bioRxiv preprint doi: https://doi.org/10.1101/323915; this version posted May 18, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Projecting the end of the Zika virus epidemic in

Latin America: a modelling analysis

Kathleen M O’Reilly"?, Rachel Lowe?***, W John Edmunds?3, Philippe Mayaud®, Adam
Kucharski?®, Rosalind M Eggo®®, Sebastian Funk®?, Deepit Bhatia®, Kamran Khan®, Moritz

U Kraemar’®, Annelies Wilder-Smith', Laura C Rodrigues3, Patricia Brasil®, Eduardo
Massad'®, Thomas Jaenisch'!, Simon Cauchemez'?>">"*, Oliver J Brady?**, Laith Yakob"?*

! Department of Disease Control, London School of Hygiene & Tropical Medicine, London,
United Kingdom.

2 Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene &
Tropical Medicine, London, United Kingdom.

3 Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical
Medicine, London, United Kingdom.

* Barcelona Institute for Global Health (ISGLOBAL), Barcelona, Spain

® Department of Clinical Research, London School of Hygiene & Tropical Medicine, London,
United Kingdom.

® Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada; and Centre for
Research on Inner City Health, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto,
Ontario, Canada.

" Harvard Medical School, Harvard University, Boston, MA, USA; Boston Children's Hospital,
Boston, MA, USA.

® Department of Zoology, University of Oxford, Oxford, UK.
® Instituto Nacional de Infectologia Evandro Chagas / Fiocruz, Rio de Janeiro, Brazil.
'% School of Applied Mathematics, Fundacao Getulio Vargas, Rio de Janeiro, Brazil..

" Department for Infectious Diseases and Parasitology, Department for Infectious Diseases,
University of Heidelberg, Heidelberg, Germany.

'2 Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France.
'3 Centre National de la Recherche Scientifique, URA3012, Paris, France

4 Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France

* Contributed equally


https://doi.org/10.1101/323915
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/323915; this version posted May 18, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Abstract

Background Zika virus (ZIKV) emerged in Latin America & the Caribbean (LAC) region in
2013, and has had serious implications for population health in the region. In 2016, the
World Health Organization declared the ZIKV outbreak a Public Health Emergency of
International Concern following a cluster of associated neurological disorders and neonatal
malformations. In 2017, Zika cases declined, but future incidence in LAC remains uncertain
due to gaps in our understanding, considerable variation in surveillance and a lack of a

comprehensive collation of data from affected countries.

Methods Our analysis combines information on confirmed and suspected Zika cases across
LAC countries and a spatio-temporal dynamic transmission model for ZIKV infection to
determine key transmission parameters and projected incidence in 91 major cities within 35
countries. Seasonality was determined by spatio-temporal estimates of Aedes aegypti vector
capacity. We used country and state-level data from 2015 to mid-2017 to infer key model
parameters, country-specific disease reporting rates, and the 2018 projected incidence. A
10-fold cross-validation approach was used to validate parameter estimates to out-of-sample

epidemic trajectories.

Results There was limited transmission in 2015, but in 2016 and 2017 there was sufficient
opportunity for wide-spread ZIKV transmission in most cities, resulting in the depletion of
susceptible individuals. We predict that the highest number of cases in 2018 within some
Brazilian States (Sao Paulo and Rio de Janeiro), Colombia and French Guiana, but the
estimated number of cases were no more than a few hundred. Model estimates of the timing
of the peak in incidence were correlated (p<0.05) with the reported peak in incidence. The
reporting rate varied across countries, with lower reporting rates for those with only

confirmed cases compared to those who reported both confirmed and suspected cases.

Conclusions The findings suggest that the ZIKV epidemic is by and large over, with
incidence projected to be low in most cities in LAC in 2018. Local low levels of transmission
are probable but the estimated rate of infection suggests that most cities have a population

with high levels of herd immunity.

