However, even if a lot of reads are mapped to an HLA allele, it
does not seem to be the true HLA type if there are several regions not covered
by any read. We believe that what is really important is not the number of
reads but the range covered by sufficient reads. Third, ALPHLARD uses some
decoy parameters in addition to non-decoy ones. This is why ALPHLARD can
robustly and accurately perform HLA genotyping even if there exist some reads
from non-target homologous regions that are similar to the target HLA gene.

Besides HLA genotypes, ALPHLARD gives us beneficial information that
cannot be obtained from other methods. First, somatic mutations such as point
mutations and LOHs can be detected by comparing the sampled HLA sequences
of paired normal and tumor samples. We detected three indels and one case
of LOH, which lead to loss of function of the HLA alleles. These mutations
are biologically important because they weaken the immune function and would
be related to tumor progression. Second, novel HLA types not registered in
HLA databases can be identified by comparing the inferred HLA genotype and
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Figure 4: The log odds ratios of the depths at heterozygous SNP positions in
the HLA-A gene of patient RK069. The log odds ratios were calculated for (a)
the WGS data and (b) the TruSight HLA Sequencing Panel data. These log
odds ratios correspond to the relative quantities of observed A*26:01:01 SNPs
in the tumor sample compared with the normal sample. The red dots indicate
the mean values of the log odds ratios, and the vertical lines indicate the 95%
confidence intervals.
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HLA sequences. Unfortunately, no novel HLA type was observed in our anal-
ysis. However, ALPHLARD would be flexible enough to detect the difference
between novel HLA types and known ones because the process of novel HLA
type identification is theoretically the same as that of HLA somatic mutation
detection.

Conclusion

Our new Bayesian-based HLA analysis method, ALPHLARD, showed good per-
formance for HLA genotyping. It also has a potential to detect rare germline
variants and somatic mutations in HLA genes. A large amount of WGS data
has been recently produced by big projects such as the ICGC. Applying our
method to such big data would help to fill in the current gaps in HLA refer-
ence databases and unveil the immunological significance of somatic mutations
identified in HLA genes.
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disease. Arch. Ophthalmol., 100(9):1455–1458, 1982.
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