Keywords: Zika virus (ZIKV), epidemic, mathematical modelling, Latin America and the Caribbean

(LAC), connectivity
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Introduction

Starting as early as 2013,"? the Zika virus (ZIKV) invaded northeast Brazil and began to spread in the
Latin America & Caribbean (LAC) region. The subsequent discovery of a cluster of Guillain-Barré
syndrome cases and the emergence of severe birth defects led the World Health Organisation (WHO)
to declare the outbreak a Public Health Emergency of International Concern in early 2016. The virus
has since spread to 49 countries and territories across the Americas where autochthonous

transmission has been confirmed.®

However, 2017 saw a marked decline in reported Zika cases and its severe disease manifestations.”
This decline has been widely attributed to the build-up of immunity against ZIKV in the wider human
population,5 although it remains unknown how many people have been infected. To date, there has
been limited use of population-based surveys to determine the circulation and seroprevalence of ZIKV
in LAC, owing to challenges in interpretation of serological tests that cross-react with other flaviviruses
(e.g. dengue).6’7 In addition to the reduction in Zika cases there has also been a marked reduction in
incidence of reported dengue and chikungunya cases in Brazil, meaning that the role of climatic, and

other factors affecting mosquito density, or cross-immunity between arboviruses cannot be ruled out.

While the decline in ZIKV incidence is undoubtedly a positive development, it exposes clear gaps in
our understanding of its natural history and epidemiology, which limit our ability to plan for, detect, and
respond to future epidemics. The short duration of the epidemic and the long lead time needed to
investigate comparatively rare congenital impacts has meant maternal cohort studies, in particular,
may be statistically underpowered to assess relative risk and factors associated with ZIKV-related
adverse infant outcomes.? The evaluation of the safety and efficacy of ZIKV vaccine candidates® are

now also faced with an increasingly scarce number of sites with sufficient ZIKV incidence.'®""

There is an urgent need to predict which areas in LAC remain at risk of transmission in the near
future, and estimate the trajectory of the epidemic. Projections can help public health policymakers
plan surveillance and control activities, particularly in areas where disease persists. They can also be
used by researchers, especially those in vaccine and drug development to update sample size
calculations for ongoing studies to reflect predicted incidence within the time-window of planned trials.
The findings identified from a continental analysis of ZIKV in LAC may be useful should ZIKV emerge
in other settings, such as quantifying the spatial patterns of spread and impact of seasonality on

incidence.

Several mathematical and computational modelling approaches have been developed to forecast

511-14

continental-level ZIKV transmission . The focus has largely been on estimating which areas are

likely to experience epidemic growth. It is apparent from the incidence in 2017 that many countries no
longer reported an increasing incidence of cases. Due to either data unavailability or inaccuracies in
the reported number of Zika cases in each country at the time of analysis, such approaches have

— . . 14
517 fit models to data on other arboviruses'* or used selected

5,12,13,18-21

either not used incidence data at all,
Zika-related incidence data from particular countries to calibrate their models. Additionally,

only a small number of studies have validated their model findings, either through comparison to
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serological surveys or comparing model outputs to incidence data not used within model fitting.13’19'21

Considerably more data are now available across LAC and spanning multiple arboviral transmission
seasons. This provides a valuable opportunity to examine the nature of ZIKV transmission and the
importance of connectivity and seasonality in assessing ZIKV persistence in specific locations
throughout LAC.

In this article, we apply a dynamic spatial model of ZIKV transmission in 91 major cities across LAC
and fit the model to the latest data from 35 countries in LAC. We test several models to account for
human mobility to better understand the impact of human movements on the emergence of ZIKV. The
model was validated using a 10-fold cross-validation comparison to the data. We use the fitted model
to quantify the expected number of cases likely to be observed in 2018 and identify cities likely to

remain at greatest risk.
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Methods

Zika case data from Latin America & the Caribbean

The weekly number of confirmed and suspected Zika cases within each country is reported to the Pan
American Health Organization. This analysis makes use of the weekly incidence of Zika cases in 35
countries, from January 2015 to August 2017 (see Supporting Information S1). State-level ZIKV
incidence data was available for Brazil and Mexico.? Confirmed cases are typically identified through
a positive real-time reverse polymerase chain reaction blood test using ZIKV-specific RNA primers.
Suspected cases are based on the presence of pruritic (itchy) maculopapular rash together with two
or more symptoms such as fever, or polyarthralgia (multiple joint pains), or periarticular oedema (joint
swelling), or conjunctival hyperaemia (eye blood vessel dilation) without secretion and itch.2*2*
Confirmed and suspected cases were included in this analysis because ZIKV detection may have low
sensitivity due to a narrow window of viraemia and many samples, particularly from the earlier phase
of the epidemic remain untested due to laboratories being overloaded during the epidemic.24 Inclusion
of suspected cases in the analysis may reduce specificity due to the non-specific clinical
manifestations of ZIKV and similar circulating arboviruses, including dengue. The reporting of ZIKV
cases will vary considerably between settings and is thought to depend on the arbovirus surveillance
system already in place, additional surveillance specifically established for ZIKV and other viruses

and the likelihood of an individual self-reporting with symptoms consistent with ZIKV infection.

A mathematical model of ZIKV infection

A deterministic meta-population model was used for ZIKV transmission between major cities in the
LAC region. Cities with a population larger than 750,000 and large Caribbean islands were included in
the model. In total we considered 91 cities. We extracted population sizes using the UN estimates
from 2015.%° Migration between cities was modelled assuming several scenarios: i) a gravity model
with no exponential terms; ii) a gravity model with estimated exponential terms; iii) a radiation model;
iv) a data-driven approach based on flight data; and v) a model of local radiation and flight
movements. Gravity models assume that movement between cities is highest when located near each
other and when both cities are large. Radiation models assume that movement between cities are
affected by the size of the population in a circle between the cities (see Supporting Information S2 for

further information).

Within each city, individuals were classified by their infection status: susceptible, pre-infectious,
infectious or recovered from ZIKV infection (Figure 1). Upon infection, individuals were assumed to be

pre-infectious for an average of 5 days and then infectious for a subsequent 20 da1ys:.26‘27

Immunity
was assumed to be life-long and no cross-protection against other flaviviruses was assumed. The
main vectors for ZIKV in LAC are thought to be Aedes aegypti, whilst Aedes albopictus and other
species were thought to play a minor role in transmission.”® The seasonality and scale of ZIKV
transmission was assumed to be specific to each city and dependent across cities, using a vector
capacity modelling approach to estimate transmission intensity of the vectors and an environmental

29-31

niche model to estimate vector relative abundance. In this approach, we model the probability that

ZIKV may transmit for each day of the year, and feed this time-varying probability into the
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mathematical model. We estimate the time-varying reproduction number (Rq(t)), defined the average
number of secondary infections that result from one infected person within a totally susceptible
population, that value varies in time due to the seasonality in vector capacity within each city. The
seasonality curves are summarised using the average number of days per year where R(t) was

greater than 1, and the mean value of Ry(t).

Owing to the difficulties in ZIKV disease surveillance,? the weekly incidence of reported cases was
unlikely to reflect the true incidence in each setting and we did not fit the model to weekly incidence
data. We therefore used summary statistics in the model fitting procedure, focussing on the timing of
the peak in incidence and whether the annual incidence was above 1 case per 100,000 in each
country. The timing of the peak in outbreaks has been previously shown to be a useful summary

statistic for epidemic dynamics,32'33

and preliminary analysis illustrated that annual incidence had a
good discriminatory power for the estimating parameters of the model. Although surveillance quality
varies between settings the timing of the reported peak within countries is less sensitive to systematic
error. A sensitivity analysis confirmed that only a small number of observations were susceptible to
large changes in surveillance prior to April 2016 and after January 2017, making the reported timing

of the peak robust to changes in surveillance (Supporting Information S3).

The model estimate of new infections within each city was aggregated to the country or state level (for
Brazil and Mexico) and scaled to ZIKV cases, enabling comparisons with the available data. The
maximal value of Ry(t) and the best-fitting migration model (including the maximal leaving rate from
cities) were estimated in the model fitting procedure. Parameters were estimated using approximate
Bayesian computation - sequential Monte Carlo (ABC-SMC) methods.** ABC methods use summary
statistics to estimate model parameters from qualitative epidemic characteristics. The sequential
procedure of ABC-SMC means that each model of human mobility could be treated as a parameter.
The prior and posterior distributions of selecting each model was used to estimate Bayes Factors to
determine the evidence in favour of one model over another. Multiple parameter sets with equivalent
fit were produced during the model fitting, and were used to provide the mean and 95% credible
intervals (Cl) of parameter estimates, numbers infected between 2015-2017, timing of the peak in the
epidemic and projections of the numbers of ZIKV cases in 2018. The distribution of the timing of the
peak was compared to the data using Bayesian posterior checks. The values correspond to
probability that the data take a value less than or equal to the cumulative distribution function of the
model, and values between 0.01-0.99 can be interpreted as evidence that the data and model
estimate come from the same distribution. For each country the time series of reported cases were
compared to the normalised model incidence. We compare the total number of reported cases to the
estimated median (and 95% CI) number of infections to estimate the country-specific probability of

reporting a case per infection.

To validate the parameter estimates and model output a cross-validation approach was used. The
data was split into ten randomly allocated groups by country, each group was sequentially excluded
from the parameter estimation procedure and the peak timing of the out-of-sample parameter

estimates were compared to the data. The 95% CI of the cross-validated estimates were compared to
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the within-sample peak estimates. For the 2018 projections we reported the median number of cases,
accounting for the estimated reporting rate and uncertainty in model output. The 95% prediction
interval had a variance equal to the sum of the variance of the model prediction and the variance of
the expected value assuming a Poisson distribution. Comparison of 2018 predictions to data were not

possible as data from affected countries have not been made publicly available (as of 2 May 2018).

To date, there is no evidence to suggest sexual transmission contributes to population

338 50 this transmission route was not considered in the model. Due to current

transmission,
unexplained variability,37 we do not project the expected numbers of neonatal malformations or

neurological disorders, such as microcephaly, associated with ZIKV infection.
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Results

A gravity model, which assumes migration scales with large populations that are closely located
to one another, provided the best fit the data (Table 1). We identified substantial spatial
heterogeneity in transmission (country summaries are provided in Table 2); the average
estimated value of Ry was 1.81 (95% CI 1.74-1.87) and the average number of days per year
where Ry(t)>1 was 253 days (95% CI 250-256 days). The average number of days where Rg(t)>1
varied from 116 days days (Costa Rica) to almost year-round transmission (several cities within
Brazil (Belem & Salvador) and Colombia (Medellin & Cali), and Aruba and Curacao Islands). The
maximal estimate of Ry(t) was often higher within cities that also reported a longer window of
transmission with Ry(t)>1. However, several cities (including Boa Vista, Aracaju and Natal in
Brazil) were estimated to have maximal Ry(t) values above 2.5 with a relatively small window of

transmission within the year.

Despite the emergence of the ZIKV epidemic in early 2015 in north-eastern Brazil, the incidence
of cases remained relatively low in 2015 (Figure 2D and S5 for plots of Brazilian States). All
countries that reported cases in 2015 (Brazil, Colombia, Guatemala, Honduras, Paraguay,
Suriname, Cuba, El Salvador, Mexico, and Venezuela) continued to report cases in 2016 and
2017, except for Cuba. For most countries, the largest number of cases were reported in 2016.
Belize, Colombia, French Guiana, Honduras, Suriname and several Caribbean islands reported
more than 2 cases per 1,000 population in 2016. For 28 of the 35 countries in the analysis, the
peak in reported disease incidence occurred in 2016. Five countries reported a peak in 2017 and

Cuba reported a peak in July 2015 (Figure 2C).

The estimated incidence of ZIKV infections (median and 95% CI) were compared to the reported
data to estimate the country specific reporting rate. The average probability of an infection being
reported as a case was 3.9% (95% CI 2.3-8.1%) and this rate was lower within countries that
only reported confirmed cases (4 countries) than those who reported both confirmed and
suspected cases (22 countries) (Table 2). Costa Rica, French Guiana and the US Virgin Islands
were estimated to have a reporting rate above 20%. A comparison of the time-series of reported
cases was compared to the model estimates of incidence (Figure 3). For all countries an
epidemic was likely to have begun by Dec 2015 to Mar 2016 (otherwise known as the first
phase). The relative scale of the epidemic in the first phase compared to late 2016 (the second
phase) varied by country. For many countries the epidemic was estimated to be larger during the
first phase (such as Argentina, Bolivia, Ecuador, Paraguay). For simulations in Antigua and
Barbuda, Mexico and Venezuela the epidemic during the second phase had a higher incidence
than the first phase. A small number of countries were estimated to have experienced only one
epidemic season: Belize, Honduras, El Salvador and most Caribbean Islands. The difference in
the timing of the peak between data and model was measured using Bayesian posterior checks

where there was a non-significant difference between the model and data for 11 countries, and
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the distribution was over-dispersed (Figure 4A and 4B). There was a significant correlation
(p=0.035) between the reported and estimated peak in the country epidemics (Figure 4C). The
estimated peak in cross-validated simulations were correlated (p<0.001) with the model fit,
although the 95% CI were wider (Figure 4D).

Projections for 2018 suggest a low incidence of Zika cases in most cities considered in the
analysis (Figure 5, and Table 2). When accounting for the country-specific case reporting rate,
the median number of cases was typically less than 20 in most settings. However, French
Guiana was predicted to have between 148-1773 cases, owing to a larger pool of susceptible
individuals than in other settings. Populated States within Brazil, such as Santa Carina and Sao
Paulo were projected to have more than 5 cases, and cases were predicted to occur within
Medellin (Colombia) and San Jose (Costa Rica). The majority of Caribbean countries were
predicted to have no cases in 2018. For all cities the incidence of cases in 2018 will be lower
than 2017. In Colombia, the projected time series of cases for specific cities illustrate a negligible
incidence in 2018, but Medellin was expected to experience the end of the epidemic in 2018
(Figure 5C).
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Discussion

The spread of ZIKV across the LAC region in 2015-2017 has resulted in considerable disease
burden, particularly in the children of mothers infected during pregnancy. Both the reported
incidence of cases and modelling results from this study suggest that the transmission of ZIKV
had continued until herd immunity was reached, despite major efforts to limit its spread through
vector control. Whilst the reported and projected reduction in ZIKV cases is undoubtedly good
news for affected communities, it is only because substantial numbers of individuals have
already been infected. Therefore, it remains vital to maintain surveillance for congenital and

developmental abnormalities and provide long-term care for affected people and families.>®

The aim of this analysis was to assess if cities in LAC were likely to experience ZIKV cases in
2018, to support resource planning and trials. Our modelling results suggest a very low incidence
in 2018. This analysis supports the findings of previous mathematical models of ZIKV .31 1314
addition, our study provides estimates of incidence and risk for specific cities, estimates of case
reporting rates, incorporates parameter uncertainty, includes out-of-sample validation of the
model estimates and uses more data than other modelling studies as we incorporate ZIKV case
reports alongside ecological data to determine city-specific epidemic trajectories and seasonality

curves.

We fitted the model to the timing of the peak in ZIKV cases and then compare the time series of
expected cases to reported cases and found a good fit in many countries. We assumed that
large cities both drive the spread of Zika and are responsible for the majority of cases. As Ae.
aegypti is a largely urban dwelling mosquito and that arboviral diseases have been observed to

be spread by movement of infected humans,***

this assumption is likely to be valid. However,
while we predict the outbreak to largely be over in these large cities, smaller more remote cities
and peri-urban areas may still have susceptible individuals and experience cases. Should
additional sub-national data on the timing of the peak become available, the model fitting and
projections can easily be updated. Case reporting rates indicate a lower rate within countries that
report only confirmed cases, and the rates within Brazil, El Salvador, Martinique, Puerto Rico,

and Suriname align well with other estimates measured using alternative methods.?"*'42

Despite the short-comings in the available data, we present the most up-to-date and robust
predictions of Zika incidence in 2018. As the projected incidence is consistently low across all
model runs, this finding is quite robust to the variability accounted for in the model. Validation of
these findings are necessary through multi-site population representative seroprevalence
surveys across LAC to monitor seroconversion to ZIKV, such as in Netto et al.."® Reporting of
cases within LAC has reduced markedly since the downgrading of ZIKV from a public health
emergency of international concern to an ongoing public health challenge (in November 2018).%3
Consequently, it remains difficult to compare these projections to incidence data for 2018.

10
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This research has highlighted that within LAC the spread of ZIKV was better represented by a
gravity model than flight movements. This may seem surprising as flight data are cited as a
source of emerging infections, such as ZIKV.* But cars and public transportation are used for
most journeys; and the movement of people impacts the spatial spread of vector-borne
diseases.*®* Perhaps for highly transmissible infectious diseases movements facilitated by
flights are sufficient for predicting introduction of a pathogen in a new population, but this
analysis suggests that triggering of a ZIKV outbreak may require more frequent exposure than
air travel. The migration patterns assumed within each model are quite different in LAC (see
Supporting Information), suggesting that models which have not tested the relative fit of each
and use one alone could be prone to errors in estimated spread of ZIKV. In comparison to
mobility modelling in North America, Europe and Africa, the mobility patterns in Latin America are
not well quantified and require further study.

Major questions on the epidemiology of ZIKV remain unanswered.” Whilst the impact of sexual

transmission on ZIKV emergence is likely to be minimal, 354

it may increase the magnitude of an
epidemic36 and this would be difficult to test using the available surveillance data. There are large
differences in the incidence of congenital Zika syndrome across LAC,® with an epicentre
reported within northeast Brazil, that remain largely unexplained. In particular, the analysis here
suggests increased incidence of Zika throughout Brazil in 2016, but the expected increase in
congenital malformations within newborns were not observed.*’ This and other modelling studies
suggest that ZIKV has been widespread, and the finding of geographically variable rates of
congenital defects is discordant with the more consistent rates of ZIKV infection predicted by our

model.

We have assumed that the time varying transmission rate of ZIKV is a function of environmental
and vector suitability that has not been reduced by effective vector control. The impact of vector
control has been largely unassessed, or where it has been assessed it has been found to be
ineffective.*®*° Consequently, our findings are likely to be unaffected by the impact of vector
control. Should effective wide-scale interventions be developed, the model can be used to
assess the impact of proposed interventions. The mathematical model was deterministic in
nature, and especially for projections may under-estimate the variability in the number of cases.
Additionally, we do not include the impact of inter-annual variation in Aedes aegypti vector
capacity, such as the 2015-2016 EIl Nino climate phenomenon, which has previously been shown
to be positively associated with an increased incidence in 2016."® Instead, we show that the peak
incidence in 2016 was likely due to a low incidence of infection in 2015, that then resulted in
optimal transmission in 2016, resulting in depletion of the susceptible population, thus limiting
incidence in 2017 and 2018. If inter-annual variation in ZIKV transmission were incorporated into
our model, it is likely that our incidence estimates for 2016 would increase, and the predicted

incidence in subsequent years would further decrease.

11
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Conclusions

ZIKV has spread widely across LAC, affecting all cities during 2015-2017 leading to high
population immunity against further infection, thereby limiting capacity for sustained ZIKV
transmission. The seasonality in ZIKV transmission affected the rate of infection, but due to high
connectivity between cities this had little impact on the eventual depletion of susceptible
populations. Looking forward, incidence is expected to be low in 2018. This provides optimistic
information for affected communities, but limits our ability to use prospective studies to better
characterise the epidemiology of ZIKV. The continental-wide analysis illustrates much
commonality between settings, such as the relative annual incidence, and the connectivity
across LAC, but questions remain regarding the interpretation of the varied data for ZIKV.
Ultimately, representative seroprevalence surveys will be most useful to understanding past
spread and future risk of ZIKV epidemics in LAC.

Abbreviations

ClI - credible intervals

LAC — Latin America and the Caribbean
ZIKV — Zika virus
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Table 1. Summary of the evidence for each population movement model tested on the Zika data. The prior and

posterior probabilities were estimated using the ABC-SMC procedure (see SM for further details).

Model of
population
movements

Prior probability

(m(my))
Posterior

probability
(P(my|x))

Bayes Factor

Evidence for
alternative model
(and against model

my)

Gravity
(simple) —
M;

0.232

0.001

0.003

Very weak
evidence of
fitting data

Gravity

(exponential

terms

included) — M,

0.246

0.344

1

Model has best

evidence of
fitting data

Radiation—
M3

0.224

0.001

0.002

Very weak
evidence of
fitting data

Flight
data- M,

0.052

0.001

0.001

Very weak
evidence of
fitting data

Combination
of flight &
radiation— M;

0.092

0.001

0.001

Very weak
evidence of
fitting data
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Table 2. Reported and estimated statistics for ZIKV in Latin America and the Caribbean. Reported timing of
the peak of ZIKV cases; the model estimate of the peak in ZIKV cases; the estimated number of days each year
where Ro>1; the average value of Ro throughout the year, the estimated reporting rate of ZIKV cases and the

estimated number of ZIKV cases in 2018.

% infections

Peak in Peak in Days where | Average Ry(t) that result in Prolectgd BayeS|_an
Country Data model Ro(t)>1" during vear' a case cases in Posterior
0 9y (reporting 2018" Check
rate)’'
Antigua & 267 1.41
Barbuda Sep-16 Dec-16 (265, 269) (1.36, 1.46) 0.8 (0.6, 1.5) 0(0, 1) <0.01
. 122 1.07
Argentina Mar-17 Jul-16 (121, 123) (1.04, 1.11) 0(0,0) 6 (2, 15) >0.99
365 2.41
Aruba Feb-17 Feb-16 (365, 365) (2.33, 2.49) 1.3(0.8,2.7) 0(0,0) >0.99
254 2.41(

Bahamas Sep-16 Jan-16 (254, 255) 232, 2.48) 0.1(0.1,0.4) 0(0,0) >0.99
Barbad Jan-16 Feb-16 269 213 0.4 (0.2,0.8) 0(0,0) 0.22
arbados a e (267, 271) (2.05, 2.19) 580 ’ :

. 238 1.36
Belize Feb-17 Dec-16 (236, 239) (1.31, 1.4) 0.7 (0.5, 1.3) 3 (0, 13) >0.99
Bolivia Feb-17 | May-16 (25i5259) (1_912'9306) 0.1 (0.1, 0.3) 0(0,0) >0.99
. 241 1.99 143
Brazil Feb-16 Apr-47 (239, 243) (1.92, 2.05) 0.7 (0.5, 1) (29, 360) 0.43
. 314 1.94
Colombia Dec-16 Jun-16 (311, 315) (1.87, 2.01) 1.7 (1.3, 2.5) 86 (5, 294) <0.01
. 116 0.76 29.6
Costa Rica Sep-16 Jul-16 (97, 139) (0.74, 0.79) (12.5, 55.8) 28 (14, 48) >0.99
260 2.51
Cuba Jul-15 Jan-16 (259, 261) (2.43, 2.6) 0(0,0) 0(0,0) <0.01
365 2.22
Curacao Nov-16 Mar-16 (365, 365) (2.14, 2.29) 4.7 (2.9, 10) 0(0,0) >0.99
Dominican 329 2.21
Republic May-16 Jun-16 (325, 333) (2.13, 2.28) 0.3(0.2,0.5) 0(0,0) 0.06
130 1.86
Ecuador Jun-16 May-16 (130, 131) (1.8,1.92) 0.2 (0.1, 0.5) 0(0,1) >0.99
El Salvador Dec-16 | Nov-16 207 1.36 16 (1.2, 2.8) 3(0,9) <0.01
(205, 208) (1.31, 1.41) DA ’ )
. 230 1.16 36.9 ( 694
French Guiana Apr-16 Aug-16 (226, 232) (1.12,1.2) 22.1, 97.3) (148, 1773) 0.1
331 1.96
Grenada Jun-16 Jul-16 (327, 333) (1.9, 2.03) 0.6 (0.4,1.1) 0(0,0) 0.42
303 2.08
Guadeloupe Jun-16 Jun-16 (301, 305) (2.01, 2.15) 9.3 (6, 16.9) 0(0,0) 0.25
208 1.59
Guatemala Jan-16 Oct-16 (206, 208) (1.54, 1.65) 0.5(0.4,0.9) 0(0,0) <0.01
311 1.73
Guyana Jan-16 Aug-16 (307, 313) (1.67, 1.79) 0.4 (0.3,0.7) 0(0,0) <0.01
" 295 2.3
Haiti Jan-16 Jun-16 (293, 296) (2.22. 2.38) 0.2 (0.1,0.3) 0(0,0) <0.01
222 1.85
Honduras Jan-16 Aug-16 (221, 223) (1.79, 1.91) 3.7(24,7.2) 0(0,0) <0.01
. 269 1.86
Jamaica Jun-16 Aug-16 (268, 271) (1.8,1.92) 1.3(0.8, 2.5) 0(0,0) <0.01
- 323 1.9 11.3
Martinique May-16 Aug-16 (320, 325) (1.83, 1.96) (7.3, 20.9) 0 (0, 0) <0.01
. 141 1.35
Mexico Sep-16 Jan-31 (139, 142) (1.3,1.39) 0.1(0.1,0.1) 5(2,9) 0.99
Nicaragua Ju-16 | Aug-16 216 1.82 0.6 (0.4, 1.1) 0(0,0) 0.13
9 9 (215, 218) (1.75, 1.88) 2041 ’ :
278 1.69
Panama Jan-17 Sep-16 (277, 279) (1.63, 1.75) 0.5(0.3,0.9) 0(0,0) >0.99
295 2.3
Paraguay Mar-16 Mar-16 (293, 297) (2.22. 2.37) 0(0,0.1) 0(0,0) 0.41
168 1.6
Peru Mar-17 Jun-16 (168, 169) (1.55, 1.65) 0.2 (0.1,0.3) 5(0,17) >0.99
. 257 2.28
Puerto Rico Aug-16 Jun-16 (256, 258) (2.2, 2.36) 2.2(1.5,3.7) 0(0,0) >0.99
St. Vincent & Jul-16 Aug-16 322 1.87 0.7 (0.5, 1.3) 0(0,0) 0.36
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Grenadines (313, 331) (1.8, 1.93)
Suriname Dec-16 | Aug-16 217 16 2.4 (15, 4.9) 0(0, 1) <0.01

" (274,280) | (1.55, 1.66)
T?gf:gdo& Aug-16 | Sep-16 (262?;69) “ _7;;81 85) | 05(03,09) 0 (0, 0) 0.24
US Virgin Islands Jul-16 Jan-17 (24315;55) (1.2:3.,314.38) (142,14-3.6) 12 (0, 45) <0.01
Venezuela Jan-16 | Jun-16 (26;7;76) (1_9%1021_08) 0.8 (0.6, 1.1) 1(0,2) <0.01

" Estimated median (95% credible intervals).
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Figure 1. Schematic of the meta-population model structure, that focuses on the northern part of South America
and the Caribbean islands. Each city consists of individuals who are assumed to be susceptible (S), pre-
infectious (E), infectious (I) or recovered (R) from ZIKV infection. Movement of pre-infectious individuals between
cities is modelled assuming different population flows, where a gravity model is illustrated. Movements to cities
outside of the plotted area are not illustrated.
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Figure 2. Reported Zika incidence (cases per 1,000) within Latin America for A) 2016 and B) 2017, C) timing of
peak incidence and D) total number of cases reported for each country for each calendar year (on a log 10
scale)), according to the case classifications submitted by each country.
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Figure 3. Comparisons of the time-series data and normalised model output for all Latin American countries. The
countries are ordered by the type of surveillance data available: Confirmed and suspected, Confirmed, and
Suspected cases. To enable comparison we estimate the symptomatic reporting rate for each country and
multiply this by the model estimate of the number of infections.
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Figure 4. Comparisons of observed and model fit for ZIKV peak incidence in the 31 countries in Latin America. A)
Bayesian posterior checks that the estimated peak timing are consistent with the data; values between 0.01-0.99
indicate that the model and data are from the same distribution, B) Quantile plot of the Bayesian posterior
probabilities C) Comparison of the observed timing of the peak and estimated timing of the peak (with 95% CI) D)
Comparison of the estimated timing of the peak and the cross-validated estimates of peak timing (with 95% CI on
the horizontal and vertical).
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Figure 5. A) The estimated probability of Zika cases in each country (and States in Brazil and Mexico) Probability
of more than 10 cases B) Median estimate of Zika cases in 2018 C) The estimated time series of Zika cases
within 5 major cities of Colombia.
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